Search results for: Breast cancer genes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3026

Search results for: Breast cancer genes

1016 Procedure to Use Quantitative Bone-Specific SPECT/CT in North Karelia Central Hospital

Authors: L. Korpinen, P. Taskinen, P. Rautio

Abstract:

This study aimed to describe procedures that we developed to use in the quantitative, bone-specific SPECT/CT at our hospital. Our procedures included the following questions for choosing imaging protocols, which were based on a clinical doctor's referral: (1) Is she/he a cancer patient or not? (2) Are there any indications of inflammatory rheumatoid arthritis? We performed about 1,106 skeletal scintigraphies over two years. About 394 patients were studied with quantitative bone-specific single-photon emission computed tomography/computerized tomography (SPECT/CT) (i.e., about 36% of all bone scintigraphies). Approximately 64% of the patients were studied using the conventional Anterior-Posterior/Posterior-Anterior imaging. Our procedure has improved efficiency and decreased cycle times.

Keywords: skeletal scintigraphy, SPECT/CT, imaging, procedure

Procedia PDF Downloads 144
1015 Micropollutant Carbamazepine: Its Occurrences, Toxicological Effects, and Possible Degradation Methods (Review)

Authors: Azad Khalid, Sifa Dogan

Abstract:

Because of its persistence in conventional treatment plants and broad prevalence in water bodies, the pharmaceutical chemical carbamazepine (CBZ) has been suggested as an anthropogenic marker to evaluate water quality. This study provides a thorough examination of the origins and occurrences of CBZ in water bodies, as well as the drug's toxicological effects and laws. Given CBZ's well-documented negative consequences on the human body when used medicinally, cautious monitoring in water is advised. CBZ residues in drinking water may enter embryos and newborns via intrauterine exposure or breast-feeding, causing congenital abnormalities and/or neurodevelopmental issues over time. The insufficiency of solo solutions was shown after an in-depth technical study of traditional and sophisticated treatment technologies. Nanofiltration and reverse osmosis membranes are more successful at removing CBZ than traditional activated sludge and membrane bioreactor techniques. Recent research has shown that severe chemical cleaning, which is essential to prevent membrane fouling, may lower long-term removal efficiency. Furthermore, despite the efficacy of activated carbon adsorption and advanced oxidation processes, a few issues such as chemical cost and activated carbon renewal must be carefully examined. Individual technology constraints lead to the benefits of combined and hybrid systems, namely the heterogeneous advanced oxidation process.

Keywords: carbamazepine, occurrence, toxicity, conventical treatment, advanced oxidation process (AOPs)

Procedia PDF Downloads 90
1014 Low SPOP Expression and High MDM2 expression Are Associated with Tumor Progression and Predict Poor Prognosis in Hepatocellular Carcinoma

Authors: Chang Liang, Weizhi Gong, Yan Zhang

Abstract:

