Search results for: Ductile metal pipes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2790

Search results for: Ductile metal pipes

780 Systematic Study of Mutually Inclusive Influence of Temperature and Substitution on the Coordination Geometry of Co(II) in a Series of Coordination Polymer and Their Properties

Authors: Manasi Roy, Raju Mondal

Abstract:

During last two decades the synthesis and design of MOFs or novel coordination polymers (CPs) has flourished as an emerging area of research due to their role as functional materials. Accordingly, ten new cobalt-based MOFs have been synthesized using a simple bispyrazole ligand, 4,4′-methylene-bispyrazole (H2MBP), and isophthalic acid (H2IPA) and its four 5-substituted derivatives R-H2IPA (R = COOH, OH, tBu, NH2). The major aim of this study was to validate the mutual influence of temperature and substitutions on the final structural self-assembly. Five different isophthalic acid derivatives were used to study the influence of substituents while each reaction was carried out at two different temperatures to assess the temperature effect. A clear correlation was observed between the reaction temperature and the coordination number of the cobalt atoms which consequently changes the self assembly pattern. Another fact that the periodical change in coordination number did bring about some systematic changes in the structural network via secondary building unit selectivity. With the presence of a tunable cavity inside the network, and unsaturated metal centers, MOFs show highly encouraging photocatalytic degradation of toxic dye with a potential application in waste water purification. Another fascinating aspect of this work is the construction of magnetic coordination polymers with the occurrence of a not-so-common MCE behavior of cobalt-based MOF.

Keywords: MOFs, temperature effect, MCE, dye degradation

Procedia PDF Downloads 136
779 Microstructural and Corrosion Analysis of a Ti-Nb-Ta Biocompatible Dental Implant Alloy

Authors: Roxana Maria Angelescu, Doina Răducanu, Mariana Lucia Angelescu, Ion Cincă, Vasile Dănuţ Cojocaru, Cosmin Cotruț, Şerban Nicolae

Abstract:

Titanium alloys are often used for biomedical applications as hard tissue replacements, such as: orthopedic implants, spinal fixation devices and dental implants. Their advantages are well known and demonstrated: excellent mechanical properties, biocompatibility and good corrosion resistance, but it is also known that the main disadvantage of the metallic materials is their tendency of corrosion in in-vivo environments. In 1987, titanium was found to be the only metallic biomaterial that osseointegrates. The aim of this study was to investigate the microstructure and the corrosion behavior of the Ti-20Nb-5Ta wt% alloy. In this case Nb stabilizes the β-Ti structure and Ta is a highly passivating metal. The as studied alloy was melt under argon protective atmosphere in a levitation induction melting furnace, type FIVE CELES - MP25, with a nominal power of 25 kW and a melting capacity of 30 cm3. The microstructure of the as studied alloy was analyzed by using the electronic microscope Tescan Vega II-XMU. The phase structure of the as studied alloy was determined, as well as the crystalline grain size (100-200µ). To determine the corrosion behavior of the as studied alloy, the technique used was the linear polarization, with the PARSTAT 4000 potentiostat, produced by Princeton Applied Research; potentiodynamic curves were obtained with the VeraStudio v.2.4.2 software.

Keywords: corrosion resistance, microstructure, titanium alloys

Procedia PDF Downloads 543
778 Theoretical and Experimental Investigation of the Interaction Behavior of a Bouncing Ball upon a Flexible Surface Impacted in Two Dimensions

Authors: Wiwat Chumai, Perawit Boonsomchua, Kanjana Ongkasin

Abstract:

The ball bouncing problem is a well-known problem in physics involving a ball dropped from a height to the ground. In this paper, the work investigates the theoretical and experimental setup that describes the dynamics of a rigid body on a chaotic elastic surface under air-damp conditions. Examination of four different types of balls is made, including marble, metal ball, tennis ball, and ping-pong ball. In this experiment, the effect of impact velocities is not considered; the ball is dropped from a fixed height. The method in this work employs the Rayleigh Dissipation Function to specify the effects of dissipative forces in Lagrangian mechanics. Our discoveries reveal that the dynamics of the ball exhibit horizontal motion while damping oscillation occurs, forming the destabilization in vertical pinch-off motion. Moreover, rotational motion is studied. According to the investigation of four different balls, the outcomes illustrate that greater mass results in more frequent dynamics, and the experimental results at some points align with the theoretical model. This knowledge contributes to our understanding of the complex fluid system and could serve as a foundation for further developments in water droplet simulation.

Keywords: droplet, damping oscillation, nonlinear damping oscillation, bouncing ball problem, elastic surface

Procedia PDF Downloads 106
777 Nanosilver Loaded Biomaterial for Wound Healing Applications: In Vitro Studies

Authors: Sathish Sundar Dhilip Kumar, Nicolette Houreld, Heidi Abrahamse

Abstract:

Silver nanoparticles (AgNPs) are classified as metal-based nanomaterials and have received considerable attention globally for wound healing and tissue engineering applications. Naturally available materials are a significant source of medicinal products to treat numerous diseases; polysaccharides are among them. Polysaccharides are non-toxic, safe, and inexpensive, and it has good biocompatibility and biodegradability. Most polysaccharides are shown to have a positive effect on wound healing processes, including chitosan and gum tragacanth. The present study evaluated the improvement of cellular wound healing by nanosilver-loaded polysaccharide-based biomaterial (CGT-NS) in WS1 cells. The physicochemical properties of prepared CGT-NS were studied using different characterization techniques, and it exhibited better stability and swelling properties in various pH conditions. Surface morphology was studied using scanning electron microscopy, and it revealed the porous morphology of the synthesized CGT-NS. The synthesized biomaterial displayed acceptable antibacterial properties against Gram-positive and Gram-negative bacterial strains, and it may prevent infection. The biocompatibility of the synthesized CGT-NS biomaterial was studied in WS1 cells, where it may lead to promote increased cell adhesion and proliferation properties. Thus, the CGT-NS biomaterial has good potential as a biomaterial in wound healing applications.

