Search results for: commercially prepared medicine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5073

Search results for: commercially prepared medicine

4893 Synthesis and Characterization of Nanocellulose Based Bio-Composites

Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S

Abstract:

Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.

Keywords: nanocellulose, biocomposite, CNF, bamboo

Procedia PDF Downloads 82
4892 Exploring the Traditional Uses of Aromatic Plants in Indonesian Culture, Medicine, and Spirituality

Authors: Aida Humaira

Abstract:

Aromatic plants hold an honored place in Indonesian culture, where they are deeply intertwined with everyday customs, rituals, and ceremonies. From the fragrant herbs and spices used in cooking to the aromatic incense burned in temples and homes, aromatic plants play multifaceted roles in enhancing well-being and fostering spiritual connections. These plants are valued not only for their pleasant aromas but also for their medicinal properties and symbolic meanings. This article aims to summarize the role of aromatic plants in Indonesian traditional culture, medicine, spirituality, and how it shifted to a modern version of aromatherapy. Traditional Indonesian medicine, known as Jamu, relies heavily on aromatic plants for their therapeutic benefits. Herbalists and traditional healers use a wide array of aromatic herbs, roots, barks, and resins to treat various ailments, ranging from digestive disorders and respiratory infections to skin conditions and reproductive issues. In conclusion, aromatic plants represent a cultural treasure with multifaceted uses and significance deeply rooted in Indonesia’s tradition. From their medicinal properties to their spiritual symbolism, these plants embody the interconnection of culture, nature, and well-being. Further research and collaboration are needed to document and preserve traditional knowledge surrounding Indonesian aromatic plants and ensure their continued recognition and sustainable utilization in the face of modernization and environmental challenges.

Keywords: aromatic plants, indonesia, Jamu, traditional medicine

Procedia PDF Downloads 52
4891 The Utilization of Banana Leaves as a Substitute for Synthetic Mosquito Repellant

Authors: Beryl Apondi Obola

Abstract:

Introduction: Mosquitoes are known to transmit various diseases such as malaria, dengue fever, and Zika virus. Mosquito repellents are commonly used to prevent mosquito bites. However, some of these repellents contain chemicals that can be harmful to human health and the environment. Therefore, there is a need to find alternative mosquito repellents that are safe and effective. Objective: The objective of this research is to investigate the effectiveness of banana leaves as an alternative mosquito repellent on Plasmodium falciparum and Plasmodium vivax. Methodology: The research will be conducted in two phases. In the first phase, the repellent properties of banana leaves will be tested in a laboratory setting. The leaves will be crushed and mixed with water to extract the active ingredients. The extract will be tested against mosquitoes in a controlled environment. The number of mosquitoes that are repelled by the extract will be recorded. In the second phase, the effectiveness of the banana leaf extract will be tested in the field. The extract will be applied to the skin of human volunteers, and the number of mosquito bites will be recorded. The results will be compared to a commercially available mosquito repellent. Expected Outcomes: The expected outcome of this research is to determine whether banana leaves can be used as an effective mosquito repellent. If the results are positive, banana leaves could be used as an alternative to chemical-based mosquito repellents. Conclusion: Banana leaves have been used for various purposes in traditional medicine. This research aims to investigate the potential of banana leaves as an alternative mosquito repellent. The results of this research could have significant implications for public health and the environment

Keywords: banana leaf extract, mosquito repellant, plasmodium falciparum, public health

Procedia PDF Downloads 80
4890 Optical and Electrochromic Properties of All-Solid-State Electrochromic Device Consisting of Amorphous WO₃ and Ni(OH)₂

Authors: Ta-Huang Sun, Ming-Hao Hsieh, Min-Chuan Wang, Der-Jun Jan

Abstract:

Electrochromism refers to the persistent and reversible change of optical properties by an applied voltage pulse. There are many transition metal oxides exhibiting electrochromism, e.g. oxides of W, Ni, Ir, V, Ti, Co and Mo. Organic materials especially some conducting polymers such as poly(aniline), poly(3, 4-propylene- dioxythiophene) also received much attention for electrochromic (EC) applications. Electrochromic materials attract considerable interest because of their potential applications, such as information displays, smart windows, variable reflectance mirrors, and variable-emittance thermal radiators. In this study, the EC characteristics are investigated on an all-solid-state EC device composed of a-WO₃ and Ni(OH)₂ with a Ta₂O₅ protective layer which is prepared by magnetron sputtering. It is found that the transmittance modulation increases with decreasing the film thickness of Ta₂O₅. On the other hand, the transmittance modulation is 57% as the Ni(OH)₂/ITO is prepared by the linear-sweep potential cycling of the sputter-deposited Ta₂O₅/NiO/ITO in a 0.5 M LiClO₄+H₂O electrolyte. However, when Ni(OH)₂/ITO is prepared by a 0.01 M HCl electrolyte, the transmittance modulation of EC device can be improved to 61%.

Keywords: electrochromic device, tungsten oxide, nickel, Ta₂O₅

Procedia PDF Downloads 288
4889 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 226
4888 Mesoporous Carbon Ceramic SiO2/C Prepared by Sol-Gel Method and Modified with Cobalt Phthalocyanine and Used as an Electrochemical Sensor for Nitrite

Authors: Abdur Rahim, Lauro Tatsuo Kubota, Yoshitaka Gushikem

Abstract:

Carbon ceramic mesoporous SiO2/50wt%C (SBET= 170 m2g-1), where C is graphite, was prepared by the sol gel method. Scanning electron microscopy images and the respective element mapping showed that, within the magnification used, no phase segregation was detectable. It presented the electric conductivities of 0.49 S cm-1. This material was used to support cobalt phthalocyanine, prepared in situ, to assure a homogeneous dispersion of the electro active complex in the pores of the matrix. The surface density of cobalt phthalocyanine, on the matrix surfaces was 0.015 mol cm-2. Pressed disk, made with SiO2/50wt%C/CoPc, was used to fabricate an electrode and tested as sensors for nitrite determination by electro chemical technique. A linear response range between 0.039 and 0.42 mmol l−1,and correlation coefficient r=0.9996 was obtained. The electrode was chemically very stable and presented very high sensitivity for this analyte, with a limit of detection, LOD = 1.087 x 10-6 mol L-1.