Purpose: Hepatocellular carcinoma (HCC) is a malignant tumor with a high mortality rate and poor prognosis worldwide. Murine double minute 2 (MDM2) regulates the tumor suppressor p53, increasing cancer risk and accelerating tumor progression. Speckle-type POX virus and zinc finger protein (SPOP), a key of subunit of Cullin-Ring E3 ligase, inhibits tumor genesis and progression by the ubiquitination of its downstream substrates. This study aimed to clarify whether SPOP and MDM2 are mutually regulated in HCC and the correlation between SPOP and MDM2 and the prognosis of HCC patients. Methods: First, the expression of SPOP and MDM2 in HCC tissues were detected by TCGA database. Then, 53 paired samples of HCC tumor and adjacent tissues were collected to evaluate the expression of SPOP and MDM2 using immunohistochemistry. Chi-square test or Fisher’s exact test were used to analyze the relationship between clinicopathological features and the expression levels of SPOP and MDM2. In addition, Kaplan‒Meier curve analysis and log-rank test were used to investigate the effects of SPOP and MDM2 on the survival of HCC patients. Last, the Multivariate Cox proportional risk regression model analyzed whether the different expression levels of SPOP and MDM2 were independent risk factors for the prognosis of HCC patients. Results: Bioinformatics analysis revealed the low expression of SPOP and high expression of MDM2 were related to worse prognosis of HCC patients. The relationship between the expression of SPOP and MDM2 and tumor stem-like features showed an opposite trend. The immunohistochemistry showed the expression of SPOP protein was significantly downregulated while MDM2 protein significantly upregulated in HCC tissue compared to that in para-cancerous tissue. Tumors with low SPOP expression were related to worse T stage and Barcelona Clinic Liver Cancer (BCLC) stage, but tumors with high MDM2 expression were related to worse T stage, M stage, and BCLC stage. Kaplan–Meier curves showed HCC patients with high SPOP expression and low MDM2 expression had better survival than those with low SPOP expression and high MDM2 expression (P < 0.05). A multivariate Cox proportional risk regression model confirmed that a high MDM2 expression level was an independent risk factor for poor prognosis in HCC patients (P <0.05). Conclusion: The expression of SPOP protein was significantly downregulated, while the expression of MDM2 significantly upregulated in HCC. The low expression of SPOP and high expression. of MDM2 were associated with malignant progression and poor prognosis of HCC patients, indicating a potential therapeutic target for HCC patients.

Keywords: hepatocellular carcinoma, murine double minute 2, speckle-type POX virus and zinc finger protein, ubiquitination

Procedia PDF Downloads 133
1013 On the Absence of BLAD, CVM, DUMPS and BC Autosomal Recessive Mutations in Stud Bulls of the Local Alatau Cattle Breed of the Republic of Kazakhstan

Authors: Yessengali Ussenbekov, Valery Terletskiy, Orik Zhanserkenova, Shynar Kasymbekova, Indira Beyshova, Aitkali Imanbayev, Almas Serikov

Abstract:

Currently, there are 46 hereditary diseases afflicting cattle with known molecular genetic diagnostic methods developed for them. Genetic anomalies frequently occur in the Holstein cattle breeds from American and Canadian bloodlines. The data on the incidence of BLAD, CVM, DUMPS and BC autosomal recessive lethal mutations in pedigree animals are discordant, the detrimental allele incidence rates are high for the Holstein cattle breed, whereas the incidence rates of these mutations are low in some breeds or they are completely absent. Data were obtained on the basis of frozen semen of stud bulls. DNA was extracted from the semen with the DNA-Sorb-B extraction kit. The lethal mutation in the genes CD18, SLC35A3, UMP and ASS of Alatau stud bulls (N=124) was detected by polymerase chain reaction and RFLP analysis. It was established that stud bulls of the local Alatau breed were not carriers of the BLAD, CVM, DUMPS, and BC detrimental mutations. However, with a view to preventing the dissemination of hereditary diseases it is recommended to monitor the pedigree stock using molecular genetic methods.

Keywords: PCR, autosomal recessive point mutation, BLAD, CVM, DUMPS, BC, stud bulls

Procedia PDF Downloads 434
1012 Detection of Brackish Water Biological Fingerprints in Potable Water

Authors: Abdullah Mohammad, Abdullah Alshemali, Esmaeil Alsaleh

Abstract:

The chemical composition of desalinated water is modified to make it more acceptable to the end-user. Sometimes, this modification is approached by mixing with brackish water that is known to contain a variety of minerals. Expectedly, besides minerals, brackish water indigenous bacterial communities access the final mixture hence reaching the end consumer. The current project examined the safety of using brackish water as an ingredient in potable water. Pseudomonas aeruginosa strains were detected in potable and brackish water samples collected from storage facilities in residential areas as well as from main water distribution and storage tanks. The application of molecular and biochemical fingerprinting methods, including phylogeny, RFLP (restriction fragment length polymorphism), MLST (multilocus sequence typing) and substrate specificity testing, suggested that the potable water P. aeruginosa strains were most probably originated from brackish water. Additionally, all the sixty-four isolates showed multi-drug resistance (MDR) phenotype and harboured the three genes responsible for biofilm formation. These virulence factors represent serious health hazards compelling the scientific community to revise the WHO (World Health Organization) and USEP (US Environmental Protection Agency) A potable water quality guidelines, particularly those related to the types of bacterial genera that evade the current water quality guidelines.