Keywords: biomaterial, wound healing, nano, silver nanoparticles

Procedia PDF Downloads 184
776 Efficiency of Visible Light Induced Photocatalytic Oxidation of Toluene and Benzene by a Photocatalytic Textile

Authors: Z. Younsi, L. Koufi, H. Gidik, D. Lahem, W. Wim Thielemans

Abstract:

This study investigated the efficiency of photocatalytic textile to remove the Volatile Organic Compounds (VOCs) present in indoor air. Functionalization of the fabric was achieved by adding a photocatalyst material active in the visible spectrum of light. This is a modified titanium dioxide photocatalyst doped with non-metal ions synthesized via sol-gel process, which should allow the degradation of the pollutants – ideally into H₂O and CO₂ – using photocatalysis based on visible light and no additionnal external energy source. The visible light photocatalytic activity of textile sample was evaluated for toluene and benzene gaseous removal, under the visible irradiation, in a test chamber with the total volume of 1m³. The suggested approach involves experimental investigations of the global behavior of the photocatalytic textile. The experimental apparatus permits simultaneous measurements of the degradation of pollutants and presence of eventually formed by-products. It also allows imposing and measuring concentration variations with respect to selected time scales in the test chamber. The observed results showed that the amount of TiO₂ incorporation improved the photocatalytic efficiency of functionalized textile significantly under visible light. The results obtained with such textile are very promising.

Keywords: benzene, C₆H₆, efficiency, photocatalytic degradation, textile fabrics, titanium dioxide, TiO₂, toluene, C₇H₈, visible light

Procedia PDF Downloads 175
775 Exploring Photoreactive Coordination Compounds: The Role of Re Complexes in Ibuprofen Photosensitized Decomposition

Authors: Emilia R. Serrano, Pedro M. David Gara, Gustavo T. Ruiz

Abstract:

Water pollution is an urgent global issue, impacting not only the availability and quality of water for consumption but also the health and lifestyle of populations worldwide. One growing concern is the presence of pharmaceuticals in natural waters, which pose significant risks to both the environment and public health. These substances, even in trace amounts, can cause physiological effects that are often undetected due to insufficient monitoring. Among the many compounds of concern are caffeine, paracetamol, ibuprofen, and enrofloxacin, all of which have been detected in rivers across Argentina. These substances are part of a broader class of emerging pollutants (EPs), which also include chemicals from household and personal care products. The environmental dangers posed by EPs are substantial, particularly their effects on the biotic components of aquatic ecosystems. Bioaccumulation of these pollutants has been observed in various aquatic organisms, raising concerns about long-term ecological impacts. Additionally, continuous exposure to EPs has been linked to a range of harmful effects, including cytotoxicity, genotoxicity, apoptosis, and functional impairments in living organisms. More alarmingly, the prevalence of antibiotics in the environment contributes to the growing issue of antibiotic resistance, creating a significant global health crisis. Unfortunately, these pollutants often go unnoticed during routine water quality assessments, which underscores the need for innovative approaches to mitigate their impact. One promising solution lies in the use of transition metal coordination compounds as photosensitizers, which can help degrade EPs through photocatalytic processes. Transition metals like rhenium (Re) form stable complexes with organic ligands, and these Re(I) complexes (ReC) exhibit tunable photophysical and photochemical properties based on metal-ligand combinations. By focusing on bi-azinic ligands, we aim to optimize the behavior of Re(I) complexes, enhancing their efficiency as photosensitizers in the degradation of harmful pollutants. ReC molecules are of particular interest due to their excellent thermal and photochemical stability, as well as their ability to facilitate electron transfer and redox reactions. When activated by light, these complexes generate reactive species capable of breaking down toxic pollutants into less harmful byproducts. This photo-driven degradation process offers a sustainable and environmentally friendly approach to removing EPs from natural waters, reducing their impact on aquatic life and human health. The unique properties of ReC, such as their excited-state behavior and efficient energy transfer, make them highly suitable for photocatalytic applications aimed at mitigating water pollution. The methodology employed in this research integrates several techniques to explore the effectiveness of ReC in pollutant degradation. These include optoacoustic measurements, absorption and fluorescence spectroscopy, laser flash photolysis, and the use of a phoreactor to simulate real-world conditions. Our recent results showed that a ferrocene-rhenium complex with phenanthroline enhanced the photodegradation of ibuprofen under oxidizing conditions. While promising, further studies, such as HPLC, are needed to determine the exact nature of the degradation products and assess the efficiency of the process. Through this approach, this research aims to contribute to the development of efficient, green technologies for degrading emerging pollutants in natural waters.

Keywords: Rhenium complexes, photosensitizers, emerging pollutants, Ibuprofen

Procedia PDF Downloads 2
774 Analytical Evaluation on Hysteresis Performance of Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

The idea of adding metallic energy dissipaters to a structure to absorb a large part of the seismic energy began four decades ago. There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of both stiffened and non stiffened circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. Diameter-to-thickness ratio is employed as main parameter to investigate the hysteresis performance of stiffened and unstiffened circular shear panel. Depending on these parameters three different buckling mode and hysteretic behavior was found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation and yielding with buckling and strength degradation which forms pinching at initial displacement. Hence, the hysteresis behavior is identified, specimens which deform without strength degradation so it will be used as passive energy dissipating device in civil engineering structures.

