Search results for: curing compounds
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2621

Search results for: curing compounds

2441 Wasteless Solid-Phase Method for Conversion of Iron Ores Contaminated with Silicon and Phosphorus Compounds

Authors: А. V. Panko, Е. V. Ablets, I. G. Kovzun, М. А. Ilyashov

Abstract:

Based upon generalized analysis of modern know-how in the sphere of processing, concentration and purification of iron-ore raw materials (IORM), in particular, the most widespread ferrioxide-silicate materials (FOSM), containing impurities of phosphorus and other elements compounds, noted special role of nano technological initiatives in improvement of such processes. Considered ideas of role of nano particles in processes of FOSM carbonization with subsequent direct reduction of ferric oxides contained in them to metal phase, as well as in processes of alkali treatment and separation of powered iron from phosphorus compounds. Using the obtained results the wasteless solid-phase processing, concentration and purification of IORM and FOSM from compounds of phosphorus, silicon and other impurities excelling known methods of direct iron reduction from iron ores and metallurgical slimes.

Keywords: iron ores, solid-phase reduction, nanoparticles in reduction and purification of iron from silicon and phosphorus, wasteless method of ores processing

Procedia PDF Downloads 459
2440 Role of Dispersion of Multiwalled Carbon Nanotubes on Compressive Strength of Cement Paste

Authors: Jyoti Bharj, Sarabjit Singh, Subhash Chander, Rabinder Singh

Abstract:

The outstanding mechanical properties of Carbon Nanotubes (CNTs) have generated great interest for their potential as reinforcements in high performance cementitious composites. The main challenge in research is the proper dispersion of carbon nanotubes in the cement matrix. The present work discusses the role of dispersion of Multiwall Carbon Nanotubes (MWCNTs) on the compressive strength characteristics of hydrated Portland IS 1489 cement paste. Cement-MWCNT composites with different mixing techniques were prepared by adding 0.2% (by weight) of MWCNTs to Portland IS 1489 cement. Rectangle specimens of size approximately 40mm × 40mm ×160mm were prepared and curing of samples was done for 7, 14, 28, and 35 days. An appreciable increase in compressive strength with both techniques; mixture of MWCNTs with cement in powder form and mixture of MWCNTs with cement in hydrated form 7 to 28 days of curing time for all the samples was observed.

Keywords: carbon nanotubes, Portland cement, composite, compressive strength

Procedia PDF Downloads 400
2439 Naturally Occurring Abietic Acid for Liquid Crystalline Epoxy Curing Agents

Authors: Rasha A.Ibrahim El-Ghazawy, Ashraf M. El-Saeed, Heusin El-Shafey, M. Abdel-Raheim, Maher A. El-Sockary

Abstract:

Two thermotropic liquid crystalline curing agents based on abietic acid with different mesogens (LCC1 and LCC2) were synthesized for producing thermally stable liquid crystal networks suitable for high performance epoxy coatings. Differential scanning calorimetry (DSC) and polarized optical microscope (POM) was used to identify the liquid crystal phase transformation temperatures and texture, respectively. POM micro graphs for both LCCs revealing cholesteric texture. A multifunctional epoxy resin with two abietic acid moieties was also synthesized. Dynamic mechanical (DMA) and thermogravimetric (TGA) analyses show that the fully bio-based cured epoxies by either LCCs possess high glass transition temperature (Tg), high modulus (G`) and improved thermal stability. The chemical structure of the synthesized LCCs and epoxy resin was investigated through FTIR and 1HNMR spectroscopic techniques.

Keywords: abietic acid, dynamic mechanical analysis, epoxy resin, liquid crystal, thermo gravimetric analysis

Procedia PDF Downloads 336
2438 Isolation and Identification of Cytotoxic Compounds from Fruticose Lichen Roccella montagnei, and It’s in Silico Docking Study against CDK-10

Authors: Tripti Mishra, Shipra Shukla, Sanjeev Meena, , Ruchi Singh, Mahesh Pal, D. K. Upreti, Dipak Datta

Abstract:

Roccella montagnei belongs to lichen family Roccelleceae growing luxuriantly along the coastal regions of India. As Roccella has been shown to be bioactive, we prepared methanolic extract and assessed its anticancer potential. The methanolic extract showed significant in vitro cytotoxic activity against four human cancer cell lines such as Colon (DLD-1, SW-620), Breast (MCF-7), Head and Neck (FaDu). This prompted us to isolate bioactive compounds through column chromatography. Two compounds Roccellic acid and Everninic acid have been isolated, out of which Everninic acid is reported for the first time. Both the compounds have been tested for in vitro cytotoxic activity in which Roccellic acid showed strong anticancer activity as compared to the Everninic acid. CDK-10 (Cyclin-dependent kinase) contributes to proliferation of cancer cells, and aberrant activity of these kinases has been reported in a wide variety of human cancers. These kinases, therefore, constitute biomarkers of proliferation and attractive pharmacological targets for the development of anticancer therapeutics. Therefore both the isolated compounds were tested for in silico molecular docking study against CDK-10 isomer enzyme to support the cytotoxic activity.