Keywords: SiO2/C/CoPc, sol-gel method, electrochemical sensor, nitrite oxidation, carbon ceramic material, cobalt phthalocyanine

Procedia PDF Downloads 310
4887 Structural and Magnetic Properties of Cr Doped Ni-Zn Nanoferrites Prepared by Co-Precipitation Method

Authors: E. Ateia, L. M. Salah, A. H. El-Bassuony

Abstract:

Physical properties of nanocrystalline Ni1-xZnxCryFe2-yO4, (x=0.3, 0.5 and y=0.0, 0.1) with estimated crystallite size of 16.4 nm have been studied. XRD pattern of all prepared systems shows that, the nanosamples without Cr3+ have a cubic spinel structure with the appearance of small peaks designated as a secondary phase. Magnetic constants such as saturation magnetization, (MS) remanent magnetization (Mr) and coercive field (Hc) were obtained and reported. The obtained data shows that, the addition of Cr3+ (0.1mol) decreases the saturation magnetization. This is due to the decrease of magnetic moment of Cr3+ ion (3.0 μB) with respect to Fe3+ ion (5.85 μB). The electrical properties of the investigated samples were also investigated.

Keywords: electrical conductivity, ferrites, grain size, sintering

Procedia PDF Downloads 282
4886 Preparation, Characterisation and Electrical Properties of Metal/polymer-DNA Nanohybrids

Authors: Mahdi Almaky

Abstract:

Conducting polymer of N-(3-pyrrol-1-yl-propyl)-2,2`-bipyridinium hexafluoro-phosphate (PPBH) was prepared via chemical and electrochemical polymerization methods. The bulk polymer showed conductivity in the order of 10-12 S cm-1. DNA-templated polymer nano wires of PPBH (PolyPPBH-DNA) have been chemically prepared then used as templates to direct the formation of metal nanowires (Cu) in order to enhance the electrical properties of the polymer/DNA wires. The chemical structures, morphology and the electrical characterisation of the as obtained structures have been characterized through spectroscopic (FTIR, UV-vis and XPS), single-crystal X-ray diffraction and microscopic (AFM, EFM and c-AFM) techniques. The morphology of the nanomaterials has been observed by AFM; showing the nanowires are uniform and continuous. The polymer conductivity was slightly improved after metallization. The conductivity of Cu-PolyPPBH-DNA nanowires was estimated to be 7.1x10-2 S cm-1. This conductivity is slightly higher than the conductivity of PolyPPBH-DNA nano wires (2.0 x 10-2 S cm-1), but it is lower than the measurements for PPy/DNA nano wires (2.1 x 10-1 S cm-1) prepared and measured by using c-AFM probe. These results reflect the large effect of the chemical structure (N-substitution) on the electrical properties of these polymers by reducing the extended conjugation.

Keywords: DNA, template, nano wires, N-Alkylatedpyrrole, copper

Procedia PDF Downloads 418
4885 Influence of Magnetic Field on the Antibacterial Properties of Pine Oil

Authors: Dawid Sołoducha, Tomasz Borowski, Agata Markowska-Szczupak, Aneta Wesołowska, Marian Kordas, Rafał Rakoczy

Abstract:

Many studies report varied effects of the magnetic field in medicine, but applications are still missing. Also, essential oils (EOs) were historically used in healing therapies, food preservation and the cosmetic industry due to their wound healing and antioxidant properties and antimicrobial activity. Unfortunately, the chemical characterization of EOs activates its antibacterial action only at a fairly high concentration. They can cause skin reactions, e.g., irritation (irritant contact dermatitis) or allergic contact dermatitis; therefore, they should always be used with caution. However, the administration of EOs to achieve the desired antimicrobial activity and stability with long-term medical usage in low concentration is challenging. The aim of this work was to investigate the antimicrobial activity of commercial Pinus sylvestris L. essential oil from Polish company Avicenna-Oil® under Rotating Magnetic Field (RMF) at f = 1 – 50 Hz. The novel construction of the magnetically assisted self-constructed reactor (MAP) was applied for this study. The chemical composition of essential pine oil was determined by gas chromatography coupled with mass spectrometry (GC-MS). Model bacteria Escherichia coli K12 (ATCC 25922) was used. Different concentrations of pine oil was prepared: 100% 50%, 25%, 12.5% and 6.25%. The disc diffusion and MIC test were done. To examine the effect of essential pine oil and rotating magnetic field RMF on antibacterial performance agar plate method was used. Pine oil consist of α-pinene (28.58%), β-pinene (17.79%), δ-3-carene (14.17%) and limonene (11.58%). The present study indicates the exposition to the RMF, as compared to the unexposed controls causing an increase in the efficacy of antibacterial properties of pine oil. We have shown that the rotating magnetic fields (RMF) at a frequency, f, between 25 Hz to 50 Hz, increase the antimicrobial efficiency of oil at lower than 50% concentration. The new method can be applied in many fields e.g. aromatherapy, medicine as a component of dressing, or as food preservatives.