Keywords: circular shear panel damper, FE analysis, hysteretic behavior, large deformation

Procedia PDF Downloads 388
773 Cyclic Plastic Deformation of 20MN-MO-NI 55 Steel in Dynamic Strain Ageing Regime

Authors: Ashok Kumar, Sarita Sahu, H. N. Bar

Abstract:

Low cycle fatigue behavior of a ferritic, martensitic pressure vessel steel at dynamic strain ageing regime of 250°C to 280°C has been investigated. Dynamic strain ageing is a mechanism that has attracted interests of researchers due to its fascinating inexplicable repetitive nature for quite a long time. The interaction of dynamic strain ageing and cyclic plasticity has been studied from the mechanistic point of view. Dynamic strain ageing gives rise to identical serrated flow behavior in tensile and compressive halves of hysteresis loops and this has been found to gives rise to initial cyclic hardening followed by softening behavior, where as in non-DSA regime continuous cyclic softening has been found to be the dominant mechanism. An appreciable sensitivity towards nature of serrations has been observed due to degree of hardening of stable loop. The increase in degree of hardening with strain amplitude in the regime where only A type serrations are present and it decreases with strain amplitude where A+B type of serrations are present. Masing type of locus has been found in the behavior of metal at 280°C. Cyclic Stress Strain curve and Master curve has been constructed to decipher among the fatigue strength and ductility coefficients. Fractographic examinations have also shown a competition between progression of striations and secondary cracking.

Keywords: dynamic strain ageing, hardening, low cycle fatigue, softening

Procedia PDF Downloads 303
772 The Thermal Properties of Nano Magnesium Hydroxide Blended with LDPE/EVA/Irganox1010 for Insulator Application

Authors: Ahmad Aroziki Abdul Aziz, Sakinah Mohd Alauddin, Ruzitah Mohd Salleh, Mohammed Iqbal Shueb

Abstract:

This paper illustrates the effect of nano Magnesium Hydroxide (MH) loading on the thermal properties of Low Density Polyethylene (LDPE)/ Poly (ethylene-co vinyl acetate)(EVA) nano composite. Thermal studies were conducted, as it understanding is vital for preliminary development of new polymeric systems. Thermal analysis of nano composite was conducted using thermo gravimetric analysis (TGA), and differential scanning calorimetry (DSC). Major finding of TGA indicated two main stages of degradation process found at (350 ± 25 oC) and (480 ± 25 oC) respectively. Nano metal filler expressed better fire resistance as it stand over high degree of temperature. Furthermore, DSC analysis provided a stable glass temperature around 51 (±1 oC) and captured double melting point at 84 (±2 oC) and 108 (±2 oC). This binary melting point reflects the modification of nano filler to the polymer matrix forming melting crystals of folded and extended chain. The percent crystallinity of the samples grew vividly with increasing filler content. Overall, increasing the filler loading improved the degradation temperature and weight loss evidently and a better process and phase stability was captured in DSC.

Keywords: thermal properties, nano MH, nano particles, cable and wire, LDPE/EVA

Procedia PDF Downloads 451
771 Tungsten-Based Powders Produced in Plasma Systems

Authors: Andrey V. Samokhin, Nikolay V. Alekseev, Mikhail A. Sinaiskii

Abstract:

The report presents the results of R&D of plasma-chemical production of W, W-Cu, W-Ni-Fe nanopowders as well as spherical micropowders of these compounds for their use in modern 3D printing technologies. Plasma-chemical synthesis of nanopowdersis based on the reduction of tungsten oxide compounds powders in a stream of hydrogen-containing low-temperature thermal plasma generated in an electric arc plasma torch. The synthesis of W-Cu and W-Ni-Fe nanocompositesiscarried out using the reduction of a mixture of the metal oxides. Using the synthesized tungsten-based nanocomposites powders, spherical composite micropowders with a submicron structure canbe manufactured by spray dryinggranulation of nanopowder suspension and subsequent densification and spheroidization of granules by melting in a low-temperature thermal plasma flow. The DC arc plasma systems are usedfor the synthesis of nanopowdersas well as for the spheroidization of microgranuls. Plasma systems have a capacity of up to 1 kg/h for nanopowder and up to 5 kg/h for spheroidized powder. All synthesized nanopowders consist of aggregated particles with sizes less than 100 nm, and nanoparticles of W-Cu and W-Ni-Fe composites have core (W) –shell (Cu or Ni-Fe) structures. The resulting dense spherical microparticles with a size of 20-60 microns have a submicron structure with a uniform distribution of metals over the particle volume. The produced tungsten-based nano- and spherical micropowderscan be used to develop new materials and manufacture products using advanced modern technologies.

Keywords: plasma, powders, production, tungsten-based

Procedia PDF Downloads 120
770 Design and Evaluation of Oven Type Furnace Using Earth Materials for Roasting Foods

Authors: Jeffrey Cacho, Sherwin Reyes

Abstract:

The research targeted enhancing energy utilization and reducing waste in roasting processes, particularly in Camarines Norte, where Bounty Agro Ventures Incorporated dominates through brands such as Chooks-to-Go, Uling Roaster, and Reyal. Competitors like Andok’s and Baliwag Lechon Manok also share the market. A staggering 90% of these businesses use traditional glass-type roasting furnaces fueled by wood charcoal, leading to significant energy loss and inefficiency due to suboptimal heat conservation. Only a mere 10% employ electric ovens. Many available furnaces, typically constructed from industrial materials through welding and other metal joining techniques, are not energy-efficient. Cost-prohibitive commercial options compel some micro-enterprises to fabricate their furnaces. The study proposed developing an eco-friendly, cost-effective roasting furnace with excellent heat retention. The distinct design aimed to reduce cooks' heat exposure and overall fuel consumption. The furnace features an angle bar frame, a combustion chute for fuel burning, a heat-retaining clay-walled chamber, and a top cover, all contributing to improved energy savings and user safety.