Keywords: potable water, brackish water, pseudomonas aeroginosa, multidrug resistance

Procedia PDF Downloads 110
1011 White-Rot Fungi Phellinus as a Source of Antioxidant and Antitumor Agents

Authors: Yogesh Dalvi, Ruby Varghese, Nibu Varghese, C. K. Krishnan Nair

Abstract:

Introduction: The Genus Phellinus, locally known as Phansomba is a well-known traditional folk medicine. Especially, in Western Ghats of India, many tribes use several species of Phellinus for various ailments related to teeth, throat, tongue, stomach and even wound healing. It is one of the few mushrooms which play a pivotal role in Ayurvedic Dravyaguna. Aim: The present study focuses on to investigate phytochemical analysis, antioxidant, and antitumor (in vitro and in vivo) potential of Phellinus robinae from South India, Kerala Material and Methods: The present study explores the following: 1. Phellinus samples were collected from Ranni, Pathanamthitta district of Kerala state, India from Artocarpus heterophyllus Lam. and species were identified using rDNA region. 2. The fruiting body was shadow dried, powdered and extracted with 50% alcohol using water bath at 60°C which was further condensed by rotary evaporator and lyophilized at minus 40°C temperature. 3. Secondary metabolites were analyzed by using various phytochemical screening assay (Hager’s Test, Wagner’s Test, Sodium hydroxide Test, Lead acetate Test, Ferric chloride Test, Folin-ciocalteu Test, Foaming Test, Benedict’s test, Fehling’s Test and Lowry’s Test). 4. Antioxidant and free radical scavenging activity were analyzed by DPPH, FRAP and Iron chelating assay. 5. The antitumor potential of Water alcohol extract of Phellinus (PAWE) is evaluated through In vitro condition by Trypan blue dye exclusion method in DLA cell line and In vivo by murine model. Result and Discussion: Preliminary phytochemical screening by various biochemical tests revealed presence of a variety of active secondary molecules like alkaloids, flavanoids, saponins, carbohydrate, protein and phenol. In DPPH and FRAP assay PAWE showed significantly higher antioxidant activity as compared to standard Ascorbic acid. While, in Iron chelating assay, PAWE exhibits similar antioxidant activity that of Butylated Hydroxytoluene (BHT) as standard. Further, in the in vitro study, PAWE showed significant inhibition on DLA cell proliferation in dose dependent manner and showed no toxicity on mice splenocytes, when compared to standard chemotherapy drug doxorubicin. In vivo study, oral administration of PAWE showed dose dependent tumor regression in mice and also raised the immunogenicity by restoring levels of antioxidant enzymes in liver and kidney tissue. In both in vitro and in vivo gene expression studies PAWE up-regulates pro-apoptotic genes (Bax, Caspases 3, 8 and 9) and down- regulates anti-apoptotic genes (Bcl2). PAWE also down regulates inflammatory gene (Cox-2) and angiogenic gene (VEGF). Conclusion: Preliminary phytochemical screening revealed that PAWE contains various secondary metabolites which contribute to its antioxidant and free radical scavenging property as evaluated by DPPH, FRAP and Iron chelating assay. PAWE exhibits anti-proliferative activity by the induction of apoptosis through a signaling cascade of death receptor-mediated extrinsic (Caspase8 and Tnf-α), as well as mitochondria-mediated intrinsic (caspase9) and caspase pathways (Caspase3, 8 and 9) and also by regressing angiogenic factor (VEGF) without any inflammation or adverse side effects. Hence, PAWE serve as a potential antioxidant and antitumor agent.