Keywords: cytotoxic activity, everninic acid, roccellic acid, R. montagnei

Procedia PDF Downloads 300
2437 The Impact of Ultrasonic Field to Increase the Biodegradability of Leachate from The Landfill

Authors: Kwarciak-Kozlowska A., Slawik-Dembiczak L., Galwa-Widera M.

Abstract:

Complex and variable during operation of the landfill leachate composition prevents the use of a single universal method of their purification. Due to the presence of difficult biodegradable these substances in the wastewater, cleaning of them often requires the use of biological methods (activated sludge or anaerobic digestion), also often supporting by physicochemical processes. Currently, more attention is paid to the development of unconventional methods of disposal of sewage m.in ultleniania advanced methods including the use of ultrasonic waves. It was assumed that the ultrasonic waves induce change in the structure of organic compounds and contribute to the acceleration of biodegradability, including refractive substances in the leachate, so that will increase the effectiveness of their treatment in biological processes. We observed a marked increase in BOD leachate when subjected to the action of utradźwięowego. Ratio BOD / COD was 27% higher compared to the value of this ratio for leachate nienadźwiękawianych. It was found that the process of sonification leachate clearly influenced the formation and release of aliphatic compounds. These changes suggest a possible violation of the chemical structure of organic compounds in the leachate thereby give compounds of the chemical structure more susceptible to biodegradation.

Keywords: IR spectra, landfill leachate, organic pollutants, ultrasound

Procedia PDF Downloads 404
2436 Isolation and Identification of Compounds from the Leaves of Actinodaphne sesquipedalis Hook. F. Var. Glabra (Lauraceae)

Authors: O. Hanita, S. A. Ainnul Hamidah, A. H. Yang Zalila, M. R. Siti Nadiah, M. H. Najihah, M. A. Hapipah

Abstract:

The crude extract of the leaves of Actinodaphne sesquipedalis Hook. F. Var. Glabra (Kochummen), was taken under phytochemical investigation. The crude methanolic extract was partitioned with a different solvent system by increasing their polarities (n-hexane, dichloromethane, and methanol). The compounds were fractionated and isolated from n-hexane partition by using column chromatography with silica gel 60 or Sephadex LH-20 as a stationary phase and preparative thin layer chromatographic technique. Isolates were characterized using TLC, FTIR, UV spectrophotometer and NMR spectroscopy. The n-hexane fractionates yielded a total of four compounds namely N-methyllaurotetanine (1), dicentrine (2), β-sitosterol (3), and stigmasterol (4). The result indicates that the leaves of Actinodaphne sesquipedalis may provide a rich source of alkaloids and triterpenoids.

Keywords: actinodaphne sesquipedalis, alkaloids, phytochemical investigation, triterpenoids

Procedia PDF Downloads 374
2435 Influence of Cure Degree in GO and CNT-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Wesley Francisco, Filipe Vargas, Gilmar Patrocínio Thim

Abstract:

In recent years, carbon nanotubes (CNT) and graphene oxide (GO), especially the functionalized ones, have been added to epoxy resin in order to increase the mechanical, electrical and thermal properties of nanocomposites. However, it's still unknown how the presence of these nanoparticles influences the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, epoxy resin, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80°C + 2h 120°C; 3h 80°C + 2h 120°C; 5h 80°C) and samples with different times at constant temperature (120°C). Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites.

Keywords: carbon nanotube, epoxy resin, Graphene oxide, nanocomposite

Procedia PDF Downloads 289
2434 Effects of Cooking and Drying on the Phenolic Compounds, and Antioxidant Activity of Cleome gynandra (Spider Plant)

Authors: E. Kayitesi, S. Moyo, V. Mavumengwana

Abstract:

Cleome gynandra (spider plant) is an African green leafy vegetable categorized as an indigenous, underutilized and has been reported to contain essential phenolic compounds. Phenolic compounds play a significant role in human diets due to their proposed health benefits. These compounds however may be affected by different processing methods such as cooking and drying. Cleome gynandra was subjected to boiling, steam blanching, and drying processes and analysed for Total Phenolic Content (TPC), Total Flavonoid Content (TFC), antioxidant activity and flavonoid composition. Cooking and drying significantly (p < 0.05) increased the levels of phenolic compounds and antioxidant activity of the vegetable. The boiled sample filtrate exhibited the lowest TPC followed by the raw sample while the steamed sample depicted the highest TPC levels. Antioxidant activity results showed that steamed sample showed the highest DPPH, FRAP and ABTS with mean values of 499.38 ± 2.44, 578.68 ± 5.19, and 214.39 ± 12.33 μM Trolox Equivalent/g respectively. An increase in quercetin-3-rutinoside, quercetin-rhamnoside and kaempferol-3-rutinoside occurred after all the cooking and drying methods employed. Cooking and drying exerted positive effects on the vegetable’s phenolic content, antioxidant activity as a whole, but with varied effects on the individual flavonoid molecules. The results obtained help in defining the importance of African green leafy vegetable and resultant processed products as functional foods and their potential to exert health promoting properties.