Keywords: biomass roasting furnace, heat storage, combustion chute, start-up roasting business

Procedia PDF Downloads 53
769 The Effect of Traffic on Harmful Metals and Metalloids in the Street Dust and Surface Soil from Urban Areas of Tehran, Iran: Levels, Distribution and Chemical Partitioning Based on Single and Sequential Extraction Procedures

Authors: Hossein Arfaeinia, Ahmad Jonidi Jafari, Sina Dobaradaran, Sadegh Niazi, Mojtaba Ehsanifar, Amir Zahedi

Abstract:

Street dust and surface soil samples were collected from very heavy, heavy, medium and low traffic areas and natural site in Tehran, Iran. These samples were analyzed for some physical–chemical features, total and chemical speciation of selected metals and metalloids (Zn, Al, Sr, Pb, Cu, Cr, Cd, Co, Ni, and V) to study the effect of traffic on their mobility and accumulation in the environment. The pH, electrical conductivity (EC), carbonates and organic carbon (OC) values were similar in soil and dust samples from similar traffic areas. The traffic increases EC contents in dust/soil matrixes but has no effect on concentrations of metals and metalloids in soil samples. Rises in metal and metalloids levels with traffic were found in dust samples. Moreover, the traffic increases the percentage of acid soluble fraction and Fe and Mn oxides associated fractions of Pb and Zn. The mobilization of Cu, Zn, Pb, Cr in dust samples was easier than in soil. The speciation of metals and metalloids except Cd is mainly affected by physicochemical features in soil, although total metals and metalloids affected the speciation in dust samples (except chromium and nickel).

Keywords: street dust, surface soil, traffic, metals, metalloids, chemical speciation

Procedia PDF Downloads 260
768 Biochar Assisted Municipal Wastewater Treatment and Nutrient Recycling

Authors: A. Pokharel, A. Farooque, B. Acharya

Abstract:

Pyrolysis can be used for energy production from waste biomass of agriculture and forestry. Biochar is the solid byproduct of pyrolysis and its cascading use can offset the cost of the process. A wide variety of research on biochar has highlighted its ability to absorb nutrients, metal and complex compounds; filter suspended solids; enhance microorganisms’ growth; retain water and nutrients as well as to increase carbon content of soil. In addition, sustainable biochar systems are an attractive approach for carbon sequestration and total waste management cycle. Commercially available biochar from Sigma Aldrich was studied for adsorption of nitrogen from effluent of municipal wastewater treatment plant. Adsorption isotherm and breakthrough curve were determined for the biochar. Similarly, biochar’s effects in aerobic as well as anaerobic bioreactors were also studied. In both cases, the biomass was increased in presence of biochar. The amount of gas produced for anaerobic digestion of fruit mix (apple and banana) was similar but the rate of production was significantly faster in biochar fed reactors. The cumulative goal of the study is to use biochar in various wastewater treatment units like aeration tank, secondary clarifier and tertiary nutrient recovery system as well as in anaerobic digestion of the sludge to optimize utilization and add value before being used as a soil amendment.

Keywords: biochar, nutrient recyling, wastewater treatment, soil amendment

Procedia PDF Downloads 149
767 Experimental Study on Granulated Steel Slag as an Alternative to River Sand

Authors: K. Raghu, M. N. Vathhsala, Naveen Aradya, Sharth

Abstract:

River sand is the most preferred fine aggregate for mortar and concrete. River sand is a product of natural weathering of rocks over a period of millions of years and is mined from river beds. Sand mining has disastrous environmental consequences. The excessive mining of river bed is creating an ecological imbalance. This has lead to have restrictions imposed by ministry of environment on sand mining. Driven by the acute need for sand, stone dust or manufactured sand prepared from the crushing and screening of coarse aggregate is being used as sand in the recent past. However manufactured sand is also a natural material and has quarrying and quality issues. To reduce the burden on the environment, alternative materials to be used as fine aggregates are being extensively investigated all over the world. Looking to the quantum of requirements, quality and properties there has been a global consensus on a material – Granulated slags. Granulated slag has been proven as a suitable material for replacing natural sand / crushed fine aggregates. In developed countries, the use of granulated slag as fine aggregate to replace natural sand is well established and is in regular practice. In the present paper Granulated slag has been experimented for usage in mortar. Slags are the main by-products generated during iron and steel production in the steel industry. Over the past decades, the steel production has increased and, consequently, the higher volumes of by-products and residues generated which have driven to the reuse of these materials in an increasingly efficient way. In recent years new technologies have been developed to improve the recovery rates of slags. Increase of slags recovery and use in different fields of applications like cement making, construction and fertilizers help in preserving natural resources. In addition to the environment protection, these practices produced economic benefits, by providing sustainable solutions that can allow the steel industry to achieve its ambitious targets of “zero waste” in coming years. Slags are generated at two different stages of steel production, iron making and steel making known as BF(Blast Furnace) slag and steel slag respectively. The slagging agent or fluxes, such as lime stone, dolomite and quartzite added into BF or steel making furnaces in order to remove impurities from ore, scrap and other ferrous charges during smelting. The slag formation is the result of a complex series of physical and chemical reactions between the non-metallic charge(lime stone, dolomite, fluxes), the energy sources(coal, coke, oxygen, etc.) and refractory materials. Because of the high temperatures (about 15000 C) during their generation, slags do not contain any organic substances. Due to the fact that slags are lighter than the liquid metal, they float and get easily removed. The slags protect the metal bath from atmosphere and maintain temperature through a kind of liquid formation. These slags are in liquid state and solidified in air after dumping in the pit or granulated by impinging water systems. Generally, BF slags are granulated and used in cement making due to its high cementious properties, and steel slags are mostly dumped due to unfavourable physio-chemical conditions. The increasing dump of steel slag not only occupies a plenty of land but also wastes resources and can potentially have an impact on the environment due to water pollution. Since BF slag contains little Fe and can be used directly. BF slag has found a wide application, such as cement production, road construction, Civil Engineering work, fertilizer production, landfill daily cover, soil reclamation, prior to its application outside the iron and steel making process.

