Search results for: environmental impact evaluation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20818

Search results for: environmental impact evaluation

448 Influence of a Cationic Membrane in a Double Compartment Filter-Press Reactor on the Atenolol Electro-Oxidation

Authors: Alan N. A. Heberle, Salatiel W. Da Silva, Valentin Perez-Herranz, Andrea M. Bernardes

Abstract:

Contaminants of emerging concern are substances widely used, such as pharmaceutical products. These compounds represent risk for both wild and human life since they are not completely removed from wastewater by conventional wastewater treatment plants. In the environment, they can be harm even in low concentration (µ or ng/L), causing bacterial resistance, endocrine disruption, cancer, among other harmful effects. One of the most common taken medicine to treat cardiocirculatory diseases is the Atenolol (ATL), a β-Blocker, which is toxic to aquatic life. In this way, it is necessary to implement a methodology, which is capable to promote the degradation of the ATL, to avoid the environmental detriment. A very promising technology is the advanced electrochemical oxidation (AEO), which mechanisms are based on the electrogeneration of reactive radicals (mediated oxidation) and/or on the direct substance discharge by electron transfer from contaminant to electrode surface (direct oxidation). The hydroxyl (HO•) and sulfate (SO₄•⁻) radicals can be generated, depending on the reactional medium. Besides that, at some condition, the peroxydisulfate (S₂O₈²⁻) ion is also generated from the SO₄• reaction in pairs. Both radicals, ion, and the direct contaminant discharge can break down the molecule, resulting in the degradation and/or mineralization. However, ATL molecule and byproducts can still remain in the treated solution. On this wise, some efforts can be done to implement the AEO process, being one of them the use of a cationic membrane to separate the cathodic (reduction) from the anodic (oxidation) reactor compartment. The aim of this study is investigate the influence of the implementation of a cationic membrane (Nafion®-117) to separate both cathodic and anodic, AEO reactor compartments. The studied reactor was a filter-press, with bath recirculation mode, flow 60 L/h. The anode was an Nb/BDD2500 and the cathode a stainless steel, both bidimensional, geometric surface area 100 cm². The solution feeding the anodic compartment was prepared with ATL 100 mg/L using Na₂SO₄ 4 g/L as support electrolyte. In the cathodic compartment, it was used a solution containing Na₂SO₄ 71 g/L. Between both solutions was placed the membrane. The applied currents densities (iₐₚₚ) of 5, 20 and 40 mA/cm² were studied over 240 minutes treatment time. Besides that, the ATL decay was analyzed by ultraviolet spectroscopy (UV/Vis). The mineralization was determined performing total organic carbon (TOC) in TOC-L CPH Shimadzu. In the cases without membrane, the iₐₚₚ 5, 20 and 40 mA/cm² resulted in 55, 87 and 98 % ATL degradation at the end of treatment time, respectively. However, with membrane, the degradation, for the same iₐₚₚ, was 90, 100 and 100 %, spending 240, 120, 40 min for the maximum degradation, respectively. The mineralization, without membrane, for the same studied iₐₚₚ, was 40, 55 and 72 %, respectively at 240 min, but with membrane, all tested iₐₚₚ reached 80 % of mineralization, differing only in the time spent, 240, 150 and 120 min, for the maximum mineralization, respectively. The membrane increased the ATL oxidation, probably due to avoid oxidant ions (S₂O₈²⁻) reduction on the cathode surface.

Keywords: contaminants of emerging concern, advanced electrochemical oxidation, atenolol, cationic membrane, double compartment reactor

Procedia PDF Downloads 121
447 Using Pump as Turbine in Urban Water Networks to Control, Monitor, and Simulate Water Processes Remotely

Authors: Morteza Ahmadifar, Sarah Bahari Derakhshan

Abstract:

Leakage is one of the most important problems that water distribution networks face which first reason is high-pressure existence. There are many approaches to control this excess pressure, which using pressure reducing valves (PRVs) or reducing pipe diameter are ones. On the other hand, Pumps are using electricity or fossil fuels to supply needed pressure in distribution networks but excess pressure are made in some branches due to topology problems and water networks’ variables, therefore using pressure valves will be inevitable. Although using PRVs is inevitable but it leads to waste electricity or fuels used by pumps because PRVs just waste excess hydraulic pressure to lower it. Pumps working in reverse or Pumps as Turbine (called PAT in this article) are easily available and also effective sources of reducing the equipment cost in small hydropower plants. Urban areas of developing countries are facing increasing in area and maybe water scarcity in near future. These cities need wider water networks which make it hard to predict, control and have a better operation in the urban water cycle. Using more energy and therefore more pollution, slower repairing services, more user dissatisfaction and more leakage are these networks’ serious problems. Therefore, more effective systems are needed to monitor and act in these complicated networks than what is used now. In this article a new approach is proposed and evaluated: Using PAT to produce enough energy for remote valves and sensors in the water network. These sensors can be used to determine the discharge, pressure, water quality and other important network characteristics. With the help of remote valves pipeline discharge can be controlled so Instead of wasting excess hydraulic pressure which may be destructive in some cases, obtaining extra pressure from pipeline and producing clean electricity used by remote instruments is this articles’ goal. Furthermore, due to increasing the area of network there is unwanted high pressure in some critical points which is not destructive but lowering the pressure results to longer lifetime for pipeline networks without users’ dissatisfaction. This strategy proposed in this article, leads to use PAT widely for pressure containment and producing energy needed for remote valves and sensors like what happens in supervisory control and data acquisition (SCADA) systems which make it easy for us to monitor, receive data from urban water cycle and make any needed changes in discharge and pressure of pipelines easily and remotely. This is a clean project of energy production without significant environmental impacts and can be used in urban drinking water networks, without any problem for consumers which leads to a stable and dynamic network which lowers leakage and pollution.

Keywords: clean energies, pump as turbine, remote control, urban water distribution network

Procedia PDF Downloads 383
446 The Potential of On-Demand Shuttle Services to Reduce Private Car Use

Authors: B. Mack, K. Tampe-Mai, E. Diesch

Abstract:

Findings of an ongoing discrete choice study of future transport mode choice will be presented. Many urban centers face the triple challenge of having to cope with ever increasing traffic congestion, environmental pollution, and greenhouse gas emission brought about by private car use. In principle, private car use may be diminished by extending public transport systems like bus lines, trams, tubes, and trains. However, there are limits to increasing the (perceived) spatial and temporal flexibility and reducing peak-time crowding of classical public transport systems. An emerging new type of system, publicly or privately operated on-demand shuttle bus services, seem suitable to ameliorate the situation. A fleet of on-demand shuttle busses operates without fixed stops and schedules. It may be deployed efficiently in that each bus picks up passengers whose itineraries may be combined into an optimized route. Crowding may be minimized by limiting the number of seats and the inter-seat distance for each bus. The study is conducted as a discrete choice experiment. The choice between private car, public transport, and shuttle service is registered as a function of several push and pull factors (financial costs, travel time, walking distances, mobility tax/congestion charge, and waiting time/parking space search time). After the completion of the discrete choice items, the study participant is asked to rate the three modes of transport with regard to the pull factors of comfort, safety, privacy, and opportunity to engage in activities like reading or surfing the internet. These ratings are entered as additional predictors into the discrete choice experiment regression model. The study is conducted in the region of Stuttgart in southern Germany. N=1000 participants are being recruited. Participants are between 18 and 69 years of age, hold a driver’s license, and live in the city or the surrounding region of Stuttgart. In the discrete choice experiment, participants are asked to assume they lived within the Stuttgart region, but outside of the city, and were planning the journey from their apartment to their place of work, training, or education during the peak traffic time in the morning. Then, for each item of the discrete choice experiment, they are asked to choose between the transport modes of private car, public transport, and on-demand shuttle in the light of particular values of the push and pull factors studied. The study will provide valuable information on the potential of switching from private car use to the use of on-demand shuttles, but also on the less desirable potential of switching from public transport to on-demand shuttle services. Furthermore, information will be provided on the modulation of these switching potentials by pull and push factors.

Keywords: determinants of travel mode choice, on-demand shuttle services, private car use, public transport

Procedia PDF Downloads 174
445 Influence of Atmospheric Pollutants on Child Respiratory Disease in Cartagena De Indias, Colombia

Authors: Jose A. Alvarez Aldegunde, Adrian Fernandez Sanchez, Matthew D. Menden, Bernardo Vila Rodriguez

Abstract:

Up to five statistical pre-processings have been carried out considering the pollutant records of the stations present in Cartagena de Indias, Colombia, also taking into account the childhood asthma incidence surveys conducted in hospitals in the city by the Health Ministry of Colombia for this study. These pre-processings have consisted of different techniques such as the determination of the quality of data collection, determination of the quality of the registration network, identification and debugging of errors in data collection, completion of missing data and purified data, as well as the improvement of the time scale of records. The characterization of the quality of the data has been conducted by means of density analysis of the pollutant registration stations using ArcGis Software and through mass balance techniques, making it possible to determine inconsistencies in the records relating the registration data between stations following the linear regression. The results obtained in this process have highlighted the positive quality in the pollutant registration process. Consequently, debugging of errors has allowed us to identify certain data as statistically non-significant in the incidence and series of contamination. This data, together with certain missing records in the series recorded by the measuring stations, have been completed by statistical imputation equations. Following the application of these prior processes, the basic series of incidence data for respiratory disease and pollutant records have allowed the characterization of the influence of pollutants on respiratory diseases such as, for example, childhood asthma. This characterization has been carried out using statistical correlation methods, including visual correlation, simple linear regression correlation and spectral analysis with PAST Software which identifies maximum periodicity cycles and minimums under the formula of the Lomb periodgram. In relation to part of the results obtained, up to eleven maximums and minimums considered contemporary between the incidence records and the particles have been identified taking into account the visual comparison. The spectral analyses that have been performed on the incidence and the PM2.5 have returned a series of similar maximum periods in both registers, which are at a maximum during a period of one year and another every 25 days (0.9 and 0.07 years). The bivariate analysis has managed to characterize the variable "Daily Vehicular Flow" in the ninth position of importance of a total of 55 variables. However, the statistical correlation has not obtained a favorable result, having obtained a low value of the R2 coefficient. The series of analyses conducted has demonstrated the importance of the influence of pollutants such as PM2.5 in the development of childhood asthma in Cartagena. The quantification of the influence of the variables has been able to determine that there is a 56% probability of dependence between PM2.5 and childhood respiratory asthma in Cartagena. Considering this justification, the study could be completed through the application of the BenMap Software, throwing a series of spatial results of interpolated values of the pollutant contamination records that exceeded the established legal limits (represented by homogeneous units up to the neighborhood level) and results of the impact on the exacerbation of pediatric asthma. As a final result, an economic estimate (in Colombian Pesos) of the monthly and individual savings derived from the percentage reduction of the influence of pollutants in relation to visits to the Hospital Emergency Room due to asthma exacerbation in pediatric patients has been granted.

Keywords: Asthma Incidence, BenMap, PM2.5, Statistical Analysis

Procedia PDF Downloads 107
444 National Accreditation Board for Hospitals and Healthcare Reaccreditation, the Challenges and Advantages: A Qualitative Case Study

Authors: Narottam Puri, Gurvinder Kaur

Abstract:

Background: The National Accreditation Board for Hospitals & Healthcare Providers (NABH) is India’s apex standard setting accrediting body in health care which evaluates and accredits healthcare organizations. NABH requires accredited organizations to become reaccredited every three years. It is often though that once the initial accreditation is complete, the foundation is set and reaccreditation is a much simpler process. Fortis Hospital, Shalimar Bagh, a part of the Fortis Healthcare group is a 262 bed, multi-specialty tertiary care hospital. The hospital was successfully accredited in the year 2012. On completion of its first cycle, the hospital underwent a reaccreditation assessment in the year 2015. This paper aims to gain a better understanding of the challenges that accredited hospitals face when preparing for a renewal of their accreditations. Methods: The study was conducted using a cross-sectional mixed methods approach; semi-structured interviews were conducted with senior leadership team and staff members including doctors and nurses. Documents collated by the QA team while preparing for the re-assessment like the data on quality indicators: the method of collection, analysis, trending, continual incremental improvements made over time, minutes of the meetings, amendments made to the existing policies and new policies drafted was reviewed to understand the challenges. Results: The senior leadership had a concern about the cost of accreditation and its impact on the quality of health care services considering the staff effort and time consumed it. The management was however in favor of continuing with the accreditation since it offered competitive advantage, strengthened community confidence besides better pay rates from the payors. The clinicians regarded it as an increased non-clinical workload. Doctors felt accountable within a professional framework, to themselves, the patient and family, their peers and to their profession; but not to accreditation bodies and raised concerns on how the quality indicators were measured. The departmental leaders had a positive perception of accreditation. They agreed that it ensured high standards of care and improved management of their functional areas. However, they were reluctant in sparing people for the QA activities due to staffing issues. With staff turnover, a lot of work was lost as sticky knowledge and had to be redone. Listing the continual quality improvement initiatives over the last 3 years was a challenge in itself. Conclusion: The success of any quality assurance reaccreditation program depends almost entirely on the commitment and interest of the administrators, nurses, paramedical staff, and clinicians. The leader of the Quality Movement is critical in propelling and building momentum. Leaders need to recognize skepticism and resistance and consider ways in which staff can become positively engaged. Involvement of all the functional owners is the start point towards building ownership and accountability for standards compliance. Creativity plays a very valuable role. Communication by Mail Series, WhatsApp groups, Quizzes, Events, and any and every form helps. Leaders must be able to generate interest and commitment without burdening clinical and administrative staff with an activity they neither understand nor believe in.

Keywords: NABH, reaccreditation, quality assurance, quality indicators

Procedia PDF Downloads 217
443 Meta-Analysis of Previously Unsolved Cases of Aviation Mishaps Employing Molecular Pathology

Authors: Michael Josef Schwerer

Abstract:

Background: Analyzing any aircraft accident is mandatory based on the regulations of the International Civil Aviation Organization and the respective country’s criminal prosecution authorities. Legal medicine investigations are unavoidable when fatalities involve the flight crew or when doubts arise concerning the pilot’s aeromedical health status before the event. As a result of frequently tremendous blunt and sharp force trauma along with the impact of the aircraft to the ground, consecutive blast or fire exposition of the occupants or putrefaction of the dead bodies in cases of delayed recovery, relevant findings can be masked or destroyed and therefor being inaccessible in standard pathology practice comprising just forensic autopsy and histopathology. Such cases are of considerable risk of remaining unsolved without legal consequences for those responsible. Further, no lessons can be drawn from these scenarios to improve flight safety and prevent future mishaps. Aims and Methods: To learn from previously unsolved aircraft accidents, re-evaluations of the investigation files and modern molecular pathology studies were performed. Genetic testing involved predominantly PCR-based analysis of gene regulation, studying DNA promotor methylations, RNA transcription and posttranscriptional regulation. In addition, the presence or absence of infective agents, particularly DNA- and RNA-viruses, was studied. Technical adjustments of molecular genetic procedures when working with archived sample material were necessary. Standards for the proper interpretation of the respective findings had to be settled. Results and Discussion: Additional molecular genetic testing significantly contributes to the quality of forensic pathology assessment in aviation mishaps. Previously undetected cardiotropic viruses potentially explain e.g., a pilot’s sudden incapacitation resulting from cardiac failure or myocardial arrhythmia. In contrast, negative results for infective agents participate in ruling out concerns about an accident pilot’s fitness to fly and the aeromedical examiner’s precedent decision to issue him or her an aeromedical certificate. Care must be taken in the interpretation of genetic testing for pre-existing diseases such as hypertrophic cardiomyopathy or ischemic heart disease. Molecular markers such as mRNAs or miRNAs, which can establish these diagnoses in clinical patients, might be misleading in-flight crew members because of adaptive changes in their tissues resulting from repeated mild hypoxia during flight, for instance. Military pilots especially demonstrate significant physiological adjustments to their somatic burdens in flight, such as cardiocirculatory stress and air combat maneuvers. Their non-pathogenic alterations in gene regulation and expression will likely be misinterpreted for genuine disease by inexperienced investigators. Conclusions: The growing influence of molecular pathology on legal medicine practice has found its way into aircraft accident investigation. As appropriate quality standards for laboratory work and data interpretation are provided, forensic genetic testing supports the medico-legal analysis of aviation mishaps and potentially reduces the number of unsolved events in the future.

Keywords: aviation medicine, aircraft accident investigation, forensic pathology, molecular pathology

Procedia PDF Downloads 35
442 Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Sources

Authors: Annisa Ulfah Pristya, Andi Setiawan

Abstract:

Electricity is the primary requirement today's world, including Indonesia. This is because electricity is a source of electrical energy that is flexible to use. Fossil energy sources are the major energy source that is used as a source of energy power plants. Unfortunately, this conversion process impacts on the depletion of fossil fuel reserves and causes an increase in the amount of CO2 in the atmosphere, disrupting health, ozone depletion, and the greenhouse effect. Solutions have been applied are solar cells, ocean wave power, the wind, water, and so forth. However, low efficiency and complicated treatment led to most people and industry in Indonesia still using fossil fuels. Referring to this Fuel Cell was developed. Fuel Cells are electrochemical technology that continuously converts chemical energy into electrical energy for the fuel and oxidizer are the efficiency is considerably higher than the previous natural source of electrical energy, which is 40-60%. However, Fuel Cells still have some weaknesses in terms of the use of an expensive platinum catalyst which is limited and not environmentally friendly. Because of it, required the simultaneous source of electrical energy and environmentally friendly. On the other hand, Indonesia is a rich country in marine sediments and organic content that is never exhausted. Stacking the organic component can be an alternative energy source continued development of fuel cell is A Microbial Fuel Cell. Microbial Fuel Cells (MFC) is a tool that uses bacteria to generate electricity from organic and non-organic compounds. MFC same tools as usual fuel cell composed of an anode, cathode and electrolyte. Its main advantage is the catalyst in the microbial fuel cell is a microorganism and working conditions carried out in neutral solution, low temperatures, and environmentally friendly than previous fuel cells (Chemistry Fuel Cell). However, when compared to Chemistry Fuel Cell, MFC only have an efficiency of 40%. Therefore, the authors provide a solution in the form of Nano-MFC (Nano Microbial Fuel Cell): Utilization of Carbon Nano Tube to Increase Efficiency of Microbial Fuel Cell Power as an Effective, Efficient and Environmentally Friendly Alternative Energy Source. Nano-MFC has the advantage of an effective, high efficiency, cheap and environmental friendly. Related stakeholders that helped are government ministers, especially Energy Minister, the Institute for Research, as well as the industry as a production executive facilitator. strategic steps undertaken to achieve that begin from conduct preliminary research, then lab scale testing, and dissemination and build cooperation with related parties (MOU), conduct last research and its applications in the field, then do the licensing and production of Nano-MFC on an industrial scale and publications to the public.