Keywords: rotating magnetic field, pine oil, antimicrobial activity, Escherichia coli

Procedia PDF Downloads 212
4884 Development of Bioplastic Disposable Food Packaging from Starch and Cellulose

Authors: Lidya Hailu, Ramesh Duraisamy, Masood Akhtar Khan, Belete Yilma

Abstract:

Disposable food packaging is a single-use plastics that can include any disposable plastic item which could be designed and use only once. In this context, this study aimed to prepare and evaluate bioplastic food packaging material from avocado seed starch and sugarcane bagasse cellulose and to characterise avocado seed starch. Performed the physicomechanical, structural, thermal properties, and biodegradability of raw materials and readily prepared bioplastic using the universal tensile testing machine, FTIR, UV-Vis spectroscopy, TGA, XRD, and SEM. Results have shown that an increasing amount of glycerol (3-5 mL) resulted in increases in water absorption, density, water vapor permeability, and elongation at the break of prepared bioplastic. However, it causes decreases in % transmittance, thermal degradation, and the tensile strength of prepared bioplastic. Likewise, the addition of cellulose fiber (0-15 %) increases % transmittance ranged (91.34±0.12-63.03±0.05 %), density (0.93±0.04-1.27±0.02 g/cm3), thermal degradation (310.01-321.61°C), tensile strength (2.91±6.18-4.21±6.713 MPa) of prepared bioplastic. On the other hand, it causes decreases in water absorption (14.4±0.25-9.40±0.007 %), water vapor permeability (9.306x10-12±0.3-3.57x10-12±0.15 g•s−1•m−1•Pa−1) and elongation at break (34.46±3.37-27.63±5.67 %) of prepared bioplastic. All the readily prepared bioplastic films rapidly degraded in the soil in the first 6 days and decompose within 12 days with a diminutive leftover and completely degraded within 15 days under an open soil atmosphere. Studied results showed starch derived bioplastic reinforced with 15 % cellulose fiber that plasticized with 3 mL of glycerol had improved results than other combinations of glycerol and bagasse cellulose with avocado seed starch. Thus, biodegradable disposable food packaging cup has been successfully produced in the lab-scale level using the studied approach. Biodegradable disposable food packaging materials have been successfully produced by employing avocado seed starch and sugarcane bagasse cellulose. The future study should be done on nano scale production since this study was done at the micro level.

Keywords: avocado seed, food packaging, glycerol, sugarcane bagasse

Procedia PDF Downloads 330
4883 In vitro Comparison Study of Biologically Synthesized Cupper-Disulfiram Nanoparticles with Its Free Corresponding Complex as Therapeutic Approach for Breast and Liver Cancer

Authors: Marwa M. Abu-Serie, Marwa M. Eltarahony

Abstract:

The search for reliable, effective, and safe nanoparticles (NPs) as a treatment for cancer is a pressing priority. In this study, Cu-NPs were fabricated by Streptomyces cyaneofuscatus through simultaneous bioreduction strategy of copper nitrate salt. The as-prepared Cu-NPs subjected to structural analysis; energy-dispersive X-ray spectroscopy, elemental mapping, X-ray diffraction, transmission electron microscopy, and ζ-potential. These biological synthesized Cu-NPs were mixed with disulfiram (DS), forming a nanocomplex of Cu-DS with a size of ~135 nm. The prepared nanocomplex (nanoCu-DS) exhibited higher anticancer activity than that of free complex of DS-Cu, Cu-NPs, and DS alone. This was illustrated by the lowest IC50 of nanoCu-DS (< 4 µM) against human breast and liver cancer cell lines comparing with DS-Cu, Cu-NPs, and DS (~8, 22.98-33.51 and 11.95-14.86, respectively). Moreover, flow cytometric analysis confirmed that higher apoptosis percentage range of nanoCu-DS-treated in MDA-MB 231, MCF-7, Huh-7, and HepG-2 cells (51.24-65.28%) than free complex of Cu-DS ( < 4.5%). Regarding inhibition potency of liver and breast cancer cell migration, no significant difference was recorded between free and nanocomplex. Furthermore, nanoCu-DS suppressed gene expression of β-catenine, Akt, and NF-κB and upregulated p53 expression (> 3, >15, > 5 and ≥ 3 folds, respectively) more efficiently than free complex (all ~ 1 fold) in MDA-MB 231 and Huh-7 cells. Our finding proved this prepared nano complex has a powerful anticancer activity relative to free complex, thereby offering a promising cancer treatment.

Keywords: biologically prepared Cu-NPs, breast cancer cell lines, liver cancer cell lines, nanoCu- disulfiram

Procedia PDF Downloads 181
4882 Effects of Al on Microstructure and Magnetic Properties of (Nd,Pr)-(Fe,Co)-B Alloys Prepared by Mechanical Alloying

Authors: Rahim Sabbaghizadeh, Mansor Hashim, Nooshin Shourcheh

Abstract:

Nanocrystalline Nd8Pr2Fe79-xCo5B6Alx (x=0, 1, 2, 3) magnets were prepared by mechanical alloying and respective heat treatment, and the effects of the addition of Al on the microstructure and magnetic properties of Nd-Fe-Co-B alloy were studied. The changes in the nanostructure and magnetic properties were examined by X-Ray diffraction, combined with Field Emission Scanning electron microscopy (FeSEM) and vibrating sample magnetometer (VSM). Addition of Al was found to be effective for improving the coercivity and the hysteresis squareness in Nd–Fe–Co–B magnets without decreasing much the remanent magnetization.