Keywords: steel slag, river sand, granulated slag, environmental

Procedia PDF Downloads 245
766 Cellulose Containing Metal Organic Frameworks in Environmental Applications

Authors: Hossam El-Sayed Emam

Abstract:

As an essential issue for life, water while it’s important for all living organisms. However, the world is dangerously facing the serious problem for the deficiency of the sources of drinking water. Within the aquatic systems, there are various gases, microbes, and other toxic ingredients (chemical compounds and heavy metals) occurred owing to the draining of agricultural and industrial wastewater, resulting in water pollution. On the other hand, fuel (gaseous, liquid, or in solid phase) is one of the extensively consumable energy sources, and owing to its origin from fossil, it contains some sulfur-, nitrogen- and oxygen-based compounds that cause serious problems (toxicity, catalyst poisoning, corrosion, and gum formation andcarcinogenic effects), to be ascribed as undesirable pollutants.MOFs as porous coordinating polymers are superiorly exploited in the adsorption and separationof contaminants for wastewater treatment and fuel purification. The inclusion of highly adsorbent materials like MOFs to be immobilized within cellulosic materialscould be investigated as a new challenge for the separation of contaminants with high efficiency and opportunity for recyclability. Therefore, the current approach ascribes the exploitation of different MOFsimmobilized within cellulose (powder, films, and fabrics)for applications in environmental. Herein, using cellulose containing MOFs in dye removal (degradation and adsorption), pharmaceutical intermediates removal, and fuel purification were summarized.

Keywords: cellulose, MOFs, dye removal, pharmaceutical intermediates, fuel purification

Procedia PDF Downloads 154
765 Influence of Dry-Film Lubricants on Bond Strength and Corrosion Behaviour of 6xxx Aluminium Alloy Adhesive Joints for Automotive Industry

Authors: Ralph Gruber, Martina Hafner, Theresia Greunz, Christian Reisecker, David Stifter

Abstract:

The application of dry lubricant on aluminium for automotive industry is indispensable for a high-quality forming behaviour. To provide a short production time those forming aids will not be removed during the joining step. The aim of this study was the characterization of the influence of dry lubricants on the bond strength and the corrosion resistance of an 6xxx aluminium alloy for automotive applications. For this purpose, samples with a well-defined surface were lubricated with 1 g/m² dry lubricant and joined with a commercial thermosetting 1K-epoxy structural adhesive. The bond strength was characterized by means of lap shear test. To evaluate the corrosion resistance of the adhered aluminium samples an immersion test in 5 w% NaCl-solution was used. Based on fracture pattern analysis, the corrosion behaviour could be described. Dissolved corrosion products were examined using ICP-MS and NMR. By means of SEM/EDX the elementary composition of precipitated solids was determined. The results showed a dry lubricant independent bond strength for standard testing conditions. However, a significant effect of the forming aid, regarding the corrosion resistance of adhered aluminium samples against corrosive infiltration of the metal-adhesive-interface, was observed

Keywords: aluminium alloys, dry film lubricants, automotive industry, adhesive bonding, corrosion

Procedia PDF Downloads 105
764 Mesoporous Carbon Sphere/Nickel Cobalt Sulfide Core-Shell Microspheres for Supercapacitor Electrode Material

Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim

Abstract:

The depletion of non-renewable sources had led to the continuous development of various energy storage systems in order to cope with the world’s demand in energy. Supercapacitors have attracted considerable attention because they can store more energy than conventional capacitors and have higher power density than batteries. The combination of carbon-based material and metal chalcogenides are now being considered in response to the search for active electrode materials exhibiting high electrochemical performance. In this study, a hierarchical mesoporous carbon sphere@nickel cobalt sulfide (CS@Ni-Co-S) core-shell was synthesized using a simple hydrothermal method. The CS@Ni-Co-S core-shell microstructures exhibited a high capacitance of 724.4 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. Good specific retention of 86.1% and high Coulombic efficiency of 97.9% was obtained after 2000 charge-discharge cycles. The electrode exhibited a high energy density of 58.0 Wh kg−1 (1440 W kg−1) and high power density of 7200 W kg−1 (34.2 Wh kg−1). The reaction involved green synthesis without further sulfurization or post-heat treatment. Through this study, a cost-effective and facile synthesis of CS@Ni-Co-S as an active electrode showed favorable electrochemical performance.

Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor

Procedia PDF Downloads 236
763 Surface Morphology Refinement and Laves Phase Control of Inconel 718 during Plasma Arc Additive Manufacturing by Alternating Magnetic Field

Authors: Yi Zheng

Abstract:

Improving formability and mechanical properties have always been one of the challenges in the field of additive manufacturing (AM) of nickel-based superalloys. In this work, the effect of a coaxially coupled alternating magnetic field (AMF) on surface morphology and mechanical properties of plasma arc-based additive manufactured Inconel 718 deposit were investigated. Results show that the Lorentz force induced by AMF strongly alters the flow behavior of the plasma jet and the molten pool, suppressing the tendency of the liquid metal in the molten pool to flow down on the two sides face of the deposit, which in turn remarkably improved the surface accuracy of the thin-walled deposit. Furthermore, the electromagnetic stirring induced by AMF can effectively enhance the convection between the dendrites, which could not only contribute to the formation of finer dendrites but also alleviate the enrichment of the elements (i.e., Nb and Mo) at the solid-liquid interface and inhibits the precipitation of Laves phase. The smallest primary dendritic arm spacing (~13 μm) and lowest Laves phases area fraction (3.12%) were witnessed in the bottom region of the AMF-assisted deposit. The mechanical test confirmed that the deposit's micro-hardness and tensile properties were moderately improved compared with the counterpart without AMF.