Keywords: CNT, efficiency, electric, microorganisms, sediment

Procedia PDF Downloads 402
441 Investigation of the Controversial Immunomodulatory Potential of Trichinella spiralis Excretory-Secretory Products versus Extracellular Vesicles Derived from These Products in vitro

Authors: Natasa Ilic, Alisa Gruden-Movsesijan, Maja Kosanovic, Sofija Glamoclija, Marina Bekic, Ljiljana Sofronic-Milosavljevic, Sergej Tomic

Abstract:

As a very promising candidate for modulation of immune response in the sense of biasing the inflammatory towards an anti-inflammatory type of response, Trichinella spiralis infection was shown to successfully alleviate the severity of experimental autoimmune encephalomyelitis, the animal model of human disease multiple sclerosis. This effect is achieved via its excretory-secretory muscle larvae (ES L1) products which affect the maturation status and function of dendritic cells (DCs) by inducing the tolerogenic status of DCs, which leads to the mitigation of the Th1 type of response and the activation of a regulatory type of immune response both in vitro and in vivo. ES L1 alone or via treated DCs successfully mitigated EAE in the same manner as the infection itself. On the other hand, it has been shown that T. spiralis infection slows down the tumour growth and significantly reduces the tumour size in the model of mouse melanoma, while ES L1 possesses a pro-apoptotic and anti-survival effect on melanoma cells in vitro. Hence, although the mechanisms still need to be revealed, T. spiralis infection and its ES L1 products have a bit of controversial potential to modulate both inflammatory diseases and malignancies. The recent discovery of T. spiralis extracellular vesicles (TsEVs) suggested that the induction of complex regulation of the immune response requires simultaneous delivery of different signals in nano-sized packages. This study aimed to explore whether TsEVs bare the similar potential as ES L1 to influence the status of DCs in initiation, progression and regulation of immune response, but also to investigate the effect of both ES L1 and TsEVs on myeloid derived suppressor cells (MDSC) which present the regular tumour tissue environment. TsEVs were enriched from the conditioned medium of T. spiralis muscle larvae by differential centrifugation and used for the treatment of human monocyte-derived DCs and MDSC. On DCs, TsEVs induced low expression of HLA DR and CD40, moderate CD83 and CD86, and increased expression of ILT3 and CCR7 on treated DCs, i.e., they induced tolerogenic DCs. Such DCs possess the capacity to polarize T cell immune response towards regulatory type, with an increased proportion of IL-10 and TGF-β producing cells, similarly to ES L1. These findings indicated that the ability of TsEVs to induce tolerogenic DCs favoring anti-inflammatory responses may be helpful in coping with diseases that involve Th1/Th17-, but also Th2-mediated inflammation. In MDSC in vitro model, although both ES L1 and TsEVs had the same impact on MDSC phenotype i.e., they acted suppressive, ES L1 treated MDSC, unlike TsEVs treated ones, induced T cell response characterized by the increased RoRγT and IFN-γ, while the proportion of regulatory cells was decreased followed by the decrease in IL-10 and TGF-β positive cells proportion within this population. These findings indicate the interesting ability of ES L1 to modulate T cells response via MDSC towards pro-inflamatory type, suggesting that, unlike TsEVs which consistently demonstrate the suppresive effect on inflammatory response, it could be used also for the development of new approaches aimed for the treatment of malignant diseases. Acknowledgment: This work was funded by the Promis project – Nano-MDCS-Thera, Science Fund, Republic of Serbia.

Keywords: dendritic cells, myeloid derived suppressor cells, immunomodulation, Trichinella spiralis

Procedia PDF Downloads 195
440 Synthesis of Methanol through Photocatalytic Conversion of CO₂: A Green Chemistry Approach

Authors: Sankha Chakrabortty, Biswajit Ruj, Parimal Pal

Abstract:

Methanol is one of the most important chemical products and intermediates. It can be used as a solvent, intermediate or raw material for a number of higher valued products, fuels or additives. From the last one decay, the total global demand of methanol has increased drastically which forces the scientists to produce a large amount of methanol from a renewable source to meet the global demand with a sustainable way. Different types of non-renewable based raw materials have been used for the synthesis of methanol on a large scale which makes the process unsustainable. In this circumstances, photocatalytic conversion of CO₂ into methanol under solar/UV excitation becomes a viable approach to give a sustainable production approach which not only meets the environmental crisis by recycling CO₂ to fuels but also reduces CO₂ amount from the atmosphere. Development of such sustainable production approach for CO₂ conversion into methanol still remains a major challenge in the current research comparing with conventional energy expensive processes. In this backdrop, the development of environmentally friendly materials, like photocatalyst has taken a great perspective for methanol synthesis. Scientists in this field are always concerned about finding an improved photocatalyst to enhance the photocatalytic performance. Graphene-based hybrid and composite materials with improved properties could be a better nanomaterial for the selective conversion of CO₂ to methanol under visible light (solar energy) or UV light. The present invention relates to synthesis an improved heterogeneous graphene-based photocatalyst with improved catalytic activity and surface area. Graphene with enhanced surface area is used as coupled material of copper-loaded titanium oxide to improve the electron capture and transport properties which substantially increase the photoinduced charge transfer and extend the lifetime of photogenerated charge carriers. A fast reduction method through H₂ purging has been adopted to synthesis improved graphene whereas ultrasonication based sol-gel method has been applied for the preparation of graphene coupled copper loaded titanium oxide with some enhanced properties. Prepared photocatalysts were exhaustively characterized using different characterization techniques. Effects of catalyst dose, CO₂ flow rate, reaction temperature and stirring time on the efficacy of the system in terms of methanol yield and productivity have been studied in the present study. The study shown that the newly synthesized photocatalyst with an enhanced surface resulting in a sustained productivity and yield of methanol 0.14 g/Lh, and 0.04 g/gcat respectively, after 3 h of illumination under UV (250W) at an optimum catalyst dosage of 10 g/L having 1:2:3 (Graphene: TiO₂: Cu) weight ratio.

Keywords: renewable energy, CO₂ capture, photocatalytic conversion, methanol

Procedia PDF Downloads 101
439 Jigger Flea (Tunga penetrans) Infestations and Use of Soil-Cow Dung-Ash Mixture as a Flea Control Method in Eastern Uganda

Authors: Gerald Amatre, Julius Bunny Lejju, Morgan Andama

Abstract:

Despite several interventions, jigger flea infestations continue to be reported in the Busoga sub-region in Eastern Uganda. The purpose of this study was to identify factors that expose the indigenous people to jigger flea infestations and evaluate the effectiveness of any indigenous materials used in flea control by the affected communities. Flea compositions in residences were described, factors associated with flea infestation and indigenous materials used in flea control were evaluated. Field surveys were conducted in the affected communities after obtaining preliminary information on jigger infestation from the offices of the District Health Inspectors to identify the affected villages and households. Informed consent was then sought from the local authorities and household heads to conduct the study. Focus group discussions were conducted with key district informants, namely, the District Health Inspectors, District Entomologists and representatives from the District Health Office. A GPS coordinate was taken at central point at every household enrolled. Fleas were trapped inside residences using Kilonzo traps. A Kilonzo Trap comprised a shallow pan, about three centimetres deep, filled to the brim with water. The edges of the pan were smeared with Vaseline to prevent fleas from crawling out. Traps were placed in the evening and checked every morning the following day. The trapped fleas were collected in labelled vials filled with 70% aqueous ethanol and taken to the laboratory for identification. Socio-economic and environmental data were collected. The results indicate that the commonest flea trapped in the residences was the cat flea (Ctenocephalides felis) (50%), followed by Jigger flea (Tunga penetrans) (46%) and rat flea (Xenopsylla Cheopis) (4%), respectively. The average size of residences was seven squire metres with a mean of six occupants. The residences were generally untidy; with loose dusty floors and the brick walls were not plastered. The majority of the jigger affected households were headed by peasants (86.7%) and artisans (13.3%). The household heads mainly stopped at primary school level (80%) and few at secondary school level (20%). The jigger affected households were mainly headed by peasants of low socioeconomic status. The affected community members use soil-cow dung-ash mixture to smear floors of residences as the only measure to control fleas. This method was found to be ineffective in controlling the insects. The study recommends that home improvement campaigns be continued in the affected communities to improve sanitation and hygiene in residences as one of the interventions to combat flea infestations. Other cheap, available and effective means should be identified to curb jigger flea infestations.

