Search results for: legal judgment prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4023

Search results for: legal judgment prediction

3843 Mathematical Modeling for Diabetes Prediction: A Neuro-Fuzzy Approach

Authors: Vijay Kr. Yadav, Nilam Rathi

Abstract:

Accurate prediction of glucose level for diabetes mellitus is required to avoid affecting the functioning of major organs of human body. This study describes the fundamental assumptions and two different methodologies of the Blood glucose prediction. First is based on the back-propagation algorithm of Artificial Neural Network (ANN), and second is based on the Neuro-Fuzzy technique, called Fuzzy Inference System (FIS). Errors between proposed methods further discussed through various statistical methods such as mean square error (MSE), normalised mean absolute error (NMAE). The main objective of present study is to develop mathematical model for blood glucose prediction before 12 hours advanced using data set of three patients for 60 days. The comparative studies of the accuracy with other existing models are also made with same data set.

Keywords: back-propagation, diabetes mellitus, fuzzy inference system, neuro-fuzzy

Procedia PDF Downloads 259
3842 Clinical Feature Analysis and Prediction on Recurrence in Cervical Cancer

Authors: Ravinder Bahl, Jamini Sharma

Abstract:

The paper demonstrates analysis of the cervical cancer based on a probabilistic model. It involves technique for classification and prediction by recognizing typical and diagnostically most important test features relating to cervical cancer. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases. The combination of the conventional statistical and machine learning tools is applied for the analysis. Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.

Keywords: cervical cancer, recurrence, no recurrence, probabilistic, classification, prediction, machine learning

Procedia PDF Downloads 360
3841 Dynamic vs. Static Bankruptcy Prediction Models: A Dynamic Performance Evaluation Framework

Authors: Mohammad Mahdi Mousavi

Abstract:

Bankruptcy prediction models have been implemented for continuous evaluation and monitoring of firms. With the huge number of bankruptcy models, an extensive number of studies have focused on answering the question that which of these models are superior in performance. In practice, one of the drawbacks of existing comparative studies is that the relative assessment of alternative bankruptcy models remains an exercise that is mono-criterion in nature. Further, a very restricted number of criteria and measure have been applied to compare the performance of competing bankruptcy prediction models. In this research, we overcome these methodological gaps through implementing an extensive range of criteria and measures for comparison between dynamic and static bankruptcy models, and through proposing a multi-criteria framework to compare the relative performance of bankruptcy models in forecasting firm distress for UK firms.

Keywords: bankruptcy prediction, data envelopment analysis, performance criteria, performance measures

Procedia PDF Downloads 249
3840 Prediction of Extreme Precipitation in East Asia Using Complex Network

Authors: Feng Guolin, Gong Zhiqiang

Abstract:

In order to study the spatial structure and dynamical mechanism of extreme precipitation in East Asia, a corresponding climate network is constructed by employing the method of event synchronization. It is found that the area of East Asian summer extreme precipitation can be separated into two regions: one with high area weighted connectivity receiving heavy precipitation mostly during the active phase of the East Asian Summer Monsoon (EASM), and another one with low area weighted connectivity receiving heavy precipitation during both the active and the retreat phase of the EASM. Besides,a way for the prediction of extreme precipitation is also developed by constructing a directed climate networks. The simulation accuracy in East Asia is 58% with a 0-day lead, and the prediction accuracy is 21% and average 12% with a 1-day and an n-day (2≤n≤10) lead, respectively. Compare to the normal EASM year, the prediction accuracy is lower in a weak year and higher in a strong year, which is relevant to the differences in correlations and extreme precipitation rates in different EASM situations. Recognizing and identifying these effects is good for understanding and predicting extreme precipitation in East Asia.

Keywords: synchronization, climate network, prediction, rainfall

Procedia PDF Downloads 445
3839 Digital Skepticism In A Legal Philosophical Approach

Authors: dr. Bendes Ákos

Abstract:

Digital skepticism, a critical stance towards digital technology and its pervasive influence on society, presents significant challenges when analyzed from a legal philosophical perspective. This abstract aims to explore the intersection of digital skepticism and legal philosophy, emphasizing the implications for justice, rights, and the rule of law in the digital age. Digital skepticism arises from concerns about privacy, security, and the ethical implications of digital technology. It questions the extent to which digital advancements enhance or undermine fundamental human values. Legal philosophy, which interrogates the foundations and purposes of law, provides a framework for examining these concerns critically. One key area where digital skepticism and legal philosophy intersect is in the realm of privacy. Digital technologies, particularly data collection and surveillance mechanisms, pose substantial threats to individual privacy. Legal philosophers must grapple with questions about the limits of state power and the protection of personal autonomy. They must consider how traditional legal principles, such as the right to privacy, can be adapted or reinterpreted in light of new technological realities. Security is another critical concern. Digital skepticism highlights vulnerabilities in cybersecurity and the potential for malicious activities, such as hacking and cybercrime, to disrupt legal systems and societal order. Legal philosophy must address how laws can evolve to protect against these new forms of threats while balancing security with civil liberties. Ethics plays a central role in this discourse. Digital technologies raise ethical dilemmas, such as the development and use of artificial intelligence and machine learning algorithms that may perpetuate biases or make decisions without human oversight. Legal philosophers must evaluate the moral responsibilities of those who design and implement these technologies and consider the implications for justice and fairness. Furthermore, digital skepticism prompts a reevaluation of the concept of the rule of law. In an increasingly digital world, maintaining transparency, accountability, and fairness becomes more complex. Legal philosophers must explore how legal frameworks can ensure that digital technologies serve the public good and do not entrench power imbalances or erode democratic principles. Finally, the intersection of digital skepticism and legal philosophy has practical implications for policy-making. Legal scholars and practitioners must work collaboratively to develop regulations and guidelines that address the challenges posed by digital technology. This includes crafting laws that protect individual rights, ensure security, and promote ethical standards in technology development and deployment. In conclusion, digital skepticism provides a crucial lens for examining the impact of digital technology on law and society. A legal philosophical approach offers valuable insights into how legal systems can adapt to protect fundamental values in the digital age. By addressing privacy, security, ethics, and the rule of law, legal philosophers can help shape a future where digital advancements enhance, rather than undermine, justice and human dignity.

Keywords: legal philosophy, privacy, security, ethics, digital skepticism

Procedia PDF Downloads 45
3838 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study

Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa

Abstract:

Purpose: Candidemia was associated with high mortality in critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analyzing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia before ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86% with no significant differences in the demographic and comorbidities except higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU and hospital LOS and higher ICU and in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al (2021) had good sensitivity and a high negative prediction value.

Keywords: candidemia, intensive care, clinical prediction rule, incidence

Procedia PDF Downloads 20
3837 Marosok Tradition in the Process of Buying and Selling Cattle in Payakumbuh: A Comparative Study between Adat Law and Positive Law of Indonesia

Authors: Mhd. Zakiul Fikri, M. Agus Maulidi

Abstract:

Indonesia is a constitutional state. As the constitutional state, Indonesia is not only using a single legal system, but also adopting three legal systems consist of: The European continental legal system or positive law of Indonesia, adat law system, and legal system of religion. This study will discuss Marosok tradition in the process of buying and selling cattle in Payakumbuh: a comparative study between adat law and positive law of Indonesia. The objectives of this research are: First, to find the meaning of the philosophical of Marosok tradition in Payakumbuh. Second, to find the legal implications of the Marosok tradition reviewed aspects of adat law and positive law of Indonesia. Third, to find legal procedure in arbitrating the dispute wich is potentially appear in the post-process of buying and selling cattle based on positive law and adat law adopted in Indonesia. This research is empirical legal research that using two model approaches which are statute approach and conceptual approach. Data was obtained through interviews, observations, and documents or books. Then a method of data analysis used is inductive analysis. Finally, this study found that: First, tradition of Marosok contains the meaning of harmonization of social life that keep people from negative debate, envy, and arrogant. Second, Marosok tradition is one of the adat law in Indonesia; it is one of contract law in the process of buying and selling. If the comparison between the practice Marosok tradition as adat law with the provisions of Article 1320 book of civil code about the terms of the validity of a contract, the elements contained in the provisions of these regulations are met in practice Marosok. Thus, the practice of Marosok in buying and selling cattle process in Payakumbuh justified in view of the positive law of Indonesia. Last of all, all kinds of disputes arising due to contracts made by Marosok tradition can be resolved by positive law and adat law of Indonesia.