Keywords: Cleome gynandra, phenolic compounds, cooking, drying, health promoting properties

Procedia PDF Downloads 143
2433 An Endophyte of Amphipterygium adstringens as Producer of Cytotoxic Compounds

Authors: Karol Rodriguez-Peña, Martha L. Macias-Rubalcava, Leticia Rocha-Zavaleta, Sergio Sanchez

Abstract:

A bioassay-guided study for anti-cancer compounds from endophytes of the Mexican medicinal plant Amphipteryygium adstringens resulted in the isolation of a streptomycete capable of producing a group of compounds with high cytotoxic activity. Microorganisms from surface sterilized samples of various sections of the plant were isolated and all the actinomycetes found were evaluated for their potential to produce compounds with cytotoxic activity against cancer cell lines MCF7 (breast cancer) and HeLa (cervical cancer) as well as the non-tumoural cell line HaCaT (keratinocyte). The most active microorganism was picked for further evaluation. The identification of the microorganism was carried out by 16S rDNA gene sequencing, finding the closest proximity to Streptomyces scabrisporus, but with the additional characteristic that the strain isolated in this study was capable of producing colorful compounds never described for this species. Crude extracts of dichloromethane and ethyl acetate showed IC50 values of 0.29 and 0.96 μg/mL for MCF7, 0.51 and 1.98 μg/mL for HeLa and 0.96 and 2.7 μg/mL for HaCaT. Scaling the fermentation to 10 L in a bioreactor generated 1 g of total crude extract, which was fractionated by silica gel open column to yield 14 fractions. Nine of the fractions showed cytotoxic activity. Fraction 4 was chosen for subsequent purification because of its high activity against cancerous cell lines, lower activity against keratinocytes. HPLC-UV-MS/ESI was used for the evaluation of this fraction, finding at least 10 different compounds with high values of m/z (≈588). Purification of the compounds was carried out by preparative thin-layer chromatography. The prevalent compound was Steffimycin B, a molecule known for its antibiotic and cytotoxic activities and also for its low solubility in aqueous solutions. Along with steffimycin B, another five compounds belonging to the steffimycin family were isolated and at this moment their structures are being elucidated, some of which display better solubility in water: an attractive property for the pharmaceutical industry. As a conclusion to this study, the isolation of endophytes resulted in the discovery of a strain capable of producing compounds with high cytotoxic activity that need to be studied for their possible utilization.

Keywords: amphipterygium adstringens, cytotoxicity, streptomyces scabrisporus, steffimycin

Procedia PDF Downloads 334
2432 A Comparison of Kinetic and Mechanical Properties between Graphene Oxide (GO) and Carbon Nanotubes (CNT)-Epoxy Nanocomposites

Authors: Marina Borgert Moraes, Gilmar Patrocinio Thim

Abstract:

It is still unknown how the presence of nanoparticles such as graphene oxide (GO) or carbon nanotubes (CNT) influence the curing process and the final mechanical properties as well. In this work, kinetic and mechanical properties of the nanocomposites were analyzed, where the kinetic process was followed by DSC and the mechanical properties by DMA as well as mechanical tests. Initially, CNT was annealed at high temperature (1800 °C) under vacuum atmosphere, followed by a chemical treatment using acids and ethylenediamine. GO was synthesized through chemical route, washed clean, dried and ground to #200. The presence of functional groups on CNT and GO surface was confirmed by XPS spectra and FT-IR. Then, nanoparticles and acetone were mixed by sonication in order to obtain the composites. DSC analyses were performed on samples with different curing cycles (1h 80 °C + 2h 120 °C; 3h 80 °C + 2h 120 °C; 5h 80 °C) and samples with different times at constant temperature (120 °C). Mechanical tests were performed according to ASTM D638 and D790. Results showed that the kinetic process and the mechanical strength are very dependent on the presence of graphene and functionalized-CNT in the nanocomposites, and the GO reinforced samples had a slightly bigger improvement compared to functionalized CNT.

Keywords: carbon nanotube, epoxy resin, graphene oxide, nanocomposite

Procedia PDF Downloads 240
2431 Synthesis and Characterisation of New Heteropolyanion Substitute by CO2+

Authors: Ouahiba Bechiri, Mostefa Abbessi

Abstract:

In recent year, polyoxometallates are intensely being explored because of their applications as new materiels, structural aesthetics, catalysts, and biologically active compounds. heteropolyanions of general formulae [X2M18O62] n- (X= heteroatom, e.g. P, Si) and (M=W, Mo), known as Dawson-type anions, constitue a special class of polyoxometallate compounds. In this present work, cobalt substituted heteropolyanion Dawson-type [HP2W15Mo3CoO61] were synthesized and characterized by IR spectroscopy, 31 P NMR, cyclic voltammetry.