Keywords: cow dung-soil-ash mixture, infestations, jigger flea, Tunga penetrans

Procedia PDF Downloads 126
438 Quantum Conductance Based Mechanical Sensors Fabricated with Closely Spaced Metallic Nanoparticle Arrays

Authors: Min Han, Di Wu, Lin Yuan, Fei Liu

Abstract:

Mechanical sensors have undergone a continuous evolution and have become an important part of many industries, ranging from manufacturing to process, chemicals, machinery, health-care, environmental monitoring, automotive, avionics, and household appliances. Concurrently, the microelectronics and microfabrication technology have provided us with the means of producing mechanical microsensors characterized by high sensitivity, small size, integrated electronics, on board calibration, and low cost. Here we report a new kind of mechanical sensors based on the quantum transport process of electrons in the closely spaced nanoparticle films covering a flexible polymer sheet. The nanoparticle films were fabricated by gas phase depositing of preformed metal nanoparticles with a controlled coverage on the electrodes. To amplify the conductance of the nanoparticle array, we fabricated silver interdigital electrodes on polyethylene terephthalate(PET) by mask evaporation deposition. The gaps of the electrodes ranged from 3 to 30μm. Metal nanoparticles were generated from a magnetron plasma gas aggregation cluster source and deposited on the interdigital electrodes. Closely spaced nanoparticle arrays with different coverage could be gained through real-time monitoring the conductance. In the film coulomb blockade and quantum, tunneling/hopping dominate the electronic conduction mechanism. The basic principle of the mechanical sensors relies on the mechanical deformation of the fabricated devices which are translated into electrical signals. Several kinds of sensing devices have been explored. As a strain sensor, the device showed a high sensitivity as well as a very wide dynamic range. A gauge factor as large as 100 or more was demonstrated, which can be at least one order of magnitude higher than that of the conventional metal foil gauges or even better than that of the semiconductor-based gauges with a workable maximum applied strain beyond 3%. And the strain sensors have a workable maximum applied strain larger than 3%. They provide the potential to be a new generation of strain sensors with performance superior to that of the currently existing strain sensors including metallic strain gauges and semiconductor strain gauges. When integrated into a pressure gauge, the devices demonstrated the ability to measure tiny pressure change as small as 20Pa near the atmospheric pressure. Quantitative vibration measurements were realized on a free-standing cantilever structure fabricated with closely-spaced nanoparticle array sensing element. What is more, the mechanical sensor elements can be easily scaled down, which is feasible for MEMS and NEMS applications.

Keywords: gas phase deposition, mechanical sensors, metallic nanoparticle arrays, quantum conductance

Procedia PDF Downloads 270
437 Analysis of Resistance and Virulence Genes of Gram-Positive Bacteria Detected in Calf Colostrums

Authors: C. Miranda, S. Cunha, R. Soares, M. Maia, G. Igrejas, F. Silva, P. Poeta

Abstract:

The worldwide inappropriate use of antibiotics has increased the emergence of antimicrobial-resistant microorganisms isolated from animals, humans, food, and the environment. To combat this complex and multifaceted problem is essential to know the prevalence in livestock animals and possible ways of transmission among animals and between these and humans. Enterococci species, in particular E. faecalis and E. faecium, are the most common nosocomial bacteria, causing infections in animals and humans. Thus, the aim of this study was to characterize resistance and virulence factors genes among two enterococci species isolated from calf colostrums in Portuguese dairy farms. The 55 enterococci isolates (44 E. faecalis and 11 E. faecium) were tested for the presence of the resistance genes for the following antibiotics: erythromicyn (ermA, ermB, and ermC), tetracycline (tetL, tetM, tetK, and tetO), quinupristin/dalfopristin (vatD and vatE) and vancomycin (vanB). Of which, 25 isolates (15 E. faecalis and 10 E. faecium) were tested until now for 8 virulence factors genes (esp, ace, gelE, agg, cpd, cylA, cylB, and cylLL). The resistance and virulence genes were performed by PCR, using specific primers and conditions. Negative and positive controls were used in all PCR assays. All enterococci isolates showed resistance to erythromicyn and tetracycline through the presence of the genes: ermB (n=29, 53%), ermC (n=10, 18%), tetL (n=49, 89%), tetM (n=39, 71%) and tetK (n=33, 60%). Only two (4%) E. faecalis isolates showed the presence of tetO gene. No resistance genes for vancomycin were found. The virulence genes detected in both species were cpd (n=17, 68%), agg (n=16, 64%), ace (n=15, 60%), esp (n=13, 52%), gelE (n=13, 52%) and cylLL (n=8, 32%). In general, each isolate showed at least three virulence genes. In three E. faecalis isolates was not found virulence genes and only E. faecalis isolates showed virulence genes for cylA (n=4, 16%) and cylB (n=6, 24%). In conclusion, these colostrum samples that were consumed by calves demonstrated the presence of antibiotic-resistant enterococci harbored virulence genes. This genotypic characterization is crucial to control the antibiotic-resistant bacteria through the implementation of restricts measures safeguarding public health. Acknowledgements: This work was funded by the R&D Project CAREBIO2 (Comparative assessment of antimicrobial resistance in environmental biofilms through proteomics - towards innovative theragnostic biomarkers), with reference NORTE-01-0145-FEDER-030101 and PTDC/SAU-INF/30101/2017, financed by the European Regional Development Fund (ERDF) through the Northern Regional Operational Program (NORTE 2020) and the Foundation for Science and Technology (FCT). This work was supported by the Associate Laboratory for Green Chemistry - LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020 and UIDP/50006/2020).

Keywords: antimicrobial resistance, calf, colostrums, enterococci

Procedia PDF Downloads 187
436 Features of Composites Application in Shipbuilding

Authors: Valerii Levshakov, Olga Fedorova

Abstract:

Specific features of ship structures, made from composites, i.e. simultaneous shaping of material and structure, large sizes, complicated outlines and tapered thickness have defined leading role of technology, integrating test results from material science, designing and structural analysis. Main procedures of composite shipbuilding are contact molding, vacuum molding and winding. Now, the most demanded composite shipbuilding technology is the manufacture of structures from fiberglass and multilayer hybrid composites by means of vacuum molding. This technology enables the manufacture of products with improved strength properties (in comparison with contact molding), reduction of production duration, weight and secures better environmental conditions in production area. Mechanized winding is applied for the manufacture of parts, shaped as rotary bodies – i.e. parts of ship, oil and other pipelines, deep-submergence vehicles hulls, bottles, reservoirs and other structures. This procedure involves processing of reinforcing fiberglass, carbon and polyaramide fibers. Polyaramide fibers have tensile strength of 5000 MPa, elastic modulus value of 130 MPa and rigidity of the same can be compared with rigidity of fiberglass, however, the weight of polyaramide fiber is 30% less than weight of fiberglass. The same enables to the manufacture different structures, including that, using both – fiberglass and organic composites. Organic composites are widely used for the manufacture of parts with size and weight limitations. High price of polyaramide fiber restricts the use of organic composites. Perspective area of winding technology development is the manufacture of carbon fiber shafts and couplings for ships. JSC ‘Shipbuilding & Shiprepair Technology Center’ (JSC SSTC) developed technology of dielectric uncouplers for cryogenic lines, cooled by gaseous or liquid cryogenic agents (helium, nitrogen, etc.) for temperature range 4.2-300 K and pressure up to 30 MPa – the same is used for separating components of electro physical equipment with different electrical potentials. Dielectric uncouplers were developed, the manufactured and tested in accordance with International Thermonuclear Experimental Reactor (ITER) Technical specification. Spiral uncouplers withstand operating voltage of 30 kV, direct-flow uncoupler – 4 kV. Application of spiral channel instead of rectilinear enables increasing of breakdown potential and reduction of uncouplers sizes. 95 uncouplers were successfully the manufactured and tested. At the present time, Russian the manufacturers of ship composite structures have started absorption of technology of manufacturing the same using automated prepreg laminating; this technology enables the manufacture of structures with improved operational specifications.

Keywords: fiberglass, infusion, polymeric composites, winding

Procedia PDF Downloads 231
435 Identifying Effective Strategies to Promote Vietnamese Fashion Brands in an Internationally Dominated Market

Authors: Lam Hong Lan, Gabor Sarlos

Abstract:

It is hard to search for best practices in promotion for local fashion brands in Vietnam as the industry is still very young. Local fashion start-ups have grown quickly in the last five years, thanks in part to the internet and social media. However, local designer/owners can face a huge challenge when competing with international brands in the Vietnamese market – and few local case studies are available for guidance. In response, this paper studied how local small- to medium-sized enterprises (SMEs) promote to their target customers in order to compete with international brands. Knowledge of both successful and unsuccessful approaches generated by this study is intended to both contribute to the academic literature on local fashion in Vietnam as well as to help local designers to learn from and improve their brand-building strategy. The primary study featured qualitative data collection via semi-structured depth interviews. Transcription and data analysis were conducted manually in order to identify success factors that local brands should consider as part of their promotion strategy. Purposive sampling of SMEs identified five designers in Ho Chi Minh City (the biggest city in Vietnam) and three designers in Hanoi (the second biggest) as interviewees. Participant attributes included: born in the 1980s or 1990s; familiar with internet and social media; designer/owner of a successful local fashion brand in the key middle market and/or mass market segments (which are crucial to the growth of local brands). A secondary study was conducted using social listening software to gather further qualitative data on what were considered to be successful or unsuccessful approaches to local fashion brand promotion on social media. Both the primary and secondary studies indicated that local designers had maximized their promotion budget by using owned media and earned media instead of paid media. Findings from the qualitative interviews indicate that internet and social media have been used as effective promotion platforms by local fashion start-ups. Facebook and Instagram were the most popular social networks used by the SMEs interviewed, and these social platforms were believed to offer a more affordable promotional strategy than traditional media such as TV and/or print advertising. Online stores were considered an important factor in helping the SMEs to reach customers beyond the physical store. Furthermore, a successful online store allowed some SMEs to reduce their business rental costs by maintaining their physical store in a cheaper, less central city area as opposed to a more traditional city center store location. In addition, the small comparative size of the SMEs allowed them to be more attentive to their customers, leading to higher customer satisfaction and rate of return. In conclusion, this study found that these kinds of cost savings helped the SMEs interviewed to focus their scarce resources on producing unique, high-quality collections in order to differentiate themselves from international brands. Facebook and Instagram were the main platforms used for promotion and brand-building. The main challenge to this promotion strategy identified by the SMEs interviewed was to continue to find innovative ways to maximize the impact of a limited marketing budget.