Keywords: additive manufacturing, inconel 718, alternating magnetic field, laves phase

Procedia PDF Downloads 79
762 Design, Analysis and Construction of a 250vac 8amps Arc Welding Machine

Authors: Anthony Okechukwu Ifediniru, Austin Ikechukwu Gbasouzor, Isidore Uche Uju

Abstract:

This article is centered on the design, analysis, construction, and test of a locally made arc welding machine that operates on 250vac with 8 amp output taps ranging from 60vac to 250vac at a fixed frequency, which is of benefit to urban areas; while considering its cost-effectiveness, strength, portability, and mobility. The welding machine uses a power supply to create an electric arc between an electrode and the metal at the welding point. A current selector coil needed for current selection is connected to the primary winding. Electric power is supplied to the primary winding of its transformer and is transferred to the secondary winding by induction. The voltage and current output of the secondary winding are connected to the output terminal, which is used to carry out welding work. The output current of the machine ranges from 110amps for low current welding to 250amps for high current welding. The machine uses a step-down transformer configuration for stepping down the voltage in order to obtain a high current level for effective welding. The welder can adjust the output current within a certain range. This allows the welder to properly set the output current for the type of welding that is being performed. The constructed arc welding machine was tested by connecting the work piece to it. Since there was no shock or spark from the transformer’s laminated core and was successfully used to join metals, it confirmed and validated the design.

Keywords: AC current, arc welding machine, DC current, transformer, welds

Procedia PDF Downloads 182
761 Growth and Characterization of Bis-Thiourea Nickel Barium Chloride Single Crystals

Authors: Rakesh Hajiyani, Chetan Chauhan, Harshkant Jethva, Mihir Joshi

Abstract:

Metal bis-thiourea type organo-metallic crystals are popular as non-linear optical materials. Bis-thiourea nickel barium chloride was synthesized and crystals were grown by slow aqueous solvent evaporation technique. The transparent and colorless crystals having maximum dimensions of 13 mm x 8 mm x 2.2 mm were obtained. The EDAX was carried out to estimate the content of nickel and barium in the grown crystals. The powder XRD analysis suggested orthorhombic crystal structure with unit cell parameters as: a= 9.70 Å, b= 10.68 Å and c= 17.95 Å. The FTIR spectroscopy study confirmed the presence of various functional groups. The UV-vis spectroscopy study indicated that the crystals were transparent in the visible region with 90% transmittance level further optical parameters were studied. From the TGA it was found that the crystals remained stable up to 170 0C and then decomposed through two decomposition stages. The dielectric study was carried out in the frequency range of applied field from 500 Hz to 1 MHz. The variations of dielectric constant, dielectric loss were studied with frequency. It was found that the dielectric constant and the dielectric loss decreased as the frequency of applied field increased. The results are discussed.

Keywords: crystal growth, dielectric study, optical parameters, organo-metallic crystals, powder xrd, slow evaporation technique, TGA

Procedia PDF Downloads 450
760 Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles

Authors: Ayed S. Al-Shihri, Abul Kalam, Abdullah G. Al-Sehemi, Gaohui Du, Tokeer Ahmad, Ahmad Irfan

Abstract:

We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields.

Keywords: BET surface area analysis, electron microscopy, optical properties, X-ray techniques

Procedia PDF Downloads 397
759 Using Pyrolitic Carbon Black Obtained from Scrap Tires as an Adsorbent for Chromium (III) Removal from Water

Authors: Mercedeh Malekzadeh

Abstract:

Scrap tires are the source of wastes that cause the environmental problems. The major components of these tires are rubber and carbon black. These components can be used again for different applications by utilizing physical and chemical processes. Pyrolysis is a way that converts rubber portion of scrap tires to oil and gas and the carbon black recovers to pyrolytic carbon black. This pyrolytic carbon black can be used to reinforce rubber and metal, coating preparation, electronic thermal manager and so on. The porous structure of this carbon black also makes it as a suitable choice for heavy metals removal from water. In this work, the application of base treated pyrolytic carbon black was studied as an adsorbent for chromium (III) removal from water in a batch process. Pyrolytic carbon blacks in two natural and base treated forms were characterized by scanning electron microscopy and energy dispersive analysis x-ray. The effects of adsorbent dosage, contact time, initial concentration of chromium (III) and pH were considered on the adsorption process. The adsorption capacity was 19.76 mg/g. Maximum adsorption was seen after 120 min at pH=3. The equilibrium data were considered and better fitted to Langmuir model. The adsorption kinetic was evaluated and confirmed with the pseudo second order kinetic. Results have shown that the base treated pyrolytic carbon black obtained from scrap tires can be used as a cheap adsorbent for removal of chromium (III) from the water.

Keywords: chromium (III), pyrolytic carbon, scrap tire, water

Procedia PDF Downloads 201
758 Study the Impact of Welding Poles Type on the Tensile Strength Steel of Low Alloys and High Resistance

Authors: Abdulmagid A. Khattabi, Abdul Fatah M. Emhamed

Abstract:

The steel alloy Introduced after becoming carbon-steel does not meet the requirements of engineering industry; and it cannot be obtained tensile strength from carbon-steel higher than (700MPa), the low alloy steel enters in a lot of heavy engineering equipment parts, molds, agricultural equipment and other industry. In addition, that may be exposed to in-service failure, which may require returned to work, to do the repairs or maintenance by one of the welding methods available. The ability of steel weld determined through palpation of the cracks, which can reduce by many ways. These ways are often expensive and difficult to implement, perhaps the control to choose the type of electrode welding user is one of the easiest and least expensive applications. It has been welding the steel low alloys high resistance by manual metal arc (MMA), and by using a set of welding electrodes which varying in chemical composition and in their prices as well and test their effect on tensile strength. Results showed that using the poles of welding, which have a high proportion of iron powder and low hydrogen. The Tensile resistance is (484MPa) and the weld joint efficiency was (56.9%), but when (OK 47.04) electrode was used the tensile strength increased to (720MPa) and the weld joint efficiency to (84.7%). Using the cheapest electrode (OK 45.00) the weld joint efficiency did not exceed (24.2%), but when using the most expensive electrode (OK 91.28) the weld joint efficiency is (38.1%).