Keywords: antioxidant, antitumor, Dalton lymphoma ascites (DLA), fungi, Phellinus robinae

Procedia PDF Downloads 295
1010 Design of a Recombinant Expression System for Bacterial Cellulose Production

Authors: Gizem Buldum, Alexander Bismarck, Athanasios Mantalaris

Abstract:

Cellulose is the most abundant biopolymer on earth and it is currently being utilised in a multitude of industrial applications. Over the last 30 years, attention has been paid to the bacterial cellulose (BC), since BC exhibits unique physical, chemical and mechanical properties when compared to plant-based cellulose, including high purity and biocompatibility. Although Acetobacter xylinum is the most efficient producer of BC, it’s long doubling time results in insufficient yields of the cellulose production. This limits widespread and continued use of BC. In this study, E. coli BL21 (DE3) or E. coli HMS cells are selected as host organisms for the expression of bacterial cellulose synthase operon (bcs) of A.xylinum. The expression system is created based on pET-Duet1 and pCDF plasmid vectors, which carry bcs operon. The results showed that all bcs genes were successfully transferred and expressed in E.coli strains. The expressions of bcs proteins were shown by SDS and Native page analyses. The functionality of the bcs operon was proved by congo red binding assay. The effect of culturing temperature and the inducer concentration (IPTG) on cell growth and plasmid stability were monitored. The percentage of plasmid harboring cells induced with 0.025 mM IPTG was obtained as 85% at 22˚C in the end of 10-hr culturing period. It was confirmed that the high output cellulose production machinery of A.xylinum can be transferred into other organisms.

Keywords: bacterial cellulose, biopolymer, recombinant expression system, production

Procedia PDF Downloads 392
1009 Genome Sequencing of the Yeast Saccharomyces cerevisiae Strain 202-3

Authors: Yina A. Cifuentes Triana, Andrés M. Pinzón Velásco, Marío E. Velásquez Lozano

Abstract:

In this work the sequencing and genome characterization of a natural isolate of Saccharomyces cerevisiae yeast (strain 202-3), identified with potential for the production of second generation ethanol from sugarcane bagasse hydrolysates is presented. This strain was selected because its capability to consume xylose during the fermentation of sugarcane bagasse hydrolysates, taking into account that many strains of S. cerevisiae are incapable of processing this sugar. This advantage and other prominent positive aspects during fermentation profiles evaluated in bagasse hydrolysates made the strain 202-3 a candidate strain to improve the production of second-generation ethanol, which was proposed as a first step to study the strain at the genomic level. The molecular characterization was carried out by genome sequencing with the Illumina HiSeq 2000 platform paired end; the assembly was performed with different programs, finally choosing the assembler ABYSS with kmer 89. Gene prediction was developed with the approach of hidden Markov models with Augustus. The genes identified were scored based on similarity with public databases of nucleotide and protein. Records were organized from ontological functions at different hierarchical levels, which identified central metabolic functions and roles of the S. cerevisiae strain 202-3, highlighting the presence of four possible new proteins, two of them probably associated with the positive consumption of xylose.

Keywords: cellulosic ethanol, Saccharomyces cerevisiae, genome sequencing, xylose consumption

Procedia PDF Downloads 316
1008 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks

Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox

Abstract:

miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.

Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network

Procedia PDF Downloads 499
1007 Screening of High-Alcohol Producing Yeasts for Manufacturing Process of Whisky

Authors: Byeong-Uk Lim, Young-Ran Song, Sang-Ho Baik

Abstract:

This study aimed to develop yeast starters for scientific alcohol production and systematic quality control of whisky. A total of 389 yeast strains were isolated from traditional Korean fermentation starter (nuruk) and rice wine (makgeolli), and ten strains were finally selected for their high alcohol productivities, in which their alcohol productions were above 17.3% (v/v) during 10 days under two steps of glucose feeding condition (30% and then 15%, w/v). By 18s rDNA sequence analysis, all strains were identified as Saccharomyces cerevisiae (SC), and they can grow well under 50% (w/v) glucose and 10% (v/v) ethanol conditions. Furthermore, the capability of ten different SC strains to ferment rice wine for whisky was studied. Rice wine was fermented with only steamed rice, water, and two types of enzymes (glucoamylase and α-amylase) during 14 days at 25 °C, and then their oenological properties have been determined. As the results, the fermented rice wines indicated the final pH range of 4.24-4.38 and acidity range of 0.12-0.18. The highest ethanol production of 20.2% (v/v) was found in the fermentation with a SC-156 strain, whereas SC-92 (16.8%) and SC-119 (16.4%) showed significantly lowest ethanol productions. In addition, the residual sugar contents showed negative correlation with alcohol contents. Moreover, this study focused on nucleotide polymorphisms in the MSN2 and MSN4 genes to investigate the cause of the defective stress responses in yeast. Consequently, it was also confirmed that the deletion of the N termini of Msn4p from identified point mutations in SC-63, SC-95, SC-156, SC-158, and SC-160 strains.

Keywords: yeast, high-alcohol, whisky, rice wine

Procedia PDF Downloads 319
1006 Bioinformatic Study of Follicle Stimulating Hormone Receptor (FSHR) Gene in Different Buffalo Breeds

Authors: Hamid Mustafa, Adeela Ajmal, Kim EuiSoo, Noor-ul-Ain

Abstract:

World wild, buffalo production is considered as most important component of food industry. Efficient buffalo production is related with reproductive performance of this species. Lack of knowledge of reproductive efficiency and its related genes in buffalo species is a major constraint for sustainable buffalo production. In this study, we performed some bioinformatics analysis on Follicle Stimulating Hormone Receptor (FSHR) gene and explored the possible relationship of this gene among different buffalo breeds and with other farm animals. We also found the evolution pattern for this gene among these species. We investigate CDS lengths, Stop codon variation, homology search, signal peptide, isoelectic point, tertiary structure, motifs and phylogenetic tree. The results of this study indicate 4 different motif in this gene, which are Activin-recp, GS motif, STYKc Protein kinase and transmembrane. The results also indicate that this gene has very close relationship with cattle, bison, sheep and goat. Multiple alignment (MA) showed high conservation of motif which indicates constancy of this gene during evolution. The results of this study can be used and applied for better understanding of this gene for better characterization of Follicle Stimulating Hormone Receptor (FSHR) gene structure in different farm animals, which would be helpful for efficient breeding plans for animal’s production.

Keywords: buffalo, FSHR gene, bioinformatics, production

Procedia PDF Downloads 526
1005 A Case Study of Misinterpretation of Results in Forensic DNA Cases Due to Expression of Y- Chromosome in Females

Authors: Garima Chaudhary

Abstract:

The gender of an individual in forensic DNA analysis is normally accessed by using the STR multiplexes with the incorporated gender based marker amelogenin or in other words by presence or absence of Y-Chromosome, but it may not be true in all the cases. We hereby report an interesting case of a phenotypic female carrying a male karyotype (46XY). In the alleged murder case, the deceased female with XY genotype was noticed. The expression of 18 Y-linked genes was studied to measure the extent of expression. Expression at 4 loci was observed that might have caused the misinterpretation in forensic casework. This clinical situation of the deceased in this case was diagnosed as testicular feminization syndrome, which characterize a female phenotype with a male karyotype (46, XY). Most of these cases have SRY (testis determining factor). The genetic explanation of this phenomenon is not very clear. Here, we are discussing the impact of such situations of genetic discrepancy in forensic interpretation of results. In the presented murder case of a phenotypic female, sexual assault was also suspected. For confirmation vaginal swabs and micro slides were also sent to us for DNA examination. After DNA analysis using STR markers, Y-chromosome was detected in the samples which supporting the suspicion of sexual assault before murder. When the reference blood sample of the deceased was analyzed, it was found to be case of testicular feminization syndrome. Interesting inferences were made from the results obtained.