Keywords: Adat law, contract, Indonesia, Marosok

Procedia PDF Downloads 324
3836 Unconscious Bias in Judicial Decisions: Legal Genealogy and Disgust in Cases of Private, Adult, Consensual Sexual Acts Leading to Injury

Authors: Susanna Menis

Abstract:

‘Unconscious’ bias is widespread, affecting society on all levels of decision-making and beyond. Placed in the law context, this study will explore the direct effect of the psycho-social and cultural evolution of unconscious bias on how a judicial decision was made. The aim of this study is to contribute to socio-legal scholarship by examining the formation of unconscious bias and its influence on the creation of legal rules that judges believe reflect social solidarity and protect against violence. The study seeks to understand how concepts like criminalization and unlawfulness are constructed by the common law. The study methodology follows two theoretical approaches: historical genealogy and emotions as sociocultural phenomena. Both methods have the ‘tracing back’ of the original formation of a social way of seeing and doing things in common. The significance of this study lies in the importance of reflecting on the ways unconscious bias may be formed; placing judges’ decisions under this spotlight forces us to challenge the status quo, interrogate justice, and seek refinement of the law.

Keywords: legal geneology, emotions, disgust, criminal law

Procedia PDF Downloads 61
3835 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 430
3834 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 148
3833 Recent Developments in the Application of Deep Learning to Stock Market Prediction

Authors: Shraddha Jain Sharma, Ratnalata Gupta

Abstract:

Predicting stock movements in the financial market is both difficult and rewarding. Analysts and academics are increasingly using advanced approaches such as machine learning techniques to anticipate stock price patterns, thanks to the expanding capacity of computing and the recent advent of graphics processing units and tensor processing units. Stock market prediction is a type of time series prediction that is incredibly difficult to do since stock prices are influenced by a variety of financial, socioeconomic, and political factors. Furthermore, even minor mistakes in stock market price forecasts can result in significant losses for companies that employ the findings of stock market price prediction for financial analysis and investment. Soft computing techniques are increasingly being employed for stock market prediction due to their better accuracy than traditional statistical methodologies. The proposed research looks at the need for soft computing techniques in stock market prediction, the numerous soft computing approaches that are important to the field, past work in the area with their prominent features, and the significant problems or issue domain that the area involves. For constructing a predictive model, the major focus is on neural networks and fuzzy logic. The stock market is extremely unpredictable, and it is unquestionably tough to correctly predict based on certain characteristics. This study provides a complete overview of the numerous strategies investigated for high accuracy prediction, with a focus on the most important characteristics.

Keywords: stock market prediction, artificial intelligence, artificial neural networks, fuzzy logic, accuracy, deep learning, machine learning, stock price, trading volume

Procedia PDF Downloads 92
3832 Several Aspects of the Conceptual Framework of Financial Reporting

Authors: Nadezhda Kvatashidze

Abstract:

The conceptual framework of International Financial Reporting Standards determines the basic principles of accounting. The said principles have multiple applications, with professional judgments being one of those. Recognition and assessment of the information contained in financial reporting, especially so the somewhat uncertain events and transactions and/or the ones regarding which there is no standard or interpretation are based on professional judgments. Professional judgments aim at the formulation of expert assumptions regarding the specifics of the circumstances and events to be entered into the report based on the conceptual framework terms and principles. Experts have to make a choice in favor of one of the aforesaid and simulate the situations applying multi-variant accounting estimates and judgment. In making the choice, one should consider all the factors, which may help represent the information in the best way possible. Professional judgment determines the relevance and faithful representation of the presented information, which makes it more useful for the existing and potential investors. In order to assess the prospected net cash flows, the information must be predictable and reliable. The publication contains critical analysis of the aforementioned problems. The fact that the International Financial Reporting Standards are developed continuously makes the issue all the more important and that is another point discussed in the study.

Keywords: conceptual framework, faithful representation, professional judgement, relevance

Procedia PDF Downloads 215
3831 Predicting Costs in Construction Projects with Machine Learning: A Detailed Study Based on Activity-Level Data

Authors: Soheila Sadeghi

Abstract:

Construction projects are complex and often subject to significant cost overruns due to the multifaceted nature of the activities involved. Accurate cost estimation is crucial for effective budget planning and resource allocation. Traditional methods for predicting overruns often rely on expert judgment or analysis of historical data, which can be time-consuming, subjective, and may fail to consider important factors. However, with the increasing availability of data from construction projects, machine learning techniques can be leveraged to improve the accuracy of overrun predictions. This study applied machine learning algorithms to enhance the prediction of cost overruns in a case study of a construction project. The methodology involved the development and evaluation of two machine learning models: Random Forest and Neural Networks. Random Forest can handle high-dimensional data, capture complex relationships, and provide feature importance estimates. Neural Networks, particularly Deep Neural Networks (DNNs), are capable of automatically learning and modeling complex, non-linear relationships between input features and the target variable. These models can adapt to new data, reduce human bias, and uncover hidden patterns in the dataset. The findings of this study demonstrate that both Random Forest and Neural Networks can significantly improve the accuracy of cost overrun predictions compared to traditional methods. The Random Forest model also identified key cost drivers and risk factors, such as changes in the scope of work and delays in material delivery, which can inform better project risk management. However, the study acknowledges several limitations. First, the findings are based on a single construction project, which may limit the generalizability of the results to other projects or contexts. Second, the dataset, although comprehensive, may not capture all relevant factors influencing cost overruns, such as external economic conditions or political factors. Third, the study focuses primarily on cost overruns, while schedule overruns are not explicitly addressed. Future research should explore the application of machine learning techniques to a broader range of projects, incorporate additional data sources, and investigate the prediction of both cost and schedule overruns simultaneously.

Keywords: cost prediction, machine learning, project management, random forest, neural networks

Procedia PDF Downloads 60
3830 A Prediction Method for Large-Size Event Occurrences in the Sandpile Model

Authors: S. Channgam, A. Sae-Tang, T. Termsaithong

Abstract:

In this research, the occurrences of large size events in various system sizes of the Bak-Tang-Wiesenfeld sandpile model are considered. The system sizes (square lattice) of model considered here are 25×25, 50×50, 75×75 and 100×100. The cross-correlation between the ratio of sites containing 3 grain time series and the large size event time series for these 4 system sizes are also analyzed. Moreover, a prediction method of the large-size event for the 50×50 system size is also introduced. Lastly, it can be shown that this prediction method provides a slightly higher efficiency than random predictions.

Keywords: Bak-Tang-Wiesenfeld sandpile model, cross-correlation, avalanches, prediction method

Procedia PDF Downloads 382
3829 Prediction of Bodyweight of Cattle by Artificial Neural Networks Using Digital Images

Authors: Yalçın Bozkurt

Abstract:

Prediction models were developed for accurate prediction of bodyweight (BW) by using Digital Images of beef cattle body dimensions by Artificial Neural Networks (ANN). For this purpose, the animal data were collected at a private slaughter house and the digital images and the weights of each live animal were taken just before they were slaughtered and the body dimensions such as digital wither height (DJWH), digital body length (DJBL), digital body depth (DJBD), digital hip width (DJHW), digital hip height (DJHH) and digital pin bone length (DJPL) were determined from the images, using the data with 1069 observations for each traits. Then, prediction models were developed by ANN. Digital body measurements were analysed by ANN for body prediction and R2 values of DJBL, DJWH, DJHW, DJBD, DJHH and DJPL were approximately 94.32, 91.31, 80.70, 83.61, 89.45 and 70.56 % respectively. It can be concluded that in management situations where BW cannot be measured it can be predicted accurately by measuring DJBL and DJWH alone or both DJBD and even DJHH and different models may be needed to predict BW in different feeding and environmental conditions and breeds

Keywords: artificial neural networks, bodyweight, cattle, digital body measurements

Procedia PDF Downloads 375
3828 Conceptualizing the Cyber Insecurity Risk in the Ethics of Automated Warfare

Authors: Otto Kakhidze, Hoda Alkhzaimi, Adam Ramey, Nasir Memon

Abstract:

This paper provides an alternative, cyber security based a conceptual framework for the ethics of automated warfare. The large body of work produced on fully or partially autonomous warfare systems tends to overlook malicious security factors as in the possibility of technical attacks on these systems when it comes to the moral and legal decision-making. The argument provides a risk-oriented justification to why technical malicious risks cannot be dismissed in legal, ethical and policy considerations when warfare models are being implemented and deployed. The assumptions of the paper are supported by providing a broader model that contains the perspective of technological vulnerabilities through the lenses of the Game Theory, Just War Theory as well as standard and non-standard defense ethics. The paper argues that a conventional risk-benefit analysis without considering ethical factors is insufficient for making legal and policy decisions on automated warfare. This approach will provide the substructure for security and defense experts as well as legal scholars, ethicists and decision theorists to work towards common justificatory grounds that will accommodate the technical security concerns that have been overlooked in the current legal and policy models.