Keywords: steel low alloys high resistance, electrodes welding, tensile test

Procedia PDF Downloads 319
757 Application of Enzyme-Mediated Calcite Precipitation for Surface Control of Gold Mining Tailing Waste

Authors: Yogi Priyo Pradana, Heriansyah Putra, Regina Aprilia Zulfikar, Maulana Rafiq Ramadhan, Devyan Meisnnehr, Zalfa Maulida Insani

Abstract:

This paper studied the effects and mechanisms of fine-grained tailing by Enzyme-Mediated Calcite Precipitation (EMCP). Grouting solution used consists of reagents (CaCl₂ and (CO(NH₂)₂) and urease enzymes which react to produce CaCO₃. In sample preparation, the test tube is used to investigate the precipitation rate of calcite. The grouting solution added is 75 mL for one mold sample. The solution was poured into a mold sample up to as high as 5 mm from the top surface of the tailing to ensure the entire surface is submerged. The sample is left open in a cylinder for up to 3 days for curing. The direct mixing method is conducted so that the cementation process occurs by evenly distributed. The relationship between the results of the UCS test and the calcite precipitation rate likely indicates that the amount of calcite deposited in treated tailing could control the strength of the tailing. The sample results are analyzed using atomic absorption spectroscopy (AAS) to evaluate metal and metalloid content. Calcium carbonate deposited in the tailing is expected to strengthen the bond between tailing granules, which are easily slipped on the banks of the tailing dam. The EMCP method is expected to strengthen tailing in erosion-control surfaces.

Keywords: tailing, EMCP, UCS, AAS

Procedia PDF Downloads 138
756 Investigating the Biosorption Potential of Indigenous Filamentous Fungi from Copperbelt Tailing Dams in Zambia with Copper and Cobalt Tolerance

Authors: Leonce Dusengemungu

Abstract:

Filamentous fungi indigenous to heavy metals (HMs) contaminated environments have a considerable biosorption potential yet are currently under-investigated in developing countries. In the work presented herein, the biosorption potential of three indigenous filamentous fungi (Aspergillus transmontanensis, Cladosporium cladosporioides, and Geotrichum candidum) isolated from copper and cobalt mining wasteland sites in Zambia's Copperbelt province was investigated. In Cu and Co tolerance tests, all the fungal isolates were shown to be tolerant, with mycelial growth at HMs concentrations of up to 7000 ppm. However, exposure to high Cu and Co concentrations hindered the growth of the three strains to varying degrees, resulting in reduced mycelial biomass (evidenced by loss of the infrared bands at 887 and 930 cm-1 of the 1,3-glucans backbone) as well as morphological alterations, sporulation, and pigment synthesis. In addition, gas chromatography-mass spectrometry characterization of the fungal biomass extracts allowed to detect changes in the chemical constituents upon exposure to HMs, with profiles poorer in maltol, 1,2-cyclopentadione, and n-hexadecanoic acid, and richer in furaldehydes. Biosorption tests showed that A. transmontanensis and G. candidum showed better performance as bioremediators than C. cladosporioides, with biosorption efficiencies of 1645, 1853 and 1253 ppm at pH 3, respectively, and may deserve further research in field conditions.

Keywords: bioremediation, fungi, biosorption, heavy metal

Procedia PDF Downloads 64
755 The Late Bronze Age Archeometallurgy of Copper in Mountainous Colchis (Lechkhumi), Georgia

Authors: Nino Sulava, Brian Gilmour, Nana Rezesidze, Tamar Beridze, Rusudan Chagelishvili

Abstract:

Studies of ancient metallurgy are a subject of worldwide current interest. Georgia with its famous early metalworking traditions is one of the central parts of in the Caucasus region. The aim of the present study is to introduce the results of archaeometallurgical investigations being undertaken in the mountain region of Colchis, Lechkhumi (the Tsageri Municipality of western Georgia) and establish their place in the existing archaeological context. Lechkhumi (one of the historic provinces of Georgia known from Georgian, Greek, Byzantine and Armenian written sources as Lechkhumi/Skvimnia/Takveri) is the part of the Colchian mountain area. It is one of the important but little known centres of prehistoric metallurgy in the Caucasian region and of Colchian Bronze Age culture. Reconnaissance archaeological expeditions (2011-2015) revealed significant prehistoric metallurgical sites in Lechkhumi. Sites located in the vicinity of Dogurashi Village (Tsageri Municipality) have become the target area for archaeological excavations. During archaeological excavations conducted in 2016-2018 two archaeometallurgical sites – Dogurashi I and Dogurashi II were investigated. As a result of an interdisciplinary (archaeological, geological and geophysical) survey, it has been established that at both prehistoric Dogurashi mountain sites, it was copper that was being smelted and the ore sources are likely to be of local origin. Radiocarbon dating results confirm they were operating between about the 13th and 9th century BC. More recently another similar site has been identified in this area (Dogurashi III), and this is about to undergo detailed investigation. Other prehistoric metallurgical sites are being located and investigated in the Lechkhumi region as well as chance archaeological finds (often in hoards) – copper ingots, metallurgical production debris, slag, fragments of crucibles, tuyeres (air delivery pipes), furnace wall fragments and other related waste debris. Other chance finds being investigated are the many copper, bronze and (some) iron artefacts that have been found over many years. These include copper ingots, copper, bronze and iron artefacts such as tools, jewelry, and decorative items. These show the important but little known or understood the role of Lechkhumi in the late Bronze Age culture of Colchis. It would seem that mining and metallurgical manufacture form part of the local agricultural yearly lifecycle. Colchian ceramics have been found and also evidence for artefact production, small stone mould fragments and encrusted material from the casting of a fylfot (swastika) form of Colchian bronze buckle found in the vicinities of the early settlements of Tskheta and Dekhviri. Excavation and investigation of previously unknown archaeometallurgical sites in Lechkhumi will contribute significantly to the knowledge and understanding of prehistoric Colchian metallurgy in western Georgia (Adjara, Guria, Samegrelo, and Svaneti) and will reveal the importance of this region in the study of ancient metallurgy in Georgia and the Caucasus. Acknowledgment: This work has been supported by the Shota Rustaveli National Science Foundation (grant FR # 217128).