Keywords: mechanical alloying, nanocrystalline, Nd-Fe-B, vibrating sample magnetomete

Procedia PDF Downloads 505
4881 The Effect of Geometrical Ratio and Nanoparticle Reinforcement on the Properties of Al-based Nanocomposite Hollow Sphere Structures

Authors: Mostafa Amirjan

Abstract:

In the present study, the properties of Al-Al2O3 nanocomposite hollow sphere structures were investigated. For this reason, the Al-based nanocomposite hollow spheres with different amounts of nano alumina reinforcement (0-10wt %) and different ratio of thickness to diameter (t/D: 0.06-0.3) were prepared via a powder metallurgy method. Then, the effect of mentioned parameters was studied on physical and quasi static mechanical properties of their related prepared structures (open/closed cell) such as density, hardness, strength and energy absorption. It was found that as the t/D ratio increases the relative density, compressive strength and energy absorption increase. The highest values of strength and energy absorption were obtained from the specimen with 5 wt. % of nanoparticle reinforcement, t/D of 0.3 (t=1 mm, D=400µm) as 22.88 MPa and 13.24 MJ/m3, respectively. The moderate specific strength of prepared composites in the present study showed the good consistency with the properties of others low carbon steel composite with similar structure.

Keywords: hollow sphere structure foam, nanocomposite, thickness and diameter (t/D ), powder metallurgy

Procedia PDF Downloads 447
4880 Optimization of Stevia Concentration in Rasgulla (Sweet Syrup Cheese Ball) Based on Quality

Authors: Gurveer Kaur, T. K. Goswami

Abstract:

Rasgulla (a sweet syrup cheese ball), a sweet, spongy dessert represents traditional sweet dish of an Indian subcontinent prepared by chhana. 100 g of Rasgulla contains 186 calories, and so it is a driving force behind obesity and diabetes. To reduce Rasgulla’s energy value sucrose mainly should be minimized, so instead of sucrose, stevia (zero calories natural sweetener) is used to prepare Rasgulla. In this study three samples were prepared with sucrose to stevia ratio taking 100:0 (as control sample), (i) 50:50 (T1); (ii) 25:75 (T2), and (iii) 0:100 (T3) from 4% fat milk. It was found that as the sucrose concentration decreases the percentage of fat increase in the Rasgulla slightly. Sample T2 showed < 0.1% (±0.06) sucrose content. But there was no significant difference on protein and ash content of the samples. Whitening index was highest (78.0 ± 0.13) for T2 and lowest (65.7 ± 0.21) for the control sample since less sucrose in syrup reduces the browning of the sample (T2). Energy value per 100 g was calculated to be 50, 72, 98, and 184 calories for T3, T2, T1 and control samples, respectively. According to optimization study, the preferred (high quality) order of samples was as follows: T1 > T1 > control > T3. Low sugar content Rasgulla with acceptable quality can be prepared with 25:75 ratio of sucrose to stevia.

Keywords: composition, rasgulla, sensory, stevia

Procedia PDF Downloads 199
4879 Increase of the Nanofiber Degradation Rate Using PCL-PEO and PCL-PVP as a Shell in the Electrospun Core-Shell Nanofibers Using the Needleless Blades

Authors: Matej Buzgo, Erico Himawan, Ksenija JašIna, Aiva Simaite

Abstract:

Electrospinning is a versatile and efficient technology for producing nanofibers for biomedical applications. One of the most common polymers used for the preparation of nanofibers for regenerative medicine and drug delivery applications is polycaprolactone (PCL). PCL is a biocompatible and bioabsorbable material that can be used to stimulate the regeneration of various tissues. It is also a common material used for the development of drug delivery systems by blending the polymer with small active molecules. However, for many drug delivery applications, e.g. cancer immunotherapy, PCL biodegradation rate that may exceed 9 months is too long, and faster nanofiber dissolution is needed. In this paper, we investigate the dissolution and small molecule release rates of PCL blends with two hydrophilic polymers: polyethylene oxide (PEO) or polyvinylpyrrolidone (PVP). We show that adding hydrophilic polymer to the PCL reduces the water contact angle, increases the dissolution rate, and strengthens the interactions between the hydrophilic drug and polymer matrix that further sustain its release. Finally using this method, we were also able to increase the nanofiber degradation rate when PCL-PEO and PCL-PVP were used as a shell in the electrospun core-shell nanofibers and spread up the release of active proteins from their core. Electrospinning can be used for the preparation of the core-shell nanofibers, where active ingredients are encapsulated in the core and their release rate is regulated by the shell. However, such fibers are usually prepared by coaxial electrospinning that is an extremely low-throughput technique. An alternative is emulsion electrospinning that could be upscaled using needleless blades. In this work, we investigate the possibility of using emulsion electrospinning for encapsulation and sustained release of the growth factors for the development of the organotypic skin models. The core-shell nanofibers were prepared using the optimized formulation and the release rate of proteins from the fibers was investigated for 2 weeks – typical cell culture conditions.

Keywords: electrospinning, polycaprolactone (PCL), polyethylene oxide (PEO), polyvinylpyrrolidone (PVP)

Procedia PDF Downloads 269
4878 A Luminescence Study of Bi³⁺ Codoping on Eu³⁺ Doped YPO₄

Authors: N. Yaiphaba, Elizabeth C. H.

Abstract:

YPO₄ nanoparticles codoped with Eu³⁺(5 at.%) and Bi³⁺(0, 1, 3, 5, 7, 10, 12, 15, 20 at.%) have been prepared in poly acrylic acid (PAA)-H₂O medium by hydrothermal synthesis by maintaining a temperature of 180oC. The crystalline structure of as-prepared and 500oC annealed samples transforms from tetragonal (JCPDS-11-0254) to hexagonal phase (JCPDS-42-0082) with increasing concentration of Bi³⁺ ions. However, 900oC annealed samples exhibit tetragonal structure. The crystallite size of the particles varies from 19-50 nm. The luminescence intensity increases at lower concentration of Bi³⁺ ions and then decreases with increasing Bi3+ ion concentrations. The luminescence intensity further increases on annealing at 500oC and 900oC. Further, 900oC annealed samples show sharp increase in luminescence intensity. Moreover, the samples follow bi-exponential decay indicating energy transfer from donor to the activator or non-uniform distribution of ions in the samples. The samples on excitation at 318 nm exhibit near white emission while at 394 nm excitation show emission in the red region. The as-prepared samples are redispersible and have potential applications in display devices, metal ion sensing, biological labelling, etc.