Keywords: Vietnam, SMEs, fashion brands, promotion, marketing, social listening

Procedia PDF Downloads 116
434 Energy Strategies for Long-Term Development in Kenya

Authors: Joseph Ndegwa

Abstract:

Changes are required if energy systems are to foster long-term growth. The main problems are increasing access to inexpensive, dependable, and sufficient energy supply while addressing environmental implications at all levels. Policies can help to promote sustainable development by providing adequate and inexpensive energy sources to underserved regions, such as liquid and gaseous fuels for cooking and electricity for household and commercial usage. Promoting energy efficiency. Increased utilization of new renewables. Spreading and implementing additional innovative energy technologies. Markets can achieve many of these goals with the correct policies, pricing, and regulations. However, if markets do not work or fail to preserve key public benefits, tailored government policies, programs, and regulations can achieve policy goals. The main strategies for promoting sustainable energy systems are simple. However, they need a broader recognition of the difficulties we confront, as well as a firmer commitment to specific measures. Making markets operate better by minimizing pricing distortions, boosting competition, and removing obstacles to energy efficiency are among the measures. Complementing the reform of the energy industry with policies that promote sustainable energy. Increasing investments in renewable energy. Increasing the rate of technical innovation at each level of the energy innovation chain. Fostering technical leadership in underdeveloped nations by transferring technology and enhancing institutional and human capabilities. promoting more international collaboration. Governments, international organizations, multilateral financial institutions, and civil society—including local communities, business and industry, non-governmental organizations (NGOs), and consumers—all have critical enabling roles to play in the problem of sustainable energy. Partnerships based on integrated and cooperative approaches and drawing on real-world experience will be necessary. Setting the required framework conditions and ensuring that public institutions collaborate effectively and efficiently with the rest of society are common themes across all industries and geographical areas in order to achieve sustainable development. Powerful tools for sustainable development include energy. However, significant policy adjustments within the larger enabling framework will be necessary to refocus its influence in order to achieve that aim. Many of the options currently accessible will be lost or the price of their ultimate realization (where viable) will grow significantly if such changes don't take place during the next several decades and aren't started right enough. In any case, it would seriously impair the capacity of future generations to satisfy their demands.

Keywords: sustainable development, reliable, price, policy

Procedia PDF Downloads 58
433 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 345
432 Biocultural Biographies and Molecular Memories: A Study of Neuroepigenetics and How Trauma Gets under the Skull

Authors: Elsher Lawson-Boyd

Abstract:

In the wake of the Human Genome Project, the life sciences have undergone some fascinating changes. In particular, conventional beliefs relating to gene expression are being challenged by advances in postgenomic sciences, especially by the field of epigenetics. Epigenetics is the modification of gene expression without changes in the DNA sequence. In other words, epigenetics dictates that gene expression, the process by which the instructions in DNA are converted into products like proteins, is not solely controlled by DNA itself. Unlike gene-centric theories of heredity that characterized much of the 20th Century (where the genes were considered as having almost god-like power to create life), gene expression in epigenetics insists on environmental ‘signals’ or ‘exposures’, a point that radically deviates from gene-centric thinking. Science and Technology Studies (STS) scholars have shown that epigenetic research is having vast implications for the ways in which chronic, non-communicable diseases are conceptualized, treated, and governed. However, to the author’s knowledge, there have not yet been any in-depth sociological engagements with neuroepigenetics that examine how the field is affecting mental health and trauma discourse. In this paper, the author discusses preliminary findings from a doctoral ethnographic study on neuroepigenetics, trauma, and embodiment. Specifically, this study investigates the kinds of causal relations neuroepigenetic researchers are making between experiences of trauma and the development of mental illnesses like complex post-traumatic stress disorder (PTSD), both throughout a human’s lifetime and across generations. Using qualitative interviews and nonparticipant observation, the author focuses on two public-facing research centers based in Melbourne: Florey Institute of Neuroscience and Mental Health (FNMH), and Murdoch Children’s Research Institute (MCRI). Preliminary findings indicate that a great deal of ambiguity characterizes this infant field, particularly when animal-model experiments are employed and the results are translated into human frameworks. Nevertheless, researchers at the FNMH and MCRI strongly suggest that adverse and traumatic life events have a significant effect on gene expression, especially when experienced during early development. Furthermore, they predict that neuroepigenetic research will have substantial implications for the ways in which mental illnesses like complex PTSD are diagnosed and treated. These preliminary findings shed light on why medical and health sociologists have good reason to be chiming in, engaging with and de-black-boxing ideations emerging from postgenomic sciences, as they may indeed have significant effects for vulnerable populations not only in Australia but other developing countries in the Global South.

Keywords: genetics, mental illness, neuroepigenetics, trauma

Procedia PDF Downloads 120
431 2017 Survey on Correlation between Connection and Emotions for Children and Adolescents

Authors: Ya-Hsing Yeh, I-Chun Tai, Ming-Chieh Lin, Li-Ting Lee, Ping-Ting Hsieh, Yi-Chen Ling, Jhia-Ying Du, Li-Ping Chang, Guan-Long Yu

Abstract:

Objective: To understand the connection between children/adolescents and those who they miss, as well as the correlation between connection and their emotions. Method: Based on the objective, a close-ended questionnaire was made into a formal questionnaire after experts evaluated its validity. In February 2017, the paper-based questionnaire was adopted. Twenty-one elementary schools and junior high schools in Taiwan were sampled by purposive sampling approach and the fifth to ninth graders were our participants. A total of 2,502 valid questionnaires were retrieved. Results: Forty-four-point three percent of children/adolescents missed a person in mind, or they thought a person as a significant other in mind, but they had no connection with them. The highest proportion of those they wanted to contact with was ‘Friends and classmates’, and the others were ‘immediate family’, such as parents and grandparents, and ‘academic or vocational instructors, such as home-room teachers, coaches, cram school teachers and so on, respectively. Only 14% of children/adolescents would actively contact those they missed. The proportion of what children/adolescents ‘often’ actively keeping in touch with those they missed felt happy or cheerful was higher compared with those who ‘seldom’ actively keeping in touch with people they missed whenever they recalled who they missed, or the person actively contacted with them. Sixty-one-point seven percent of participants haven’t connected with those they missed for more than one year. The main reason was ‘environmental factors’, such as school/class transfer or moving, and then ‘academic or personal factors’, ‘communication tools’, and ‘personalities’, respectively. In addition to ‘greetings during festivals and holidays’, ‘hearing from those they missed’, and ‘knowing the latest information about those they missed on their Internet communities’, children/adolescents would like to actively contact with them when they felt ‘happy’ and ‘depressed or frustrated. The first three opinions of what children/adolescents regarded truly connection were ‘listening to people they missed attentively’, ‘sharing their secrets’, and ‘contacting with people they regularly missed with real actions’. In terms of gender, girls’ proportion on ‘showing with actions, including contacting with people they missed regularly or expressing their feelings openly’, and ‘sharing secrets’ was higher than boys’, while boy’s proportion on ‘the attitudes when contacting people they missed, including listening attentively or without being distracted’ was higher than girls’. Conclusions: I. The more ‘active’ connection they have, the more happiness they feel. II. Teachers can teach children how to manage their emotions and express their feelings appropriately. III. It is very important to turn connection into ‘action.’ Teachers can set a good example and share their moods with others whatever they are in the mood. This is a kind of connection.

Keywords: children, connection, emotion, mental health

Procedia PDF Downloads 146
430 Culture and Health Equity: Unpacking the Sociocultural Determinants of Eye Health for Indigenous Australian Diabetics

Authors: Aryati Yashadhana, Ted Fields Jnr., Wendy Fernando, Kelvin Brown, Godfrey Blitner, Francis Hayes, Ruby Stanley, Brian Donnelly, Bridgette Jerrard, Anthea Burnett, Anthony B. Zwi

Abstract:

Indigenous Australians experience some of the worst health outcomes globally, with life expectancy being significantly poorer than those of non-Indigenous Australians. This is largely attributed to preventable diseases such as diabetes (prevalence 39% in Indigenous Australian adults > 55 years), which is attributed to a raised risk of diabetic visual impairment and cataract among Indigenous adults. Our study aims to explore the interface between structural and sociocultural determinants and human agency, in order to understand how they impact (1) accessibility of eye health and chronic disease services and (2) the potential for Indigenous patients to achieve positive clinical eye health outcomes. We used Participatory Action Research methods, and aimed to privilege the voices of Indigenous people through community collaboration. Semi-structured interviews (n=82) and patient focus groups (n=8) were conducted by Indigenous Community-Based Researchers (CBRs) with diabetic Indigenous adults (> 40 years) in four remote communities in Australia. Interviews (n=25) and focus groups (n=4) with primary health care clinicians in each community were also conducted. Data were audio recorded, transcribed verbatim, and analysed thematically using grounded theory, comparative analysis and Nvivo 10. Preliminary analysis occurred in tandem with data collection to determine theoretical saturation. The principal investigator (AY) led analysis sessions with CBRs, fostering cultural and contextual appropriateness to interpreting responses, knowledge exchange and capacity building. Identified themes were conceptualised into three spheres of influence: structural (health services, government), sociocultural (Indigenous cultural values, distrust of the health system, ongoing effects of colonialism and dispossession) and individual (health beliefs/perceptions, patient phenomenology). Permeating these spheres of influence were three core determinants: economic disadvantage, health literacy/education, and cultural marginalisation. These core determinants affected accessibility of services, and the potential for patients to achieve positive clinical outcomes at every level of care (primary, secondary, tertiary). Our findings highlight the clinical realities of institutionalised and structural inequities, illustrated through the lived experiences of Indigenous patients and primary care clinicians in the four sampled communities. The complex determinants surrounding inequity in health for Indigenous Australians, are entrenched through a longstanding experience of cultural discrimination and ostracism. Secure and long term funding of Aboriginal Community Controlled Health Services will be valuable, but are insufficient to address issues of inequity. Rather, working collaboratively with communities to build trust, and identify needs and solutions at the grassroots level, while leveraging community voices to drive change at the systemic/policy level are recommended.