Keywords: DNA profiling, forensic case study, Y chromosome, females

Procedia PDF Downloads 221
1004 Ethylene Response Factor BnERF from Brassica napus L. Enhances Submergence Tolerance and Alleviates the Oxidative Damage Caused by Submergence in Arabidopsis thaliana

Authors: Sanxiong Fu, Yanyan Lv, Song Chen, Wei Zhang, Cunkou Qi

Abstract:

Ethylene response factor proteins are known to play an important role in regulating a variety of stress responses in plants, but their exact functions in submergence stress are not completely understood. In this study, we isolated BnERF from Brassica napus L. to study the function of BnERF in submergence tolerance. The expression of BnERF gene in Brassica napus L. and the expression of antioxidant enzyme genes in transgenic Arabidopsis were analyzed by Quantitative RT-PCR. It was found that expression of BnERF is apparently induced by submergence in Brassica napus L. and overexpression of BnERF in Arabidopsis increases the tolerance level to submergence and oxidative stress. Histochemical method detected lower level of H2O2, O2•− and malondialdehyde (MDA) in the transgenic Arabidopsis. Compared to wild type, transgenic lines also have higher soluble sugar content and higher activity of antioxidant enzymes, which helps protect the plants against the oxidative damage caused by submergence. It was concluded that BnERF can increase the tolerance of plants to submergence stress and BnERF might be involved in regulating soluble sugar content and the antioxidant system in the defense against submergence stress.

Keywords: antioxidant enzyme, Arabidopsis, ethylene response factor, submergence

Procedia PDF Downloads 303
1003 Rapid Detection and Differentiation of Camel Pox, Contagious Ecthyma and Papilloma Viruses in Clinical Samples of Camels Using a Multiplex PCR

Authors: A. I. Khalafalla, K. A. Al-Busada, I. M. El-Sabagh

Abstract:

Pox and pox-like diseases of camels are a group of exanthematous skin conditions that have become increasingly important economically. They may be caused by three distinct viruses: camelpox virus (CMPV), camel contagious ecthyma virus (CCEV) and camel papillomavirus (CAPV). These diseases are difficult to differentiate based on clinical presentation in disease outbreaks. Molecular methods such as PCR targeting species-specific genes have been developed and used to identify CMPV and CCEV, but not simultaneously in a single tube. Recently, multiplex PCR has gained reputation as a convenient diagnostic method with cost- and time–saving benefits. In the present communication, we describe the development, optimization and validation a multiplex PCR assays able to detect simultaneously the genome of the three viruses in one single test allowing for rapid and efficient molecular diagnosis. The assay was developed based on the evaluation and combination of published and new primer sets, and was applied to the detection of 110 tissue samples. The method showed high sensitivity, and the specificity was confirmed by PCR-product sequencing. In conclusion, this rapid, sensitive and specific assay is considered a useful method for identifying three important viruses in specimens from camels and as part of a molecular diagnostic regime.

Keywords: multiplex PCR, diagnosis, pox and pox-like diseases, camels

Procedia PDF Downloads 461
1002 Prediction of Bariatric Surgery Publications by Using Different Machine Learning Algorithms

Authors: Senol Dogan, Gunay Karli

Abstract:

Identification of relevant publications based on a Medline query is time-consuming and error-prone. An all based process has the potential to solve this problem without any manual work. To the best of our knowledge, our study is the first to investigate the ability of machine learning to identify relevant articles accurately. 5 different machine learning algorithms were tested using 23 predictors based on several metadata fields attached to publications. We find that the Boosted model is the best-performing algorithm and its overall accuracy is 96%. In addition, specificity and sensitivity of the algorithm is 97 and 93%, respectively. As a result of the work, we understood that we can apply the same procedure to understand cancer gene expression big data.