Keywords: charge transfer, sensitizer, activator, annealing

Procedia PDF Downloads 63
4877 Preparation of Ni, Mg, and Fe Ions Doped Carbon-Based Catalyst with Ordered Mesoporous Configuration for Catalyzing the Production of Green Diesel from Fatty Acid and Waste Cooking Oil

Authors: Ya-Ting Liao, Chien-Chang Huang

Abstract:

Green diesel is a renewable biofuel obtained from plant oil or fatty acid deoxygenation. Because the molecular structure of green diesel is similar to that of fossil fuel, green diesel can be directly used in present vehicle engines without blending with fossil fuel. In this study, mesoporous carbon-based catalysts with doped metal ions, such as Mg, Ni, or Fe, were prepared using co-polymers and gallic acid as molecular templates and carbon sources, respectively. The prepared catalysts were then applied to carry out the deoxygenation of fatty acid and waste cooking oil. To obtain the highest net energy from the produced green diesel, the catalyzed deoxygenation reaction and catalyst preparation processes were carried out under ambient conditions, respectively, to avoid using H₂ as a reagent and reducing agent. XRD, BET, SEM, EDS, FT-IR, and pyridine-IR characterized the composition and configuration of the prepared catalyst. The results display that the doped metal ions were well-dispersed in the carbon-based catalyst and the surface of the catalysts was rich in Lewis acid sites after the catalysts were calcined at the proper temperature. The pore size present on the catalyst was 9-11 nm. To catalyze the deoxygenation of fatty acid by the prepared catalysts at 320℃ under H₂-free conditions, high fatty acid conversion (99%) and high selectivity for hydrocarbons (78%) were obtained when the ratio of doped Ni to doped Mg was optimized.

Keywords: ordered mesoporous carbon, catalysts, hydrocarbons, deoxygenation

Procedia PDF Downloads 71
4876 Impact of Prolonged Sodium Hypochlorite Cleaning on Silicon Carbide Ultrafiltration Membranes Prepared via Low-Pressure Chemical Vapor Deposition

Authors: Asif Jan

Abstract:

Sodium hypochlorite (NaClO) is a common cleaning agent for ultrafiltration (UF) membranes. While its detrimental effects on polymeric membranes are well-documented, its impact on ceramic membranes remains less explored. This study investigates the chemical stability of silicon carbide (SiC) UF membranes prepared using low-pressure chemical vapor deposition (LP-CVD) during prolonged NaClO exposure. SiC UF membranes were fabricated via LP-CVD at two different temperature and pressure conditions. LP-CVD offers the advantage of SiC membrane fabrication at significantly lower temperatures (700-900°C) compared to conventional methods. The membranes were subjected to 200 hours of NaClO aging to assess their resilience. Before and after aging, we evaluated the properties and performance of the SiC UF membranes to identify optimal LP-CVD conditions. Our findings show that SiC UF membranes produced at 860°C via LP-CVD exhibit exceptional resistance to NaClO aging, whereas those prepared at 750°C experience significant deterioration. This highlights the crucial role of precise LP-CVD parameters in ensuring the robustness and long-term performance of SiC membranes in harsh chemical cleaning environments.

Keywords: ceramic membranes, ultrafiltration membranes, wastewater treatment, chemical vapor deposition

Procedia PDF Downloads 80
4875 The Introduction of Medicine Plants in Bogor Agricultural University: A Case Study in Cikabayan and Tropical Medicinal Plant Conservation Laboratory

Authors: Eki Devung, Eka Tyastutik, Indha Annisa, Digdaya Anoraga, Jamaluddin Arsyad

Abstract:

Plant medicine is a whole species of plants are known to have medicinal properties. Bogor Agricultural University has high biodiversity, one of which flora potential as a drug. This study was conducted from 19 September to 10 October 2016 at Bogor Agricultural University using literature study and field observation. There are 85 species of medicinal plants which include a medicinal plant cultivation and wild plants. Family herbs most commonly found in Cikabayan that while the Euphorbiaceae, family which is found in the Tropical Medicinal Plant Conservation Laboratory is the family of Achantaceae. Species of medicinal plants is dominated by herbs and shrubs. Part herbs most widely used are the leaves. The diversity of diseases that can be treated with medicine plants include digestive system diseases and metabolic disorder.

Keywords: benefits, biodiversity, Bogor Agricultural University, medicinal plants

Procedia PDF Downloads 353
4874 Ethno-Botanical of Seaweeds and Sea Grass in Eastern Indonesia

Authors: Siegfried Berhimpon, Jein Dangeubun, Sandra Baulu, Rene Ch. Kepel

Abstract:

In Indonesia, macro-alga is known as seaweeds or rumput laut and sea grass or lamun, and have been used as vegetables and medicine since long time ago. This studies have been done, to collect data about utilization of seaweed and sea grass as food or medicine in Eastern Indonesia. Six regencies in two provinces have been chosen as sampling areas i.e. South-East Maluku, West-East Maluku, and Aru in province of Maluku; and Sangihe, Sitaro, and Minahasa in province of North Sulawesi. The results shown that in the pass, seaweeds and sea grass have been widely used as food and medicine, and there are similarity between one area and other areas in species and in the way to prepare or to cook the food. Ten species of alga and 2 species of sea grass were consumed as vegetables and desert, and one species of sea grass was used for traditional medicine. Nowadays, because of easier to get terrestrial vegetables, the people in the coastal area rarely consumed marine vegetables, and if there are no attempt to promote and to socialize the custom, the habits trend to disappear. Environmental degradation was another caused has been identified. Seaweed contained high content of Iodine and dietary fiber, therefore, this food can overcomes the problem of iodine deficiency, and to supply an exotic high-fiber foods. In addition, by consuming seaweeds, marine culture industry will be developed, especially in the number of species seaweeds to be cultivated.