Keywords: indigenous, Australia, culture, public health, eye health, diabetes, social determinants of health, sociology, anthropology, health equity, aboriginal and Torres strait islander, primary care

Procedia PDF Downloads 288
429 Impact of Lack of Testing on Patient Recovery in the Early Phase of COVID-19: Narratively Collected Perspectives from a Remote Monitoring Program

Authors: Nicki Mohammadi, Emma Reford, Natalia Romano Spica, Laura Tabacof, Jenna Tosto-Mancuso, David Putrino, Christopher P. Kellner

Abstract:

Introductory Statement: The onset of the COVID-19 pandemic demanded an unprecedented need for the rapid development, dispersal, and application of infection testing. However, despite the impressive mobilization of resources, individuals were incredibly limited in their access to tests, particularly during the initial months of the pandemic (March-April 2020) in New York City (NYC). Access to COVID-19 testing is crucial in understanding patients’ illness experiences and integral to the development of COVID-19 standard-of-care protocols, especially in the context of overall access to healthcare resources. Succinct Description of basic methodologies: 18 Patients in a COVID-19 Remote Patient Monitoring Program (Precision Recovery within the Mount Sinai Health System) were interviewed regarding their experience with COVID-19 during the first wave (March-May 2020) of the COVID-19 pandemic in New York City. Patients were asked about their experiences navigating COVID-19 diagnoses, the health care system, and their recovery process. Transcribed interviews were analyzed for thematic codes, using grounded theory to guide the identification of emergent themes and codebook development through an iterative process. Data coding was performed using NVivo12. References for the domain “testing” were then extracted and analyzed for themes and statistical patterns. Clear Indication of Major Findings of the study: 100% of participants (18/18) referenced COVID-19 testing in their interviews, with a total of 79 references across the 18 transcripts (average: 4.4 references/interview; 2.7% interview coverage). 89% of participants (16/18) discussed the difficulty of access to testing, including denial of testing without high severity of symptoms, geographical distance to the testing site, and lack of testing resources at healthcare centers. Participants shared varying perspectives on how the lack of certainty regarding their COVID-19 status affected their course of recovery. One participant shared that because she never tested positive she was shielded from her anxiety and fear, given the death toll in NYC. Another group of participants shared that not having a concrete status to share with family, friends and professionals affected how seriously onlookers took their symptoms. Furthermore, the absence of a positive test barred some individuals from access to treatment programs and employment support. Concluding Statement: Lack of access to COVID-19 testing in the first wave of the pandemic in NYC was a prominent element of patients’ illness experience, particularly during their recovery phase. While for some the lack of concrete results was protective, most emphasized the invalidating effect this had on the perception of illness for both self and others. COVID-19 testing is now widely accessible; however, those who are unable to demonstrate a positive test result but who are still presumed to have had COVID-19 in the first wave must continue to adapt to and live with the effects of this gap in knowledge and care on their recovery. Future efforts are required to ensure that patients do not face barriers to care due to the lack of testing and are reassured regarding their access to healthcare. Affiliations- 1Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY 2Abilities Research Center, Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY

Keywords: accessibility, COVID-19, recovery, testing

Procedia PDF Downloads 187
428 Teen Insights into Drugs, Alcohol, and Nicotine: A National Survey of Adolescent Attitudes toward Addictive Substances

Authors: Linda Richter

Abstract:

Background and Significance: The influence of parents on their children’s attitudes and behaviors is immense, even as children grow out of what one might assume to be their most impressionable years and into teenagers. This study specifically examines the potential that parents have to prevent or reduce the risk of adolescent substance use, even in the face of considerable environmental influences to use nicotine, alcohol, or drugs. Methodology: The findings presented are based on a nationally representative survey of 1,014 teens aged 12-17 living in the United States. Data were collected using an online platform in early 2018. About half the sample was female (51%), 49% was aged 12-14, and 51% was aged 15-17. The margin of error was +/- 3.5%. Demographic data on the teens and their families were available through the survey platform. Survey items explored adolescent respondents’ exposure to addictive substances; the extent to which their sources of information about these substances are reliable or credible; friends’ and peers’ substance use; their own intentions to try substances in the future; and their relationship with their parents. Key Findings: Exposure to nicotine, alcohol, or other drugs and misinformation about these substances were associated with a greater likelihood that adolescents have friends who use drugs and that they have intentions to try substances in the future, which are known to directly predict actual teen substance use. In addition, teens who reported a positive relationship with their parents and having parents who are involved in their lives had a lower likelihood of having friends who use drugs and of having intentions to try substances in the future. This relationship appears to be mediated by parents’ ability to reduce the extent to which their children are exposed to substances in their environment and to misinformation about them. Indeed, the findings indicated that teens who reported a good relationship with their parents and those who reported higher levels of parental monitoring had significantly higher odds of reporting a lower number of risk factors than teens with a less positive relationship with parents or less monitoring. There also were significantly greater risk factors associated with substance use among older teens relative to younger teens. This shift appears to coincide directly with the tendency of parents to pull back in their monitoring and their involvement in their adolescent children’s lives. Conclusion: The survey findings underscore the importance of resisting the urge to completely pull back as teens age and demand more independence since that is exactly when the risks for teen substance use spike and young people need their parents and other trusted adults to be involved more than ever. Particularly through the cultivation of a healthy, positive, and open relationship, parents can help teens receive accurate and credible information about substance use and also monitor their whereabouts and exposure to addictive substances. These findings, which come directly from teens themselves, demonstrate the importance of continued parental engagement throughout children’s lives, regardless of their age and the disincentives to remaining involved and connected.

Keywords: adolescent, parental monitoring, prevention, substance use

Procedia PDF Downloads 125
427 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection

Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi

Abstract:

During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.

Keywords: coating, stainless steel, tribology, wear

Procedia PDF Downloads 143
426 Empowering and Educating Young People Against Cybercrime by Playing: The Rayuela Method

Authors: Jose L. Diego, Antonio Berlanga, Gregorio López, Diana López

Abstract:

The Rayuela method is a success story, as it is part of a project selected by the European Commission to face the challenge launched by itself for achieving a better understanding of human factors, as well as social and organisational aspects that are able to solve issues in fighting against crime. Rayuela's method specifically focuses on the drivers of cyber criminality, including approaches to prevent, investigate, and mitigate cybercriminal behavior. As the internet has become an integral part of young people’s lives, they are the key target of the Rayuela method because they (as a victim or as a perpetrator) are the most vulnerable link of the chain. Considering the increased time spent online and the control of their internet usage and the low level of awareness of cyber threats and their potential impact, it is understandable the proliferation of incidents due to human mistakes. 51% of Europeans feel not well informed about cyber threats, and 86% believe that the risk of becoming a victim of cybercrime is rapidly increasing. On the other hand, Law enforcement has noted that more and more young people are increasingly committing cybercrimes. This is an international problem that has considerable cost implications; it is estimated that crimes in cyberspace will cost the global economy $445B annually. Understanding all these phenomena drives to the necessity of a shift in focus from sanctions to deterrence and prevention. As a research project, Rayuela aims to bring together law enforcement agencies (LEAs), sociologists, psychologists, anthropologists, legal experts, computer scientists, and engineers, to develop novel methodologies that allow better understanding the factors affecting online behavior related to new ways of cyber criminality, as well as promoting the potential of these young talents for cybersecurity and technologies. Rayuela’s main goal is to better understand the drivers and human factors affecting certain relevant ways of cyber criminality, as well as empower and educate young people in the benefits, risks, and threats intrinsically linked to the use of the Internet by playing, thus preventing and mitigating cybercriminal behavior. In order to reach that goal it´s necessary an interdisciplinary consortium (formed by 17 international partners) carries out researches and actions like Profiling and case studies of cybercriminals and victims, risk assessments, studies on Internet of Things and its vulnerabilities, development of a serious gaming environment, training activities, data analysis and interpretation using Artificial intelligence, testing and piloting, etc. For facilitating the real implementation of the Rayuela method, as a community policing strategy, is crucial to count on a Police Force with a solid background in trust-building and community policing in order to do the piloting, specifically with young people. In this sense, Valencia Local Police is a pioneer Police Force working with young people in conflict solving, through providing police mediation and peer mediation services and advice. As an example, it is an official mediation institution, so agreements signed by their police mediators have once signed by the parties, the value of a judicial decision.