Keywords: heteropolyanions, nanomaterials, Dawson-type, characterization

Procedia PDF Downloads 228
2430 Impact of Pulsing and Trickle Flow on Catalytic Wet Air Oxidation of Phenolic Compounds in Waste Water at High Pressure

Authors: Safa'a M. Rasheed, Saba A. Gheni, Wadood T. Mohamed

Abstract:

Phenolic compounds are the most carcinogenic pollutants in waste water in effluents of refineries and pulp industry. Catalytic wet air oxidation is an efficient industrial treatment process to oxidize phenolic compounds into unharmful organic compounds. Mode of flow of the fluid to be treated is a dominant factor in determining effectiveness of the catalytic process. The present study aims to obtain a mathematical model describing the conversion of phenolic compounds as a function of the process variables; mode of flow (trickling and pulsing), temperature, pressure, along with a high concentration of phenols and a platinum supported alumina catalyst. The model was validated with the results of experiments obtained in a fixed bed reactor. High pressure and temperature were employed at 8 bar and 140 °C. It has been found that conversion of phenols is highly influenced by mode of flow and the change is caused by changes occurred in hydrodynamic regime at the time of pulsing flow mode, thereby a temporal variation in wetting efficiency of platinum prevails; which in turn increases and/or decreases contact time with phenols in wastewater. The model obtained was validated with experimental results, and it is found that the model is a good agreement with the experimental results.

Keywords: wastewater, phenol, pulsing flow, wet oxidation, high pressure

Procedia PDF Downloads 115
2429 Clustering of Natural and Nature Derived Compounds for Cardiovascular Disease: Pharmacophore Modeling

Authors: S. Roy, R. Rekha, K. Sriram, G. Subhadra, R. Johana

Abstract:

Cardiovascular disease remains a leading cause of death in most industrialized countries. Many chemical drugs are available in the market which targets different receptor proteins related to cardiovascular diseases. Of late the traditional herbal drugs are safer when compared to chemical drugs because of its side effects. However, many herbal remedies used in treating cardiovascular diseases have not undergone scientific assessment to prove its pharmacological activities. There are many natural compounds, nature derived and Natural product mimic compounds are available which are in the market as approved drug. In the most of the cases drug activity at the molecular level are not known. Here we have categorized those compounds with our experimental compounds in different classes based on the structural similarity and physicochemical properties, using a tool, Chemmine and has attempted to understand the mechanism of the action of a experimental compound, which are clustered with Simvastatin, Lovastatin, Mevastatin and Pravastatin. Target protein molecule for Simvastatin, Lovastatin, Mevastatin and Pravastatin is HMG-CoA reductase, so we concluded that the experimental compound may be able to bind to the same target. Molecular docking and atomic interaction studies with simvastatin and our experimental compound were compared. A pharmacophore modeling was done based on the experimental compound and HMG-CoA reductase inhibitor.

Keywords: molecular docking, physicochemical properties, pharmacophore modeling structural similarity, pravastatin

Procedia PDF Downloads 298
2428 Comparison of Silica-Filled Rubber Compound Prepared from Unmodified and Modified Silica

Authors: Thirawudh Pongprayoon, Watcharin Rassamee

Abstract:

Silica-filled natural rubber compounds were prepared from unmodified and surface-modified silica. The modified silica was coated by ultrathin film of polyisoprene by admicellar polymerization. FTIR and SEM were applied to characterize the modified silica. The cure, mechanic, and dynamics properties were investigated with the comparison of the compounds. Cure characterization of modified silica rubber compound was shorter than that of unmodified silica compound. Strength and abrasion resistance of modified silica compound were better than those of unmodified silica rubber compound. Wet grip and rolling resistance analyzed by DMA from tanδ at 0°C and 60°C using 5 Hz were also better than those of unmodified silica rubber compound.

Keywords: silica, admicellar polymerization, rubber compounds, mechanical properties, dynamic properties

Procedia PDF Downloads 324
2427 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer

Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma

Abstract:

Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.

Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material

Procedia PDF Downloads 39
2426 Synthesis and Molecular Docking of Isonicotinohydrazide Derivatives as Anti-Tuberculosis Candidates

Authors: Ruswanto Ruswanto, Richa Mardianingrum, Tita Nofianti, Nur Rahayuningsih

Abstract:

Tuberculosis (TB) is a chronic disease as a result of Mycobacterium tuberculosis. It can affect all age groups, and hence, is a global health problem that causes the death of millions of people every year. One of the drugs used in tuberculosis treatment is isonicotinohydrazide. In this study, N'-benzoylisonicotinohydrazide derivative compounds (a-l) were prepared using acylation reactions between isonicotinohydrazide and benzoyl chloride derivatives, through the reflux method. Molecular docking studies suggested that all of the compounds had better interaction with Mycobacterium tuberculosis enoyl-acyl carrier protein reductase (InhA) than isonicotinohydrazide. It can be concluded that N'-benzoylisonicotinohydrazide derivatives (a-l) could be used as anti-tuberculosis candidates. From the docking results revealed that all of the compounds interact well with InhA, with compound g (N'-(3-nitrobenzoyl)isonicotinohydrazide) exhibiting the best interaction.