Keywords: ethno-botany, seaweed, sea grass, exotic food

Procedia PDF Downloads 493
4873 Proximate Composition, Colour and Sensory Properties of Akara egbe Prepared from Bambara Groundnut (Vigna subterranea)

Authors: Samson A. Oyeyinka, Taiwo Tijani, Adewumi T. Oyeyinka, Mutiat A. Balogun, Fausat L. Kolawole, John K. Joseph

Abstract:

Bambara groundnut is an underutilised leguminous crop that has a similar composition to cowpea. Hence, it could be used in making traditional snack usually produced from cowpea paste. In this study, akara egbe, a traditional snack was prepared from Bambara groundnut flour or paste. Cowpea was included as the reference sample. The proximate composition and functional properties of the flours were studies as well as the proximate composition and sensory properties of the resulting akara egbe. Protein and carbohydrate were the main components of Bambara groundnut and cowpea grains. Ash, fat and fiber contents were low. Bambara groundnut flour had higher protein content (23.71%) than cowpea (19.47%). In terms of functional properties, the oil absorption capacity (0.75 g oil/g flour) of Bambara groundnut flour was significantly (p ≤ 0.05) lower than that of the cowpea (0.92 g oil/g flour), whereas, Cowpea flour absorbed more water (1.59 g water/g flour) than Bambara groundnut flour (1.12 g/g). The packed bulk density (0.92 g/mL) of Bambara groundnut was significantly (p ≤ 0.05) higher than cowpea flour (0.82 g/mL). Akara egbe prepared from Bambara groundnut flour showed significantly (p ≤ 0.05) higher protein content (23.41%) than the sample made from Bambara groundnut paste (19.35%). Akara egbe prepared from cowpea paste had higher ratings in aroma, colour, taste, crunchiness and overall acceptability than those made from cowpea flour or Bambara groundnut paste or flour. Bambara groundnut can produce akara egbe with comparable nutritional and sensory properties to that made from cowpea.

Keywords: Bambara groundnut, Cowpea, Snack, Sensory properties

Procedia PDF Downloads 252
4872 Study on Pd Catalyst Supported on Carbon Materials for C₂ Hydrogenation

Authors: Huanru Wang, Jianzhun Jiang

Abstract:

At present, the preparation of the catalyst by carbon carrier is one of the improvement directions of the C₂ pre-hydrogenation catalyst. Carbon materials can be prepared from coal direct liquefaction residues, coconut shells, biomass, etc., and the pore structure of carbon carrier materials can be adjusted through the preparation process; at high temperatures, the carbon carrier itself also shows certain catalytic activity. Therefore, this paper mainly selected typical activated carbon and coconut shell carbon as carbon carrier materials, studied their microstructure and surface properties, prepared a series of carbon-based catalysts loaded with Pd, and investigated the effects of the content of promoter Ag and the concentration of reductant on the structure and performance of the catalyst and its catalytic performance for the pre hydrogenation of C₂. In this paper, the carbon supports from two sources and the catalysts prepared by them were characterized in detail. The results showed that the morphology and structure of different supports and the performance of the catalysts prepared were also obviously different. The catalyst supported on coconut shell carbon has a small specific surface area and large pore diameter. The catalyst supported on activated carbon has a large specific surface area and rich pore structure. The active carbon support is mainly a mixture of amorphous graphite and microcrystalline graphite. For the catalyst prepared with coconut shell carbon as the carrier, the sample is very uneven, and its specific surface area and pore volume are irregular. Compared with coconut shell carbon, activated carbon is more suitable as the carrier of the C₂ hydrogenation catalyst. The conversion of acetylene, methyl acetylene, and butadiene decreased, and the ethylene selectivity increased after Ag was added to the supported Pd catalyst. When the amount of promoter Ag is 0.01-0.015%, the catalyst has relatively good catalytic performance. Ag and Pd form an alloying effect, thus reducing the effective demand for Ag. The Pd Ag ratio is the key factor affecting the catalytic performance. When the addition amount of Ag is 0.01-0.015%, the dispersion of Pd on the carbon support surface can be significantly improved, and the size of active particles can be reduced. The Pd Ag ratio is the main factor in improving the selectivity of the catalyst. When the additional amount of sodium formate is 1%, the catalyst prepared has both high acetylene conversion and high ethylene selectivity.

Keywords: C₂ hydrogenation, activated carbon, Ag promoter, Pd catalysts

Procedia PDF Downloads 115
4871 Development and Evaluation of Antimicrobial Herbal Mouthwash Including Methanolic Extracts of Beautea monosperma and Cordia obliqua

Authors: Reenu Yadav, S. K. Yadav

Abstract:

Herbal therapy has been used for daily oral health care to prevent, treat or cure oral conditions from halitosis to periodontal diseases. The importance of mouth and teeth cleanliness has been recognized from the earliest days of civilization to the 21st century. In the present study, leaves and seeds of Cordia obliqua and barks and twigs of Beautea monosperma, which is used traditionally for oral diseases was evaluated for its antimicrobial activity. The antimicrobial activity tests indicated that the methanolic extract exhibited stronger activities against the commonly encountered oral bacterial and fungal pathogens. The mouthwash formulation prepared and it is compared with marketed formulation HiOra. The results indicated that the herbal mouthwash could inhibit the growth of oral pathogens and may prevent plaque and other periodontal diseases caused by dental pathogens.