Keywords: fight against crime and insecurity, avert and prepare young people against aggression, ICT, serious gaming and artificial intelligence against cybercrime, conflict solving and mediation with young people

Procedia PDF Downloads 118
425 Performance Improvement of a Single-Flash Geothermal Power Plant Design in Iran: Combining with Gas Turbines and CHP Systems

Authors: Morteza Sharifhasan, Davoud Hosseini, Mohammad. R. Salimpour

Abstract:

The geothermal energy is considered as a worldwide important renewable energy in recent years due to rising environmental pollution concerns. Low- and medium-grade geothermal heat (< 200 ºC) is commonly employed for space heating and in domestic hot water supply. However, there is also much interest in converting the abundant low- and medium-grade geothermal heat into electrical power. The Iranian Ministry of Power - through the Iran Renewable Energy Organization (SUNA) – is going to build the first Geothermal Power Plant (GPP) in Iran in the Sabalan area in the Northwest of Iran. This project is a 5.5 MWe single flash steam condensing power plant. The efficiency of GPPs is low due to the relatively low pressure and temperature of the saturated steam. In addition to GPPs, Gas Turbines (GTs) are also known by their relatively low efficiency. The Iran ministry of Power is trying to increase the efficiency of these GTs by adding bottoming steam cycles to the GT to form what is known as combined gas/steam cycle. One of the most effective methods for increasing the efficiency is combined heat and power (CHP). This paper investigates the feasibility of superheating the saturated steam that enters the steam turbine of the Sabalan GPP (SGPP-1) to improve the energy efficiency and power output of the GPP. This purpose is achieved by combining the GPP with two 3.5 MWe GTs. In this method, the hot gases leaving GTs are utilized through a superheater similar to that used in the heat recovery steam generator of combined gas/steam cycle. Moreover, brine separated in the separator, hot gases leaving GTs and superheater are used for the supply of domestic hot water (in this paper, the cycle combined of GTs and CHP systems is named the modified SGPP-1) . In this research, based on the Heat Balance presented in the basic design documents of the SGPP-1, mathematical/numerical model of the power plant are developed together with the mentioned GTs and CHP systems. Based on the required hot water, the amount of hot gasses needed to pass through CHP section directly can be adjusted. For example, during summer when hot water is less required, the hot gases leaving both GTs pass through the superheater and CHP systems respectively. On the contrary, in order to supply the required hot water during the winter, the hot gases of one of the GTs enter the CHP section directly, without passing through the super heater section. The results show that there is an increase in thermal efficiency up to 40% through using the modified SGPP-1. Since the gross efficiency of SGPP-1 is 9.6%, the achieved increase in thermal efficiency is significant. The power output of SGPP-1 is increased up to 40% in summer (from 5.5MW to 7.7 MW) while the GTs power output remains almost unchanged. Meanwhile, the combined-cycle power output increases from the power output of the two separate plants of 12.5 MW [5.5+ (2×3.5)] to the combined-cycle power output of 14.7 [7.7+(2×3.5)]. This output is more than 17% above the output of the two separate plants. The modified SGPP-1 is capable of producing 215 T/Hr hot water ( 90 ºC ) for domestic use in the winter months.

Keywords: combined cycle, chp, efficiency, gas turbine, geothermal power plant, gas turbine, power output

Procedia PDF Downloads 311
424 A Multimodal Discourse Analysis of Gender Representation on Health and Fitness Magazine Cover Pages

Authors: Nashwa Elyamany

Abstract:

In visual cultures, namely that of the United States, media representations are such influential and pervasive reflections of societal norms and expectations to the extent that they impact the manner in which both genders view themselves. Health and fitness magazines fall within the realm of visual culture. Since the main goal of communication is to ensure proper dissemination of information in order for the target audience to grasp the intended messages, it becomes imperative that magazine publishers, editors, advertisers and image producers use different modes of communication within their reach to convey messages to their readers and viewers. A rapid waxing flow of multimodality floods popular discourse, particularly health and fitness magazine cover pages. The use of well-crafted cover lines and visual images is imbued with agendas, consumerist ideologies and properties capable of effectively conveying implicit and explicit meaning to potential readers and viewers. In essence, the primary goal of this thesis is to interrogate the multi-semiotic operations and manifestations of hegemonic masculinity and femininity in male and female body culture, particularly on the cover pages of the twin American magazines Men's Health and Women's Health using corpora that spanned from 2011 to the mid of 2016. The researcher explores the semiotic resources that contribute to shaping and legitimizing a new form of postmodern, consumerist, gendered discourse that positions the reader-viewer ideologically. Methodologically, the researcher carries out analysis on the macro and micro levels. On the macro level, the researcher takes on a critical stance to illuminate the ideological nature of the multimodal ensemble of the cover pages, and, on the micro level, seeks to put forward new theoretical and methodological routes through which the semiotic choices well invested on the media texts can be more objectively scrutinized. On the macro level, a 'themes' analysis is initially conducted to isolate the overarching themes that dominate the fitness discourse on the cover pages under study. It is argued that variation in terms of frequencies of such themes is indicative, broadly speaking, of which facets of hegemonic masculinity and femininity are infused in the fitness discourse on the cover pages. On the micro level, this research work encompasses three sub-levels of analysis. The researcher follows an SF-MMDA approach, drawing on a trio of analytical frameworks: Halliday's SFG for the verbal analysis; Kress & van Leeuween's VG for the visual analysis; and CMT in relation to Sperber & Wilson's RT for the pragma-cognitive analysis of multimodal metaphors and metonymies. The data is presented in terms of detailed descriptions in conjunction with frequency tables, ANOVA with alpha=0.05 and MANOVA in the multiple phases of analysis. Insights and findings from this multi-faceted, social-semiotic analysis are interpreted in light of Cultivation Theory, Self-objectification Theory and the literature to date. Implications for future research include the implementation of a multi-dimensional approach whereby linguistic and visual analytical models are deployed with special regards to cultural variation.

Keywords: gender, hegemony, magazine cover page, multimodal discourse analysis, multimodal metaphor, multimodal metonymy, systemic functional grammar, visual grammar

Procedia PDF Downloads 333
423 An Integrated Framework for Wind-Wave Study in Lakes

Authors: Moien Mojabi, Aurelien Hospital, Daniel Potts, Chris Young, Albert Leung

Abstract:

The wave analysis is an integral part of the hydrotechnical assessment carried out during the permitting and design phases for coastal structures, such as marinas. This analysis aims in quantifying: i) the Suitability of the coastal structure design against Small Craft Harbour wave tranquility safety criterion; ii) Potential environmental impacts of the structure (e.g., effect on wave, flow, and sediment transport); iii) Mooring and dock design and iv) Requirements set by regulatory agency’s (e.g., WSA section 11 application). While a complex three-dimensional hydrodynamic modelling approach can be applied on large-scale projects, the need for an efficient and reliable wave analysis method suitable for smaller scale marina projects was identified. As a result, Tetra Tech has developed and applied an integrated analysis framework (hereafter TT approach), which takes the advantage of the state-of-the-art numerical models while preserving the level of simplicity that fits smaller scale projects. The present paper aims to describe the TT approach and highlight the key advantages of using this integrated framework in lake marina projects. The core of this methodology is made by integrating wind, water level, bathymetry, and structure geometry data. To respond to the needs of specific projects, several add-on modules have been added to the core of the TT approach. The main advantages of this method over the simplified analytical approaches are i) Accounting for the proper physics of the lake through the modelling of the entire lake (capturing real lake geometry) instead of a simplified fetch approach; ii) Providing a more realistic representation of the waves by modelling random waves instead of monochromatic waves; iii) Modelling wave-structure interaction (e.g. wave transmission/reflection application for floating structures and piles amongst others); iv) Accounting for wave interaction with the lakebed (e.g. bottom friction, refraction, and breaking); v) Providing the inputs for flow and sediment transport assessment at the project site; vi) Taking in consideration historical and geographical variations of the wind field; and vii) Independence of the scale of the reservoir under study. Overall, in comparison with simplified analytical approaches, this integrated framework provides a more realistic and reliable estimation of wave parameters (and its spatial distribution) in lake marinas, leading to a realistic hydrotechnical assessment accessible to any project size, from the development of a new marina to marina expansion and pile replacement. Tetra Tech has successfully utilized this approach since many years in the Okanagan area.

Keywords: wave modelling, wind-wave, extreme value analysis, marina

Procedia PDF Downloads 71
422 Biosensor: An Approach towards Sustainable Environment

Authors: Purnima Dhall, Rita Kumar

Abstract:

Introduction: River Yamuna, in the national capital territory (NCT), and also the primary source of drinking water for the city. Delhi discharges about 3,684 MLD of sewage through its 18 drains in to the Yamuna. Water quality monitoring is an important aspect of water management concerning to the pollution control. Public concern and legislation are now a day’s demanding better environmental control. Conventional method for estimating BOD5 has various drawbacks as they are expensive, time-consuming, and require the use of highly trained personnel. Stringent forthcoming regulations on the wastewater have necessitated the urge to develop analytical system, which contribute to greater process efficiency. Biosensors offer the possibility of real time analysis. Methodology: In the present study, a novel rapid method for the determination of biochemical oxygen demand (BOD) has been developed. Using the developed method, the BOD of a sample can be determined within 2 hours as compared to 3-5 days with the standard BOD3-5day assay. Moreover, the test is based on specified consortia instead of undefined seeding material therefore it minimizes the variability among the results. The device is coupled to software which automatically calculates the dilution required, so, the prior dilution of the sample is not required before BOD estimation. The developed BOD-Biosensor makes use of immobilized microorganisms to sense the biochemical oxygen demand of industrial wastewaters having low–moderate–high biodegradability. The method is quick, robust, online and less time consuming. Findings: The results of extensive testing of the developed biosensor on drains demonstrate that the BOD values obtained by the device correlated with conventional BOD values the observed R2 value was 0.995. The reproducibility of the measurements with the BOD biosensor was within a percentage deviation of ±10%. Advantages of developed BOD biosensor • Determines the water pollution quickly in 2 hours of time; • Determines the water pollution of all types of waste water; • Has prolonged shelf life of more than 400 days; • Enhanced repeatability and reproducibility values; • Elimination of COD estimation. Distinctiveness of Technology: • Bio-component: can determine BOD load of all types of waste water; • Immobilization: increased shelf life > 400 days, extended stability and viability; • Software: Reduces manual errors, reduction in estimation time. Conclusion: BiosensorBOD can be used to measure the BOD value of the real wastewater samples. The BOD biosensor showed good reproducibility in the results. This technology is useful in deciding treatment strategies well ahead and so facilitating discharge of properly treated water to common water bodies. The developed technology has been transferred to M/s Forbes Marshall Pvt Ltd, Pune.