Keywords: anti-tuberculosis , docking, InhA, N'-benzoylisonicotinohydrazide, synthesis

Procedia PDF Downloads 278
2425 The Effect of Curing Temperature and Rice Husk Ash Addition on the Behaviour of Sulfate-Rich Clay after Lime Stabilization

Authors: E. Bittar, A. Quiñonez, F. Mencia, E. Aguero, M. Delgado, V. Arriola, R. López

Abstract:

In the western region of Paraguay, the poor condition of the roads has negatively affected the development of this zone, where the absence of petrous material has led engineers to opt for the stabilization of soils with lime or cement as the main structure for bases and subbases of these roads. In several areas of this region, high sulfate contents have been found both in groundwater and in soils, which, when reacted with lime or cement, generate a new problem instead of solving it. On the other hand, the use of industrial waste as granulated slag and fly ash proved to be a sustainable practice widely used in the manufacture of cement, and now also, in the stabilization of soils worldwide. Works related to soils containing sulfates stabilized either with granulated slag or fly ash and lime shown a good performance in their mechanical behaviour. This research seeks to evaluate the mechanical behaviour of soils with high contents of sulfates stabilized with lime by curing them both, at the normalized temperature (23 ± 2 °C) and at 40 ± 2 °C. Moreover, it attempts to asses if the addition of rice husk ash has a positive influence on the new geomaterial. The 40 ± 2 °C curing temperature was selected trying to simulate the average local temperature in summer and part of spring session whereas rice husk ash is an affordable waste produced in the region. An extensive experimental work, which includes unconfined compression, durability and free swell tests were carried out considering different dry unit weights, lime content and the addition of 20% of rice husk ash. The results showed that the addition of rice husk ash increases the resistance and durability of the material and decreases the expansion of this, moreover, the specimens cured at a temperature of 40 ± 2 °C showed higher resistance, better durability and lower expansion compared to those cured at the normalized temperature of 23 ± 2 °C.

Keywords: durability, expansion, lime stabilization, rice husk ash, sulfate

Procedia PDF Downloads 94
2424 Advanced Materials Based on Ethylene-Propylene-Diene Terpolymers and Organically Modified Montmorillonite

Authors: M. D. Stelescu, E. Manaila, G. Pelin, M. Georgescu, M. Sonmez

Abstract:

This paper presents studies on the development and characterization of nanocomposites based on ethylene-propylene terpolymer rubber (EPDM), chlorobutyl rubber (IIR-Cl) and organically modified montmorillonite (OMMT). Mixtures were made containing 0, 3 and 6 phr (parts per 100 parts rubber) OMMT, respectively. They were obtained by melt intercalation in an internal mixer - Plasti-Corder Brabender, in suitable blending parameters, at high temperature for 11 minutes. Curing agents were embedded on a laboratory roller at 70-100 ºC, friction 1:1.1, processing time 5 minutes. Rubber specimens were obtained by compression, using a hydraulic press at 165 ºC and a pressing force of 300 kN. Curing time, determined using the Monsanto rheometer, decreases with the increased amount of OMMT in the mixtures. At the same time, it was noticed that mixtures containing OMMT show improvement in physical-mechanical properties. These types of nanocomposites may be used to obtain rubber seals for the space application or for other areas of application.

Keywords: chlorobutyl rubber, ethylene-propylene-diene terpolymers, montmorillonite, rubber seals, space application

Procedia PDF Downloads 151
2423 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity

Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş

Abstract:

In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.

Keywords: alkali activation, slag, rapid chloride permeability, water absorption capacity

Procedia PDF Downloads 289
2422 Methodology for the Determination of Triterpenic Compounds in Apple Extracts

Authors: Mindaugas Liaudanskas, Darius Kviklys, Kristina Zymonė, Raimondas Raudonis, Jonas Viškelis, Norbertas Uselis, Pranas Viškelis, Valdimaras Janulis

Abstract:

Apples are among the most commonly consumed fruits in the world. Based on data from the year 2014, approximately 84.63 million tons of apples are grown per annum. Apples are widely used in food industry to produce various products and drinks (juice, wine, and cider); they are also used unprocessed. Apples in human diet are an important source of different groups of biological active compounds that can positively contribute to the prevention of various diseases. They are a source of various biologically active substances – especially vitamins, organic acids, micro- and macro-elements, pectins, and phenolic, triterpenic, and other compounds. Triterpenic compounds, which are characterized by versatile biological activity, are the biologically active compounds found in apples that are among the most promising and most significant for human health. A specific analytical procedure including sample preparation and High Performance Liquid Chromatography (HPLC) analysis was developed, optimized, and validated for the detection of triterpenic compounds in the samples of different apples, their peels, and flesh from widespread apple cultivars 'Aldas', 'Auksis', 'Connel Red', 'Ligol', 'Lodel', and 'Rajka' grown in Lithuanian climatic conditions. The conditions for triterpenic compound extraction were optimized: the solvent of the extraction was 100% (v/v) acetone, and the extraction was performed in an ultrasound bath for 10 min. Isocratic elution (the eluents ratio being 88% (solvent A) and 12% (solvent B)) for a rapid separation of triterpenic compounds was performed. The validation of the methodology was performed on the basis of the ICH recommendations. The following characteristics of validation were evaluated: the selectivity of the method (specificity), precision, the detection and quantitation limits of the analytes, and linearity. The obtained parameters values confirm suitability of methodology to perform analysis of triterpenic compounds. Using the optimised and validated HPLC technique, four triterpenic compounds were separated and identified, and their specificity was confirmed. These compounds were corosolic acid, betulinic acid, oleanolic acid, and ursolic acid. Ursolic acid was the dominant compound in all the tested apple samples. The detected amount of betulinic acid was the lowest of all the identified triterpenic compounds. The greatest amounts of triterpenic compounds were detected in whole apple and apple peel samples of the 'Lodel' cultivar, and thus apples and apple extracts of this cultivar are potentially valuable for use in medical practice, for the prevention of various diseases, for adjunct therapy, for the isolation of individual compounds with a specific biological effect, and for the development and production of dietary supplements and functional food enriched in biologically active compounds. Acknowledgements. This work was supported by a grant from the Research Council of Lithuania, project No. MIP-17-8.