Keywords: herbal mouthwash, bio medicine, life sciences, herbal extracts

Procedia PDF Downloads 341
4870 Antibacterial Activity of Noble Metal Functionalized Magnetic Core-Zeolitic Shell Nanostructures

Authors: Mohsen Padervand

Abstract:

Functionalized magnetic core-zeolitic shell nanostructures were prepared by the hydrothermal and coprecipitation methods. The products were characterized by Vibrating Sample Magnetometer (VSM), X-ray powder diffraction (XRD), Fourier Transform Infrared spectra (FTIR), nitrogen adsorption-desorption isotherms (BET) and Transmission Electron Microscopy (TEM). The growth of mordenite nanoparticles on the surface of silica coated nickel ferrite nanoparticles at the presence of organic templates was well approved. The antibacterial activity of prepared samples was investigated by the inactivation of E.coli as a gram negative bacterium. A new mechanism was proposed to inactivate the bacterium over the prepared samples. Minimum Inhibitory Concentration (MIC) and reuse ability were studied too. TEM images of the destroyed microorganism after the treatment time were applied to illustrate the inactivation mechanism. The interaction of the noble metals with organic components on the surface of nanostructures studied theoretically and the results were used to interpret the experimental results.

Keywords: nickel ferrite nanoparticles, magnetic core-zeolitic shell, antibacterial activity, E. coli

Procedia PDF Downloads 325
4869 Anthelmintic Property of Pomegranate Peel Aqueous Extraction Against Ascaris Suum: An In-vitro Analysis

Authors: Edison Ramos, John Peter V. Dacanay, Milwida Josefa Villanueva

Abstract:

Soil-Transmitted Helminth (STH) infections caused by helminths are the most prevalent neglected tropical diseases (NTDs). They are commonly found in warm, humid regions and developing countries, particularly in rural areas with poor hygiene. Occasionally, human hosts exposed to pig manure may harbor Ascaris suum parasites without experiencing any symptoms. To address the significant issue of helminth infections, an effective anthelmintic is necessary. However, the effectiveness of various medications as anthelmintics can be reduced due to mutations. In recent years, there has been a growing interest in using plants as a source of medicine due to their natural origin, accessibility, affordability, and potential lack of complications. Herbal medicine has been advocated as an alternative treatment for helminth infections, especially in underdeveloped countries, considering the numerous adverse effects and drug resistance associated with commercially available anthelmintics. Medicinal plants are considered suitable replacements for current anthelmintics due to their historical usage in treating helminth infections. The objective of this research was to investigate the effects of aqueous extraction of pomegranate peel (Punica granatum L.) as an anthelmintic on female Ascaris suum in vitro. The in vitro assay involved observing the motility of Ascaris suum in different concentrations (25%, 50%, 75%, and 100%) of pomegranate peel aqueous extraction, along with mebendazole as a positive control. The results indicated that as the concentration of the extract increased, the time required to paralyze the worms decreased. At 25% concentration, the average time for paralysis was 362.0 minutes, which decreased to 181.0 minutes at 50% concentration, 122.7 minutes at 75% concentration, and 90.0 minutes at 100% concentration. The time of death for the worms was directly proportional to the concentration of the pomegranate peel extract. Death was observed at an average time of 240.7 minutes at 75% concentration and 147.7 minutes at 100% concentration. The findings suggest that as the concentration of pomegranate peel extract increases, the time required for paralysis and death of Ascaris suum decreases. This indicates a concentration-dependent relationship, where higher concentrations of the extract exhibit greater effectiveness in inducing paralysis and causing the death of the worms. These results emphasize the potential anthelmintic properties of pomegranate peel extract and its ability to effectively combat Ascaris suum infestations. There was no significant difference in the anthelmintic effectiveness between the pomegranate peel extract and Mebendazole. These findings highlight the potential of pomegranate peel extract as an alternative anthelmintic treatment for Ascaris suum infections. The researchers recommend determining the optimal dose and administration route to maximize the effectiveness of pomegranate peel as an anthelmintic therapeutic against Ascaris suum.

Keywords: pomegranate peel, aqueous extract, anthelmintic, in vitro

Procedia PDF Downloads 103
4868 Sol-Gel Derived ZnO Nanostructures: Optical Properties

Authors: Sheo K. Mishra, Rajneesh K. Srivastava, R. K. Shukla

Abstract:

In the present work, we report on the optical properties including UV-vis absorption and photoluminescence (PL) of ZnO nanostructures synthesized by sol-gel method. Structural and morphological investigations have been performed by X-ray diffraction method (XRD) and scanning electron microscopy (SEM). The XRD result confirms the formation of hexagonal wurtzite phase of ZnO nanostructures. The presence of various diffraction peaks suggests polycrystalline nature. The XRD pattern exhibits no additional peak due to by-products such as Zn(OH)2. The average crystallite size of prepared ZnO sample corresponding to the maximum intensity peaks is to be ~38.22 nm. The SEM micrograph shows different nanostructures of pure ZnO. Photoluminescence (PL) spectrum shows several emission peaks around 353 nm, 382 nm, 419 nm, 441 nm, 483 nm and 522 nm. The obtained results suggest that the prepared phosphors are quite suitable for optoelectronic applications.