Keywords: prediction of publications, machine learning, algorithms, bariatric surgery, comparison of algorithms, boosted, tree, logistic regression, ANN model

Procedia PDF Downloads 204
1001 Innate Immunity of Insects in Brief

Authors: Ehsan Soleymaninejadian

Abstract:

As the field of immunology is growing day by day, and its chaotic system amazes more people, greed of research in this area is growing; however dealing with human or mammalian cells such as mice make the research expensive. Although there are some differences between higher animals with insects, importance of innate immunity during evolution made it untouched. So, for understanding the innate immunity insects can be good models. They are cheap; reproduction is fast and in the case genetics, less complicated. In this review, we tried to briefly tackle with important factors in insects’ innate immunity such as melanization, encapsulation, JAK-STAT, IMD, and Toll pathways. At the end, we explained how hormones and nerve system also can impact on immune system and make it more beautiful. In concluding remarks, the possibility of taking help from insect immune system to fight against diseases such as cancer has been considered.

Keywords: insects, innate immunity, melanization, intracellular pathways, hormones

Procedia PDF Downloads 220
1000 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 33
999 Effect of Probiotics and Vitamin B on Plasma Interferon-Gamma and Interleukin-6 Levels in Active Pulmonary Tuberculosis

Authors: Yulistiani Yulistiani, Zamrotul Izzah, Lintang Bismantara, Wenny Putri Nilamsari, Arif Bachtiar, Budi Suprapti

Abstract:

Interferon-gamma (IFN-γ) and interleukin-6 (IL-6) are pro-inflammatory cytokines, which have the protective immune response against Tuberculosis (TB). Indeed, pro-inflammatory cytokines Mycobacterium tuberculosis antigen-specific CD4+ and CD8+ T cells and NK cells increase the level of production of IFN-γ, a cytokine critical for augmenting the microbicidal activity of phagocytes. On the other hand, M. tuberculosis reduces the effects of IFN-γ by inhibiting the transcription of IFN-γ- responsive genes and by inducing the secretion of IL-6, which inhibits IFN-γ signaling. Probiotics Lactobacillus sp. and Bifidobacterium sp. were known to increase IFN-γ production in vivo, while vitamin B1, B6, and B12 worked on macrophages and releasing cytokines. Therefore, the present study was to evaluate the effect of probiotics and vitamin B supplement on changes of plasma cytokine levels in active pulmonary TB. From October to November 2016, twelve M. tuberculosis-infected patients starting anti-TB drugs were recruited, then divided into two groups. Seven patients were given a combination of probiotics and vitamin B, while five patients were in the control group. Plasma IFN-γ and IL-6 levels were measured by the ELISA kit before and a month after treatment. IFN-γ levels raised in four patients receiving the supplement (P = 0.743), while IL-6 increased in three patients in this group until day 30 of treatment (P = 0.298). Taken together, these results show the promising effect of probiotics and vitamin B on stimulation of IFN-γ and IL-6 production during intensive therapy of TB.

Keywords: interferon-gamma, interleukin-6, probiotic, tuberculosis

Procedia PDF Downloads 343
998 Genome-Wide Functional Analysis of Phosphatase in Cryptococcus neoformans

Authors: Jae-Hyung Jin, Kyung-Tae Lee, Yee-Seul So, Eunji Jeong, Yeonseon Lee, Dongpil Lee, Dong-Gi Lee, Yong-Sun Bahn

Abstract:

Cryptococcus neoformans causes cryptococcal meningoencephalitis mainly in immunocompromised patients as well as immunocompetent people. But therapeutic options are limited to treat cryptococcosis. Some signaling pathways including cyclic AMP pathway, MAPK pathway, and calcineurin pathway play a central role in the regulation of the growth, differentiation, and virulence of C. neoformans. To understand signaling networks regulating the virulence of C. neoformans, we selected the 114 putative phosphatase genes, one of the major components of signaling networks, in the genome of C. neoformans. We identified putative phosphatases based on annotation in C. neoformans var. grubii genome database provided by the Broad Institute and National Center for Biotechnology Information (NCBI) and performed a BLAST search of phosphatases of Saccharomyces cerevisiae, Aspergillus nidulans, Candida albicans and Fusarium graminearum to Cryptococcus neoformans. We classified putative phosphatases into 14 groups based on InterPro phosphatase domain annotation. Here, we constructed 170 signature-tagged gene-deletion strains through homologous recombination methods for 91 putative phosphatases. We examined their phenotypic traits under 30 different in vitro conditions, including growth, differentiation, stress response, antifungal resistance and virulence-factor production.