Keywords: archaeometallurgy, Colchis, copper, Lechkhumi

Procedia PDF Downloads 136
754 Industrial Ergonomics Improvement at a Refrigerator Manufacturing Company in Iran: An Approach on Interventional Ergonomics

Authors: Hassan S. Naeini

Abstract:

Nowadays a lot of people are working in several sorts of industrial sectors in which there are some risk factors which threaten human being especially in developing countries. One of the main problems which effect on workers’ health refers to Ergonomics. Ergonomics as multidisciplinary science concerns workers’ health and safety in terms of somatic and mental concepts. Surely ergonomics interventions and improvement make a better condition for workers and change the quality of working life to better condition. In this study, one of the factories in Iran which is producing some kinds of small and medium size of refrigerators was chosen as the sample. The preliminary ergonomics observation of the mentioned factory showed that there are some risk factors in terms of ergonomics aspects, so an ergonomic intervention was defined, then some ergonomic assessment methods such as NMQ,OWAS, and Environmental Ergonomic Assessment were used. Also Anthropometric measurement was done. This study shows that there are some workstations and plants which suffer some degrees of ergonomic problems. Considering with the gathered data, illumination, noise control and workstation design in metal workstation are known as the priority actions. Some parts of the mentioned interventions are ongoing actions. it seems that the mentioned intervention and workstations design make a better condition for workers, because ergonomics make a safer and more sustainable environments for human being.

Keywords: anthropometry, ergonomics, health, NMQ, OWAS

Procedia PDF Downloads 757
753 Low Power Glitch Free Dual Output Coarse Digitally Controlled Delay Lines

Authors: K. Shaji Mon, P. R. John Sreenidhi

Abstract:

In deep-submicrometer CMOS processes, time-domain resolution of a digital signal is becoming higher than voltage resolution of analog signals. This claim is nowadays pushing toward a new circuit design paradigm in which the traditional analog signal processing is expected to be progressively substituted by the processing of times in the digital domain. Within this novel paradigm, digitally controlled delay lines (DCDL) should play the role of digital-to-analog converters in traditional, analog-intensive, circuits. Digital delay locked loops are highly prevalent in integrated systems.The proposed paper addresses the glitches present in delay circuits along with area,power dissipation and signal integrity.The digitally controlled delay lines(DCDL) under study have been designed in a 90 nm CMOS technology 6 layer metal Copper Strained SiGe Low K Dielectric. Simulation and synthesis results show that the novel circuits exhibit no glitches for dual output coarse DCDL with less power dissipation and consumes less area compared to the glitch free NAND based DCDL.

Keywords: glitch free, NAND-based DCDL, CMOS, deep-submicrometer

Procedia PDF Downloads 245
752 Homogeneous Anti-Corrosion Coating of Spontaneously Dissolved Defect-Free Graphene

Authors: M. K. Bin Subhan, P. Cullen, C. Howard

Abstract:

A recent study by the World Corrosion Organization estimated that corrosion related damage causes $2.5tr worth of damage every year. As such, a low cost easily scalable solution is required to the corrosion problem which is economically viable. Graphene is an ideal anti-corrosion barrier layer material due to its excellent barrier properties and chemical stability, which makes it impermeable to all molecules. However, attempts to employ graphene as a barrier layer has been hampered by the fact that defect sites in graphene accelerate corrosion due to the inert nature of graphene which promotes galvanic corrosion at the expense of the metal. The recent discovery of spontaneous dissolution of charged graphite intercalation compounds in aprotic solvents enables defect free graphene platelets to be employed for anti-corrosion applications. These ‘inks’ of defect-free charged graphene platelets in solution can be coated onto a metallic surfaces via electroplating to form a homogeneous barrier layer. In this paper, initial data showing homogeneous coatings of graphene barrier layers on steel coupons via electroplating will be presented. This easily scalable technique also provides a controllable method for applying different barrier thicknesses from ultra thin layers to thick opaque coatings making it useful for a wide range of applications.

Keywords: anti-corrosion, defect-free, electroplating, graphene

Procedia PDF Downloads 131
751 Mechanical Properties of Spark Plasma Sintered 2024 AA Reinforced with TiB₂ and Nano Yttrium

Authors: Suresh Vidyasagar Chevuri, D. B. Karunakar Chevuri

Abstract:

The main advantages of 'Metal Matrix Nano Composites (MMNCs)' include excellent mechanical performance, good wear resistance, low creep rate, etc. The method of fabrication of MMNCs is quite a challenge, which includes processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminum based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% keeping 1 wt% TiB2 constant are fabricated by Spark Plasma Sintering (SPS). The mechanical property like hardness is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with that of the composite developed. It is found that the yttrium addition increases the above-mentioned properties to some extent and then decreases gradually when yttrium wt% increases beyond a point between 0.3 and 0.4 wt%. High density is achieved in the samples fabricated by spark plasma sintering when compared to any other fabrication route, and uniform distribution of yttrium is observed.

Keywords: spark plasma sintering, 2024 AA, yttrium addition, microstructure characterization, mechanical properties

Procedia PDF Downloads 226