Keywords: ZnO, sol-gel, XRD, PL

Procedia PDF Downloads 392
4867 Sociodemographic Approach to Juveniles Directed to Delinquent Behaviour in Zonguldak

Authors: Riza Yilmaz, Samet Kiyak, Sezin Nur Yilmaz, Yasemin Yilmaz

Abstract:

Child delinquency has been increasing in our country as well as in many countries of the world. Child intelligence, abilities, family's social environment and life conditions are the factors which affect the child delinquency. The reports of 73 cases ages of 12-15 which were sent to the University of Bulent Ecevit, School of Medicine, Forensic Medicine Department between January 2011-September 2015, in order to evaluate medically, children pushed to crime by the judicial authorities are examined in terms of age, gender, educational background, place of residence, reasons for being sent, whether it’s a repeating crime or not, type of intelligence test, results revealed by forensic medicine and department of mental and neurological disorders. When children pushed to crime examined in terms of their crimes, the most common type of crime was identified as theft (n = 24). The crimes with 19 physical attacks and 12 sexual abuse were seen. Following that other 12 crimes were determined as damage to property, hemp crop, insult, incitement to crime, forgery of private documents, illegal excavation, threatening, involuntary manslaughter. The alleged crimes in 6 cases were more than one. The children pushed to crime are one of the major social problems of many countries. In this sense, it is not only the responsibility of government agencies to protect children pushed to crime, also, the civil society organizations should take place in this struggle.

Keywords: delinquent behaviour, forensic medicine, crime, punishment

Procedia PDF Downloads 430
4866 Preparation of Alumina (Al2O3) Particles and MMCS of (Al-7% Si– 0.45% Mg) Alloy Using Vortex Method

Authors: Abdulmagid A. Khattabi

Abstract:

The aim of this research is to study the manner of alumina (Al2O3) particles dispersion with (2-10) mm size in (Al-7%Si-0.45% Mg) base of alloy melt employing of classical casting method. The mechanism of particles diffusions by melt turning and stirring that makes vortexes help the particles entrance in the matrix of base alloy also has been studied. The samples of metallic composites (MMCs) with dispersed particles percentages (4% - 6% - 8% - 10% - 15% and 20%) are prepared. The effect of the particles dispersion on the mechanical properties of produced samples were carried out by tension & hardness tests. It is found that the ultimate tensile strength of the produced composites can be increased by increasing the percentages of alumina particles in the matrix of the base alloy. It becomes (232 Mpa) at (20%) of added particles. The results showed that the average hardness of prepared samples increasing with increases the alumina content. Microstructure study of prepared samples was carried out. The results showed particles location and distribution of it in the matrix of base alloy. The dissolution of Alumina particles into liquid base alloy was clear in some cases.

Keywords: base alloy, matrix, hardness, thermal properties, base metal MMCs

Procedia PDF Downloads 348
4865 Solar Photocatalytic Hydrogen Production from Glycerol Reforming Using Ternary Cu/TiO2/Graphene

Authors: Tumelo W. P. Seadira, Thabang Ntho, Cornelius M. Masuku, Michael S. Scurrell

Abstract:

A ternary Cu/TiO2/rGO photocatalysts was prepared using solvothermal method. Firstly, pure anatase TiO2 hollow spheres were prepared with titanium butoxide, ethanol, ammonium sulphate, and urea via hydrothermal method; and Cu nanoparticles were subsequently loaded on the surface of the hollow spheres by wet impregnation. During the solvothermal process, the deposition and well dispersion of Cu-TiO2 hollow spheres composites onto the graphene oxide surface, as well as the reduction of graphene oxide to graphene were achieved. The morphological and structural properties of the prepared samples were characterized by Brunauer-Emmett-Tellet (BET), X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), Transmission Electron Microscopy (TEM), and UV-vis DRS, and photoelectrochemical. The activities of the prepared catalysts were tested for hydrogen production via simultaneous photocatalytic water-splitting and glycerol reforming under visible light irradiation. The excellent photocatalytic activity of the Cu-TiO2-hollow-spheres/rGO catalyst was attributed the rGO which acts as both storage and transferor of electrons generated at the Cu and TiO2 heterojunction, thus increasing the electron-hole pairs separation. This paper reports the preparation of photocatalyst which is highly active by coupling reduced graphene oxide with nano-structured TiO2 with high surface area that can efficiently harvest the visible light for effective water-splitting and glycerol photocatalytic reforming in order to achieve efficient hydrogen evolution.

Keywords: glycerol reforming, hydrogen evolution, graphene oxide, Cu/TiO2-hollow-spheres/rGO

Procedia PDF Downloads 147
4864 Waste Bone Based Catalyst: Characterization and Esterification Application

Authors: Amit Keshav

Abstract:

Waste bone, produced in large quantity (8-10 kg./day) from a slaughterhouse, could be a cheap (cost $0.20 per kg) substitute for commercial catalysts. In the present work, catalyst for esterification reaction was prepared from waste bone and characterized by various techniques. Bone was deoiled and then sulfonated. Fourier-transform infrared spectroscopy (FTIR) spectra of prepared catalyst predicted –OH vibration at 3416 and 1630 cm⁻¹, S-O stretching at 1124 cm⁻¹ and intense bands of hydroxypatite in a region between 500 and 700 cm⁻¹. X-ray diffraction (XRD) predicts peaks of hydroxyapatite, CaO, and tricalcium phosphate. Scanning electron microscope (SEM) was employed to reveal the presence of non-uniformity deposited fine particles on the catalyst surface that represents active acidic sites. The prepared catalyst was employed to study its performance on esterification reaction between acrylic acid and ethanol in a molar ratio of 1:1 at a set temperature of 60 °C. Results show an equilibrium conversion of 49% which is matched to the commercial catalysts employed in literature. Thus waste bone could be a good catalyst for acrylic acid removal from waste industrial streams via the process of esterification.Keywords— Heterogeneous catalyst, characterization, esterification, equilibrium conversion

Keywords: heterogeneous catalyst, characterization, esterification, equilibrium conversion

Procedia PDF Downloads 135