Keywords: biosensor, biochemical oxygen demand, immobilized, monitoring, Yamuna

Procedia PDF Downloads 268
421 Natural Mexican Zeolite Modified with Iron to Remove Arsenic Ions from Water Sources

Authors: Maritza Estela Garay-Rodriguez, Mirella Gutierrez-Arzaluz, Miguel Torres-Rodriguez, Violeta Mugica-Alvarez

Abstract:

Arsenic is an element present in the earth's crust and is dispersed in the environment through natural processes and some anthropogenic activities. Naturally released into the environment through the weathering and erosion of sulphides mineral, some activities such as mining, the use of pesticides or wood preservatives potentially increase the concentration of arsenic in air, water, and soil. The natural arsenic release of a geological material is a threat to the world's drinking water sources. In aqueous phase is found in inorganic form, as arsenate and arsenite mainly, the contamination of groundwater by salts of this element originates what is known as endemic regional hydroarsenicism. The International Agency for Research on Cancer (IARC) categorizes the inorganic As within group I, as a substance with proven carcinogenic action for humans. It has been found the presence of As in groundwater in several countries such as Argentina, Mexico, Bangladesh, Canada and the United States. Regarding the concentration of arsenic in drinking water according to the World Health Organization (WHO) and the Environmental Protection Agency (EPA) establish maximum concentrations of 10 μg L⁻¹. In Mexico, in some states as Hidalgo, Morelos and Michoacán concentrations of arsenic have been found in bodies of water around 1000 μg L⁻¹, a concentration that is well above what is allowed by Mexican regulations with the NOM-127- SSA1-1994 that establishes a limit of 25 μg L⁻¹. Given this problem in Mexico, this research proposes the use of a natural Mexican zeolite (clinoptilolite type) native to the district of Etla in the central valley region of Oaxaca, as an adsorbent for the removal of arsenic. The zeolite was subjected to a conditioning with iron oxide by the precipitation-impregnation method with 0.5 M iron nitrate solution, in order to increase the natural adsorption capacity of this material. The removal of arsenic was carried out in a column with a fixed bed of conditioned zeolite, since it combines the advantages of a conventional filter with those of a natural adsorbent medium, providing a continuous treatment, of low cost and relatively easy to operate, for its implementation in marginalized areas. The zeolite was characterized by XRD, SEM/EDS, and FTIR before and after the arsenic adsorption tests, the results showed that the modification methods used are adequate to prepare adsorbent materials since it does not modify its structure, the results showed that with a particle size of 1.18 mm, an initial concentration of As (V) ions of 1 ppm, a pH of 7 and at room temperature, a removal of 98.7% was obtained with an adsorption capacity of 260 μg As g⁻¹ zeolite. The results obtained indicated that the conditioned zeolite is favorable for the elimination of arsenate in water containing up to 1000 μg As L⁻¹ and could be suitable for removing arsenate from pits of water.

Keywords: adsorption, arsenic, iron conditioning, natural zeolite

Procedia PDF Downloads 165
420 Gender Specific Differences in Clinical Outcomes of Knee Osteoarthritis Treated with Micro-Fragmented Adipose Tissue

Authors: Tiffanie-Marie Borg, Yasmin Zeinolabediny, Nima Heidari, Ali Noorani, Mark Slevin, Angel Cullen, Stefano Olgiati, Alberto Zerbi, Alessandro Danovi, Adrian Wilson

Abstract:

Knee Osteoarthritis (OA) is a critical cause of disability globally. In recent years, there has been growing interest in non-invasive treatments, such as intra-articular injection of micro-fragmented fat (MFAT), showing great potential in treating OA. Mesenchymal stem cells (MSCs), originating from pericytes of micro-vessels in MFAT, can differentiate into mesenchymal lineage cells such as cartilage, osteocytes, adipocytes, and osteoblasts. Secretion of growth factor and cytokines from MSCs have the capability to inhibit T cell growth, reduced pain and inflammation, and create a micro-environment that through paracrine signaling, can promote joint repair and cartilage regeneration. Here we have shown, for the first time, data supporting the hypothesis that women respond better in terms of improvements in pain and function to MFAT injection compared to men. Historically, women have been underrepresented in studies, and studies with both sexes regularly fail to analyse the results by sex. To mitigate this bias and quantify it, we describe a technique using reproducible statistical analysis and replicable results with Open Access statistical software R to calculate the magnitude of this difference. Genetic, hormonal, environmental, and age factors play a role in our observed difference between the sexes. This observational, intention-to-treat study included the complete sample of 456 patients who agreed to be scored for pain (visual analogue scale (VAS)) and function (Oxford knee score (OKS)) at baseline regardless of subsequent changes to adherence or status during follow-up. We report that a significantly larger number of women responded to treatment than men: [90% vs. 60% change in VAS scores with 87% vs. 65% change in OKS scores, respectively]. Women overall had a stronger positive response to treatment with reduced pain and improved mobility and function. Pre-injection, our cohort of women were in more pain with worse joint function which is quite common to see in orthopaedics. However, during the 2-year follow-up, they consistently maintained a lower incidence of discomfort with superior joint function. This data clearly identifies a clear need for further studies to identify the cell and molecular biological and other basis for these differences and be able to utilize this information for stratification in order to improve outcome for both women and men.

Keywords: gender differences, micro-fragmented adipose tissue, knee osteoarthritis, stem cells

Procedia PDF Downloads 179
419 Laboratory and Numerical Hydraulic Modelling of Annular Pipe Electrocoagulation Reactors

Authors: Alejandra Martin-Dominguez, Javier Canto-Rios, Velitchko Tzatchkov

Abstract:

Electrocoagulation is a water treatment technology that consists of generating coagulant species in situ by electrolytic oxidation of sacrificial anode materials triggered by electric current. It removes suspended solids, heavy metals, emulsified oils, bacteria, colloidal solids and particles, soluble inorganic pollutants and other contaminants from water, offering an alternative to the use of metal salts or polymers and polyelectrolyte addition for breaking stable emulsions and suspensions. The method essentially consists of passing the water being treated through pairs of consumable conductive metal plates in parallel, which act as monopolar electrodes, commonly known as ‘sacrificial electrodes’. Physicochemical, electrochemical and hydraulic processes are involved in the efficiency of this type of treatment. While the physicochemical and electrochemical aspects of the technology have been extensively studied, little is known about the influence of the hydraulics. However, the hydraulic process is fundamental for the reactions that take place at the electrode boundary layers and for the coagulant mixing. Electrocoagulation reactors can be open (with free water surface) and closed (pressurized). Independently of the type of rector, hydraulic head loss is an important factor for its design. The present work focuses on the study of the total hydraulic head loss and flow velocity and pressure distribution in electrocoagulation reactors with single or multiple concentric annular cross sections. An analysis of the head loss produced by hydraulic wall shear friction and accessories (minor head losses) is presented, and compared to the head loss measured on a semi-pilot scale laboratory model for different flow rates through the reactor. The tests included laminar, transitional and turbulent flow. The observed head loss was compared also to the head loss predicted by several known conceptual theoretical and empirical equations, specific for flow in concentric annular pipes. Four single concentric annular cross section and one multiple concentric annular cross section reactor configuration were studied. The theoretical head loss resulted higher than the observed in the laboratory model in some of the tests, and lower in others of them, depending also on the assumed value for the wall roughness. Most of the theoretical models assume that the fluid elements in all annular sections have the same velocity, and that flow is steady, uniform and one-dimensional, with the same pressure and velocity profiles in all reactor sections. To check the validity of such assumptions, a computational fluid dynamics (CFD) model of the concentric annular pipe reactor was implemented using the ANSYS Fluent software, demonstrating that pressure and flow velocity distribution inside the reactor actually is not uniform. Based on the analysis, the equations that predict better the head loss in single and multiple annular sections were obtained. Other factors that may impact the head loss, such as the generation of coagulants and gases during the electrochemical reaction, the accumulation of hydroxides inside the reactor, and the change of the electrode material with time, are also discussed. The results can be used as tools for design and scale-up of electrocoagulation reactors, to be integrated into new or existing water treatment plants.

Keywords: electrocoagulation reactors, hydraulic head loss, concentric annular pipes, computational fluid dynamics model

Procedia PDF Downloads 212