Keywords: apples, HPLC, triterpenic compounds, validation

Procedia PDF Downloads 152
2421 Free Raducal Scavenging Activity of Fractionated Extract and Structural Elucidation of Isolated Compounds from Hydrocotyl Bonariensis Comm. Ex Lam Leaves

Authors: Emmanuel O Ajani, Sabiu S, Mariam Zakari, Fisayo A Bamisaye

Abstract:

Hydrocotyl bonariensis is a plant which anticataractogenic potentials have been reported. In the present study an attempt was made to evaluate the in vitro antioxidant activity of the fractionates of the leaves extract and also characterize some of its chemical constituents. DPPH, H₂O₂, OH and NO free radical scavenging, metal chelating and reducing power activity was used to evaluate the antioxidant activity of the crude extract fractionates. Fresh leaves of Hydrocotyl bonariensis leaves were extracted in 70% methanol. The extract was partitioned with different solvent system of increasing polarity (n-hexane, chloroform, ethyl acetate methanol and water). Compounds were isolated from the aqueous practitionate using accelerated gradient chromatography, vacuum liquid chromatography, preparative TLC and conventional column chromatography. The presence of the chemical groups was established with HPLC and Fourier Transform Infra Red. The structures of isolated compounds were elucidated by spectroscopic study and chemical shifts. Data from the study indicates that all the fractionates contain compounds with free radical scavenging activity. This activity was more pronounced in the aqueous fractionate (DPPH IC₅₀, 0025 ± 0.011 mg/ml, metal chelating capacity 27.5%, OH- scavenging IC₅₀, 0.846 ± 0.037 mg/ml, H₂O₂ scavenging IC₅₀ 0.521 ± 0.015 mg/ml, reducing power IC₅₀ 0.248 ± 0.025 mg/ml and NO scavenging IC₅₀ 0.537 ± 0.038 mg/ml). Two compounds were isolated and when compared with data from the literature; the structures were suggestive of polyphenolic flavonoid, quercetin and 3-O-β-D-glucopyranosyl-sitosterol. The result indicates that H. bonariensis leaves contain bioactive compounds with antioxidant activity.

Keywords: antioxidant, cataract, free radical, flavonoids, hydrocotyl bonariensis

Procedia PDF Downloads 248
2420 Properties of Compressed Earth Blocks Enhanced with Clay Pozzolana

Authors: Humphrey Danso, Seth Adu

Abstract:

The high cost of cement and its greenhouse effect on the environment have led to the use of alternative building materials in the production of block and bricks. This study seeks to investigate the properties of compressed earth blocks (CEBs) enhanced with clay pozzolana. CEBs of size 290 × 140 × 100 mm were prepared with 10, 20 and 30 % weight of clay pozzolana. The CEBs were compressed at a constant pressure of 5 MPa and cured for 28 days. The blocks, after 7, 14, 21 and 28 days of curing were tested for density, water absorption, compressive strength and erosion. It was found that amount of pozzolana content did not have much influence on blocks’ density. There was a decline in water absorption of the stabilised blocks ranged between 32.8% and 252.2% over the unstabilised blocks. The highest compressive strength (3.75MPa) of the stabilized blocks was achieved at 28th day of curing with 30% clay pozzolana content, which showed an improvement of 116.8% strength over the unstabilised blocks. Furthermore, there was a statistically significant difference in the erosion resistance between the stabilized blocks and the unstabilised blocks. The study concludes that the inclusion of the clay pozzolana increased the properties of the CEBs, and therefore recommended for use in the building of houses.

Keywords: clay pozzolana, compressed earth blocks (CEBs), compressive strength, erosion test

Procedia PDF Downloads 262
2419 Isolation, Characterization and Biological Activities of Compounds Isolated from Callicarpa maingayi

Authors: Muhammad A. Ado, Intan S. Ismail, Hasanah M. Ghazali, Faridah Abas

Abstract:

In this study, we have investigated the phytochemical constituents of soluble fractions of dichloromethane (DCM) of methanolic leaves extract of the Callicarpa maingayi. The phytochemicals investigation has resulted in the isolation of three triterpenoids (euscaphic acid (1), arjunic acid (2), and ursolic acid (3)) together with two flavones apigenin (4) and acacetin (5)), two phytosterols (stigmasterol 3-O-β-glycopyranoside (6) and sitosterol 3-O-β-glycopyranoside (7)), and one fatty acid (n-hexacosanoic acid (8)). Six (6) compounds isolated from this species were isolated for the first time (1, 2, 3, 4, 5, and 8). Their structures were elucidated and identified by spectral methods of one and two-dimensional NMR techniques, gas chromatography-mass spectrometry, and comparison with the previously reported literature. The biological activity of three compounds (1-3) was carried out on acetylcholinesterase inhibition activity. Compound (3) was found to displayed good inhibition against AChE with an IC₅₀ value of 21.5 ± 0.022 μM.