Keywords: automated warfare, ethics of automation, inherent hijacking, security vulnerabilities, risk, uncertainty

Procedia PDF Downloads 357
3827 Gender-Based Differences in the Social Judgment of Hungarian Politicians' Sex Scandals

Authors: Sara Dalma Galgoczi, Judith Gabriella Kengyel

Abstract:

Sex scandals are quite an engaging topic to work with, especially with their judgment in society. Most people are interested in other people's lives, specifically in public figures' such as celebrities or politicians, because ordinary people feel like they have the right to know more things about the famous and notorious ones than they would probably willing to share. Intimacy and sexual acts aren't exceptions; moreover, sexuality is one of the central interests of humans ever since. Besides, knowing and having an opinion about any kind of scandal can change even whole social groups or classes estimation of anyone. This study aims to research the social judgment of some Hungarian politicians' sex scandals and asks important questions like diverse public opinions in the light of gender or delegates’ abuse of power. Considering that this study is about collecting and evaluating opinions from the public, and no one before researched and published this exact topic and cases, an online survey was created. In the survey were different sections. We collected data about party-preference, conservativism-liberalism scale; then we used the following questionnaires: from Zero-sum perspective with regard to gender equality (Ruthig, Kehn, Gamblin, Vanderzanden & Jones, 2017), Ambivalent Sexism Inventory (ASI; Glick & Fiske, 1996), Ambivalence Toward Men Inventory (AMI; Glick & Fiske, 1999). Finally, 5 short summaries were presented about five Hungarian politicians' sex scandal cases (3 males, 2 females) from the recent past. These stories were followed by questions about their opinion of the party and attitudes towards the parties' reactions to the cases. We came to the conclusion that people are more permissive with the scandals of men, and benevolent sexism and ambivalence towards men mediate this relation. Men tend to see these cases as part of politicians' private lives more than women. Party preference had a significant effect - people tend to pass a sentence the delegates of the opposing parties, and they rather release the delegates of their preferred party.

Keywords: sex scandal, sexism, social judgement, politician

Procedia PDF Downloads 124
3826 Engagement Analysis Using DAiSEE Dataset

Authors: Naman Solanki, Souraj Mondal

Abstract:

With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.

Keywords: computer vision, engagement prediction, deep learning, multi-level classification

Procedia PDF Downloads 115
3825 Performance Evaluation of Arrival Time Prediction Models

Authors: Bin Li, Mei Liu

Abstract:

Arrival time information is a crucial component of advanced public transport system (APTS). The advertisement of arrival time at stops can help reduce the waiting time and anxiety of passengers, and improve the quality of service. In this research, an experiment was conducted to compare the performance on prediction accuracy and precision between the link-based and the path-based historical travel time based model with the automatic vehicle location (AVL) data collected from an actual bus route. The research results show that the path-based model is superior to the link-based model, and achieves the best improvement on peak hours.

Keywords: bus transit, arrival time prediction, link-based, path-based

Procedia PDF Downloads 361
3824 Effects of Corporate Social Responsibility on Individual Investors’ Judgment on Investment Risk: Experimental Evidence from China

Authors: Huayun Zhai, Quan Hu, Wei-Chih Chiang, Jianjun Du

Abstract:

By applying experimental methodology in the framework of the behavior-perception theory, this paper studies the relationship between information quality of corporates’ social responsibility (CSR) and individual investors’ risk perception, intermediated with individual investors’ perception on CSR. The findings are as follows: In general, the information quality of CSR significantly influences individual investors’ perception on investment risks. Furthermore, certification on CSR can help reinforce such perceptions. The higher the reporting quality of CSR is, accompanied by the certification by an independent third party, the more likely individual investors recognize the responsibilities. The research also found that the perception on CSR not only plays a role of intermediation between information quality about CSR and investors’ perception on investment risk but also intermediates the certification of CSR reports and individual investors’ judgment on investment risks. The main contributions of the research are in two folds. The first is that it supplements the research on CSR from the perspective of investors’ perceptions. The second is that the research provides theoretical and experimental evidence for enterprises to implement and improve reports on their social responsibilities.