Keywords: acetylcholinesterase, Callicarpa maingayi, euscaphic acid, ursolic acid

Procedia PDF Downloads 116
2418 Synthesis of Mg/B Containing Compound in a Modified Microwave Oven

Authors: Gülşah Çelik Gül, Figen Kurtuluş

Abstract:

Magnesium containing boron compounds with hexagonal structure have been drawn much attention due to their superconductive nature. The main target of this work is new modified microwave oven by on our own has an ability about passing through a gas in the oven medium for attainment of oxygen-free compounds such as c-BN.  Mg containing boride was synthesized by modified-microwave method under nitrogen atmosphere using amorphous boron and magnesium source in appropriate molar ratio. Microwave oven with oxygen free environment has been modified to aimed to obtain magnesium boride without oxygen. Characterizations were done by powder X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Mg containing boride, generally named magnesium boride, with amorphous character without oxygen is obtained via designed microwave oven system.

Keywords: magnesium containing boron compounds, modified microwave synthesis, powder X-ray diffraction, FTIR

Procedia PDF Downloads 345
2417 Acetalization of Carbonyl Compounds by Using Al2 (HPO4)3 under Green Condition Mg HPO4

Authors: Fariba Jafari, Samaneh Heydarian

Abstract:

Al2(HPO4)3 was easily prepared and used as a solid acid in acetalization of carbonyl compounds at room temperature and under solvent-free conditions. The protection was done in short reaction times and in good to high isolated yields. The cheapness and availability of this reagent with easy procedure and work-up make this method attractive for the organic synthesis.

Keywords: acetalization, acid catalysis, carbonylcompounds, green condition, protection

Procedia PDF Downloads 296
2416 Synthesis, Molecular-Docking, and Biological Evaluation of Thiazolopyrimidine Carboxylates as Potential Antidiabetic and Antibacterial Agents

Authors: Iram Batool, Aamer Saeed, Irfan Zia Qureshi, Ayesha Razzaq, Saima Kalsoom

Abstract:

Heterocyclic compounds analogues and their derivatives have attracted strong interest in medicinal chemistry due to their biological and pharmacological properties. A series of new thiazolopyrimidine carboxylates were conveniently synthesized by one-pot three-component reaction of ethyl acetoacetate, 2-aminothiazole and benzaldehyde substituted with electron-donating and electron-withdrawing groups in order to find some more potent antidiabetic and antibacterial drugs. The structures of synthesized compounds were characterized by elemental analysis, IR, 1H NMR, 13C NMR spectroscopy. An in vitro antidiabetic effect was evaluated in adult male BALB/c mice and antibacterial activities were tested against Micrococcus luteus, Salmonella typhimurium, Bacillus subtilis, Bordetella bronchiseptica and Escherichia coli. Some of the tested compounds proved to possess good to excellent activities more than the reference drugs. An in silico molecular docking was also performed on synthesized compounds. The current study is expected to provide useful insights into the design of antidiabetic and antibacterial drugs and understanding the mechanism by which such drugs interact with RNA and diabetes target and exert their biochemical action.

Keywords: antidiabetic, antibacterial, MOE docking, thiazolopyrimidine

Procedia PDF Downloads 432
2415 2-Thioimidazole Analogues: Synthesis, in silico Studies and in vitro Anticancer and Antiprotozoal Evaluation

Authors: Drashti G. Daraji, Rosa E. Moo-Puc, Hitesh D. Patel

Abstract:

Substituted 2-Thioimidazole analogues have been synthesized and confirmed by advanced spectroscopic techniques. Among them, ten compounds have been selected and evaluated for their in vitro anti-cancer activity at the National Cancer Institute (NCI) for testing against a panel of 60 different human tumor cell lines derived from nine neoplastic cancer types. Furthermore, synthesized compounds were tested for their in vitro antiprotozoal activity, and none of them exhibited significant potency against antiprotozoans. It was observed that the tested all compounds seem effective on the UACC-62 melanoma cancer cell line as compared to other cancer cell lines and also exhibited the least potent in the Non-Small Cell Lung Cancer cell line in one-dose screening. In silico studies of these derivatives were carried out by molecular docking techniques and Absorption, Distribution, Metabolism, and Excretion (ADME) using Schrödinger software to find potent B-Raf kinase inhibitor (PDB ID: 3OG7). All the compounds have been performed for docking study; Compound D4 has a good docking score for melanoma cancer as compared with other.