Keywords: information quality, corporate social responsibility, report certification, individual investors’ perception on risk, perception of corporate social responsibility

Procedia PDF Downloads 75
3823 Genomic Prediction Reliability Using Haplotypes Defined by Different Methods

Authors: Sohyoung Won, Heebal Kim, Dajeong Lim

Abstract:

Genomic prediction is an effective way to measure the abilities of livestock for breeding based on genomic estimated breeding values, statistically predicted values from genotype data using best linear unbiased prediction (BLUP). Using haplotypes, clusters of linked single nucleotide polymorphisms (SNPs), as markers instead of individual SNPs can improve the reliability of genomic prediction since the probability of a quantitative trait loci to be in strong linkage disequilibrium (LD) with markers is higher. To efficiently use haplotypes in genomic prediction, finding optimal ways to define haplotypes is needed. In this study, 770K SNP chip data was collected from Hanwoo (Korean cattle) population consisted of 2506 cattle. Haplotypes were first defined in three different ways using 770K SNP chip data: haplotypes were defined based on 1) length of haplotypes (bp), 2) the number of SNPs, and 3) k-medoids clustering by LD. To compare the methods in parallel, haplotypes defined by all methods were set to have comparable sizes; in each method, haplotypes defined to have an average number of 5, 10, 20 or 50 SNPs were tested respectively. A modified GBLUP method using haplotype alleles as predictor variables was implemented for testing the prediction reliability of each haplotype set. Also, conventional genomic BLUP (GBLUP) method, which uses individual SNPs were tested to evaluate the performance of the haplotype sets on genomic prediction. Carcass weight was used as the phenotype for testing. As a result, using haplotypes defined by all three methods showed increased reliability compared to conventional GBLUP. There were not many differences in the reliability between different haplotype defining methods. The reliability of genomic prediction was highest when the average number of SNPs per haplotype was 20 in all three methods, implying that haplotypes including around 20 SNPs can be optimal to use as markers for genomic prediction. When the number of alleles generated by each haplotype defining methods was compared, clustering by LD generated the least number of alleles. Using haplotype alleles for genomic prediction showed better performance, suggesting improved accuracy in genomic selection. The number of predictor variables was decreased when the LD-based method was used while all three haplotype defining methods showed similar performances. This suggests that defining haplotypes based on LD can reduce computational costs and allows efficient prediction. Finding optimal ways to define haplotypes and using the haplotype alleles as markers can provide improved performance and efficiency in genomic prediction.

Keywords: best linear unbiased predictor, genomic prediction, haplotype, linkage disequilibrium

Procedia PDF Downloads 141
3822 Legal Study on the Construction of Olympic and Paralympic Soft Law about Manipulation of Sports Competition

Authors: Clemence Collon, Didier Poracchia

Abstract:

The manipulation of sports competitions is a new type of sports integrity problem. While doping has become an organized, institutionalized struggle, the manipulation of sports competitions is gradually building up. This study aims to describe and understand how the soft Olympic and Paralympic law was gradually built. It also summarizes the legal tools for prevention, detection, and sanction developed by the international Olympic movement. Then, it analyzes the impact of this soft law on the law of the States, in particular in French law. This study is mainly based on an analysis of existing legal literature and non-binding law in the International Olympic and Paralympic movement and on the French National Olympic Committee. Interviews were carried out with experts from the Olympic movement or experts working on combating the manipulation of sports competitions; the answers are also used in this article. The International Olympic Committee has created a supranational legal base to fight against the manipulation of sports competitions. This legal basis must be respected by sports organizations. The Olympic Charter, the Olympic Code of Ethics, the Olympic Movement Code on the prevention of the manipulation of sports competitions, the rules of standards, the basic universal principles, the manuals, the declarations have been published in this perspective. This sports soft law has influences or repercussions in each state. Many states take this new form of integrity problem into account by creating state laws or measures in favor of the fight against sports manipulations. France has so far only a legal basis for manipulation related to betting on sports competitions through the infraction of sports corruption included in the penal code and also created a national platform with various actors to combat this cheating. This legal study highlights the progressive construction of the sports law rules of the Olympic movement in the fight against the manipulation of sports competitions linked to sports betting and their impact on the law of the states.

Keywords: integrity, law and ethics, manipulation of sports competitions, olympic, sports law

Procedia PDF Downloads 155
3821 A Deep Learning Approach to Real Time and Robust Vehicular Traffic Prediction

Authors: Bikis Muhammed, Sehra Sedigh Sarvestani, Ali R. Hurson, Lasanthi Gamage

Abstract:

Vehicular traffic events have overly complex spatial correlations and temporal interdependencies and are also influenced by environmental events such as weather conditions. To capture these spatial and temporal interdependencies and make more realistic vehicular traffic predictions, graph neural networks (GNN) based traffic prediction models have been extensively utilized due to their capability of capturing non-Euclidean spatial correlation very effectively. However, most of the already existing GNN-based traffic prediction models have some limitations during learning complex and dynamic spatial and temporal patterns due to the following missing factors. First, most GNN-based traffic prediction models have used static distance or sometimes haversine distance mechanisms between spatially separated traffic observations to estimate spatial correlation. Secondly, most GNN-based traffic prediction models have not incorporated environmental events that have a major impact on the normal traffic states. Finally, most of the GNN-based models did not use an attention mechanism to focus on only important traffic observations. The objective of this paper is to study and make real-time vehicular traffic predictions while incorporating the effect of weather conditions. To fill the previously mentioned gaps, our prediction model uses a real-time driving distance between sensors to build a distance matrix or spatial adjacency matrix and capture spatial correlation. In addition, our prediction model considers the effect of six types of weather conditions and has an attention mechanism in both spatial and temporal data aggregation. Our prediction model efficiently captures the spatial and temporal correlation between traffic events, and it relies on the graph attention network (GAT) and Bidirectional bidirectional long short-term memory (Bi-LSTM) plus attention layers and is called GAT-BILSTMA.

Keywords: deep learning, real time prediction, GAT, Bi-LSTM, attention

Procedia PDF Downloads 73
3820 Epileptic Seizure Prediction Focusing on Relative Change in Consecutive Segments of EEG Signal

Authors: Mohammad Zavid Parvez, Manoranjan Paul

Abstract:

Epilepsy is a common neurological disorders characterized by sudden recurrent seizures. Electroencephalogram (EEG) is widely used to diagnose possible epileptic seizure. Many research works have been devoted to predict epileptic seizure by analyzing EEG signal. Seizure prediction by analyzing EEG signals are challenging task due to variations of brain signals of different patients. In this paper, we propose a new approach for feature extraction based on phase correlation in EEG signals. In phase correlation, we calculate relative change between two consecutive segments of an EEG signal and then combine the changes with neighboring signals to extract features. These features are then used to classify preictal/ictal and interictal EEG signals for seizure prediction. Experiment results show that the proposed method carries good prediction rate with greater consistence for the benchmark data set in different brain locations compared to the existing state-of-the-art methods.

Keywords: EEG, epilepsy, phase correlation, seizure

Procedia PDF Downloads 309
3819 Legal Framework of Islamic Social Finance to Support M40 Income Group in Malaysia

Authors: Azlin Suzana Salim

Abstract:

The 12th Malaysian Plan 2021-2025, issued by the Economic Planning Unit in 2021, outlined one of the six important priorities to support M40 towards equitable society. The Financial Sector Blueprint 2022-2026, released by Bank Negara Malaysia in 2022, further outlined the fifth key thrust focusing on Islamic Social Finance. The purpose of this research is to examine the Legal Framework of bridging Islamic Social Finance to support M40 Income Group in Malaysia. This study adopts a doctrinal legal research method to examine the laws and regulations governing Islamic Social Finance in Malaysia and a qualitative method to examine the Islamic Social Finance Instrument to support the M40 income group. The implication of this study is important to propose the legal framework and bridge the Islamic Social Finance instrument to support the M40 income group in Malaysia. The significance of this study is to realign between priorities of the 12th Malaysian Plan 2021-2025 and the Financial Sector Blueprint 2022-2026.

Keywords: legal framework, Islamic social finance, m40 income group, law and regulation

Procedia PDF Downloads 73
3818 International Dispute Settlements According to the Law of the Sea: Coastal States vs. Maritime Conflicts

Authors: Ermal Xhelilaj

Abstract:

International practice has revealed that many maritime conflicts have been initiated as a direct result of coastal states’ disagreements over maritime boundaries and other related maritime issues. These disagreements embrace relevant problematic matters reflecting international conflicts, which in order to prevent further escalation into international crises or even armed conflicts have to be legally resolved. The most challenging cases in international system involve regional or bilateral disputes regarding maritime boundaries delimitations between states, which may result in the activation of respective armed forces, considered crucial elements for the protection of territorial sovereignty. Taken under considerations the legal issues that Law of the Sea Convention (1982) reflects, including the legal provisions over disputes settlements, the importance of analyzing this paramount issue might be considered relevant at present. Therefore, this study will be focused in discussing legal and practical issues that concern the resolution of international maritime disputes seen from international relations point of view, by initially analyzing UN Convention on the Law of the Sea (UNCLOS 1982) relevant legal provisions, further discussing several notable cases over maritime boundaries delimitations as well as concluding with some recommendations related to this issue. The author is of the opinion that although the boundaries delimitation’s legal regime of UNCLOS reflects important standards for dispute settlements, yet considering the complex situation that represents this issue, relevant amendments might be necessary to be undertaken by international maritime organizations in order to further clarify the aforementioned legal matter.

Keywords: Law of the Sea, maritime conflicts, dispute settlements, international relations

Procedia PDF Downloads 208
3817 Smart Contracts: Bridging the Divide Between Code and Law

Authors: Abeeb Abiodun Bakare

Abstract:

The advent of blockchain technology has birthed a revolutionary innovation: smart contracts. These self-executing contracts, encoded within the immutable ledger of a blockchain, hold the potential to transform the landscape of traditional contractual agreements. This research paper embarks on a comprehensive exploration of the legal implications surrounding smart contracts, delving into their enforceability and their profound impact on traditional contract law. The first section of this paper delves into the foundational principles of smart contracts, elucidating their underlying mechanisms and technological intricacies. By harnessing the power of blockchain technology, smart contracts automate the execution of contractual terms, eliminating the need for intermediaries and enhancing efficiency in commercial transactions. However, this technological marvel raises fundamental questions regarding legal enforceability and compliance with traditional legal frameworks. Moving beyond the realm of technology, the paper proceeds to analyze the legal validity of smart contracts within the context of traditional contract law. Drawing upon established legal principles, such as offer, acceptance, and consideration, we examine the extent to which smart contracts satisfy the requirements for forming a legally binding agreement. Furthermore, we explore the challenges posed by jurisdictional issues as smart contracts transcend physical boundaries and operate within a decentralized network. Central to this analysis is the examination of the role of arbitration and dispute resolution mechanisms in the context of smart contracts. While smart contracts offer unparalleled efficiency and transparency in executing contractual terms, disputes inevitably arise, necessitating mechanisms for resolution. We investigate the feasibility of integrating arbitration clauses within smart contracts, exploring the potential for decentralized arbitration platforms to streamline dispute resolution processes. Moreover, this paper explores the implications of smart contracts for traditional legal intermediaries, such as lawyers and judges. As smart contracts automate the execution of contractual terms, the role of legal professionals in contract drafting and interpretation may undergo significant transformation. We assess the implications of this paradigm shift for legal practice and the broader legal profession. In conclusion, this research paper provides a comprehensive analysis of the legal implications surrounding smart contracts, illuminating the intricate interplay between code and law. While smart contracts offer unprecedented efficiency and transparency in commercial transactions, their legal validity remains subject to scrutiny within traditional legal frameworks. By navigating the complex landscape of smart contract law, we aim to provide insights into the transformative potential of this groundbreaking technology.

Keywords: smart-contracts, law, blockchain, legal, technology

Procedia PDF Downloads 48
3816 Privacy Policy Prediction for Uploaded Image on Content Sharing Sites

Authors: Pallavi Mane, Nikita Mankar, Shraddha Mazire, Rasika Pashankar

Abstract:

Content sharing sites are very useful in sharing information and images. However, with the increasing demand of content sharing sites privacy and security concern have also increased. There is need to develop a tool for controlling user access to their shared content. Therefore, we are developing an Adaptive Privacy Policy Prediction (A3P) system which is helpful for users to create privacy settings for their images. We propose the two-level framework which assigns the best available privacy policy for the users images according to users available histories on the site.

Keywords: online information services, prediction, security and protection, web based services

Procedia PDF Downloads 359
3815 Breast Cancer Prediction Using Score-Level Fusion of Machine Learning and Deep Learning Models

Authors: Sam Khozama, Ali M. Mayya

Abstract:

Breast cancer is one of the most common types in women. Early prediction of breast cancer helps physicians detect cancer in its early stages. Big cancer data needs a very powerful tool to analyze and extract predictions. Machine learning and deep learning are two of the most efficient tools for predicting cancer based on textual data. In this study, we developed a fusion model of two machine learning and deep learning models. To obtain the final prediction, Long-Short Term Memory (LSTM) and ensemble learning with hyper parameters optimization are used, and score-level fusion is used. Experiments are done on the Breast Cancer Surveillance Consortium (BCSC) dataset after balancing and grouping the class categories. Five different training scenarios are used, and the tests show that the designed fusion model improved the performance by 3.3% compared to the individual models.

Keywords: machine learning, deep learning, cancer prediction, breast cancer, LSTM, fusion

Procedia PDF Downloads 164
3814 Agriculture Yield Prediction Using Predictive Analytic Techniques

Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee

Abstract:

India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.

Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models

Procedia PDF Downloads 316