Keywords: anticancer activity, cancer cell line, 2-thio imidazole, one-dose assay, molecular docking

Procedia PDF Downloads 120
2414 Bioactive Compounds and Antioxidant Capacity of Instant Fruit Green Tea Powders

Authors: Akanit Pisalwadcharin, Komate Satayawut, Virachnee Lohachoompol

Abstract:

Green tea, mangosteen and pomegranate contain high levels of bioactive compounds which have antioxidant effects and great potential in food applications. The aim of this study was to produce and determine catechin contents, total phenolic contents, antioxidant activity and phenolic compounds of two instant fruit green tea powders which were green tea fortified with mangosteen juice and green tea fortified with pomegranate juice. Seventy percent of hot water extract of green tea was mixed with 30% of mangosteen juice or pomegranate juice, and then spray-dried using a spray dryer. The results showed that the drying conditions optimized for the highest total phenolic contents, catechin contents and antioxidant activity of both powders were the inlet air temperature of 170°C, outlet air temperatures of 90°C and maltodextrin concentration of 30%. The instant green tea with mangosteen powder had total phenolic contents, catechin contents and antioxidant activity of 19.18 (mg gallic acid/kg), 85.44 (mg/kg) and 4,334 (µmoles TE/100 g), respectively. The instant green tea with pomegranate powder had total phenolic contents, catechin contents and antioxidant activity of 32.72 (mg gallic acid/kg), 156.36 (mg/kg) and 6,283 (µmoles TE/100 g), respectively. The phenolic compounds in instant green tea with mangosteen powder comprised of tannic acid (2,156.87 mg/kg), epigallocatechin-3-gallate (898.23 mg/kg) and rutin (13.74 mg/kg). Also, the phenolic compounds in instant green tea with pomegranate powder comprised of tannic acid (2,275.82 mg/kg), epigallocatechin-3-gallate (981.23 mg/kg), rutin (14.97 mg/kg) and i-quercetin (5.86 mg/kg).

Keywords: green tea, mangosteen, pomegranate, antioxidant activity

Procedia PDF Downloads 334
2413 Quantitative Structure-Activity Relationship Analysis of Binding Affinity of a Series of Anti-Prion Compounds to Human Prion Protein

Authors: Strahinja Kovačević, Sanja Podunavac-Kuzmanović, Lidija Jevrić, Milica Karadžić

Abstract:

The present study is based on the quantitative structure-activity relationship (QSAR) analysis of eighteen compounds with anti-prion activity. The structures and anti-prion activities (expressed in response units, RU%) of the analyzed compounds are taken from CHEMBL database. In the first step of analysis 85 molecular descriptors were calculated and based on them the hierarchical cluster analysis (HCA) and principal component analysis (PCA) were carried out in order to detect potential significant similarities or dissimilarities among the studied compounds. The calculated molecular descriptors were physicochemical, lipophilicity and ADMET (absorption, distribution, metabolism, excretion and toxicity) descriptors. The first stage of the QSAR analysis was simple linear regression modeling. It resulted in one acceptable model that correlates Henry's law constant with RU% units. The obtained 2D-QSAR model was validated by cross-validation as an internal validation method. The validation procedure confirmed the model’s quality and therefore it can be used for prediction of anti-prion activity. The next stage of the analysis of anti-prion activity will include 3D-QSAR and molecular docking approaches in order to select the most promising compounds in treatment of prion diseases. These results are the part of the project No. 114-451-268/2016-02 financially supported by the Provincial Secretariat for Science and Technological Development of AP Vojvodina.

Keywords: anti-prion activity, chemometrics, molecular modeling, QSAR

Procedia PDF Downloads 274
2412 Synthesis, Inhibitory Activity, and Molecular Modelling of 2-Hydroxy-3-Oxo-3-Phenylpropionate Derivatives as HIV-1-Integrase Inhibitors

Authors: O. J. Jesumoroti, Faridoon, R. Klein, K. A. Iobb, D. Mnkadhla, H. C. Hoppe, P. T. Kaye

Abstract:

The 1, 3-aryl diketo acids (DKA) based agents represent an important class of HIV integrase (IN) strand transfer inhibitors. In other to study the chelating role of the divalent metal ion in the inhibition of IN strand transfer, we designed and synthesized a series of 2-hydroxy-3-oxo-3-phenyl propionate derivatives with the notion that such compounds could interact with the divalent ion in the active site of IN. The synthetic sequence to the desired compounds involves the concept of Doebner knoevenagel condensation, Fischer esterification and ketohydroxylation using neuclophilic re-oxidant; compounds were characterized by their IR, IHNMR, 13CNMR, HRMS spectroscopic data and melting point determination. Also, molecular docking was employed in this study and it was revealed that there is interaction with the active site of the enzyme. However, there is disparity in the corresponding anti-HIV activity determined by the experimental bioassay. These compounds lack potency at low micromolar concentration when compared to the results of the docking studies. Nevertheless, the results of the study suggest modification of the aryl ring with one or two hydroxyl groups to improve the inhibitory activity.

Keywords: anti-HIV-1 integrase, ketohydroxylation, molecular docking, propionate derivatives

Procedia PDF Downloads 173