Keywords: human fungal pathogen, phosphatase, deletion library, functional genomics

Procedia PDF Downloads 356
997 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 244
996 Modeling of CREB Pathway Induced Gene Induction: From Stimulation to Repression

Authors: K. Julia Rose Mary, Victor Arokia Doss

Abstract:

Electrical and chemical stimulations up-regulate phosphorylaion of CREB, a transcriptional factor that induces its target gene production for memory consolidation and Late Long-Term Potentiation (L-LTP) in CA1 region of the hippocampus. L-LTP requires complex interactions among second-messenger signaling cascade molecules such as cAMP, CAMKII, CAMKIV, MAPK, RSK, PKA, all of which converge to phosphorylate CREB which along with CBP induces the transcription of target genes involved in memory consolidation. A differential equation based model for L-LTP representing stimulus-mediated activation of downstream mediators which confirms the steep, supralinear stimulus-response effects of activation and inhibition was used. The same was extended to accommodate the inhibitory effect of the Inducible cAMP Early Repressor (ICER). ICER is the natural inducible CREB antagonist represses CRE-Mediated gene transcription involved in long-term plasticity for learning and memory. After verifying the sensitivity and robustness of the model, we had simulated it with various empirical levels of repressor concentration to analyse their effect on the gene induction. The model appears to predict the regulatory dynamics of repression on the L-LTP and agrees with the experimental values. The flux data obtained in the simulations demonstrate various aspects of equilibrium between the gene induction and repression.

Keywords: CREB, L-LTP, mathematical modeling, simulation

Procedia PDF Downloads 288
995 A Novel Protein Elicitor Extracted From Lecanicillium lecanii Induced Resistance Against Whitefly, Bemisia tabaci in Cotton

Authors: Yusuf Ali Abdulle, Azhar Uddin Keerio

Abstract:

Background: Protein elicitors play a key role in signaling or displaying plant defense mechanisms and emerging as vital tools for bio-control of insects. This study was aimed at the characterization of the novel protein elicitor isolated from entomopathogenic fungi Lecanicillium lecanii (V3) strain and its activity against Whitefly, Bemisia tabaci in cotton. The sequence of purified elicitor protein showed 100% similarity with hypothetical protein LEL_00878 [Cordyceps confragosa RCEF 1005], GenBank no (OAA81333.1). This novel protein elicitor has 253 amino acid residues and 762bp with a molecular mass of 29 kDa. The protein recombinant was expressed in Escherichia coli using pET‐28a (+) plasmid. Effects of purified novel protein elicitor on Bemisia tabaci were determined at three concentrations of protein (i.e., 58.32, 41.22, 35.41 μg mL⁻¹) on cotton plants and were exposed to newly molted adult B.tabaci. Bioassay results showed a significant effect of the exogenous application of novel protein elicitor on B. tabaci in cotton. In addition, the gene expression analysis found a significant up-regulation of the major genes associated with salicylic acid (SA) and jasmonic acid (JA) linked plant defense pathways in elicitor protein-treated plants. Our results suggested the potential application of a novel protein elicitor derived from Lecanicillium lecanii as a future bio-intensive controlling approach against the whitefly, Bemisia tabaci.

Keywords: resistance, Lecanicillium lecanii, secondary metabolites, whitefly

Procedia PDF Downloads 174
994 Biological Applications of CNT Inherited Polyaniline Nano-Composites

Authors: Yashfeen Khan, Anees Ahmad

Abstract:

In the last few decades, nano-composites have been the topic of interest. Presently, the modern era enlightens the synthesis of hybrid nano-composites over their individual counterparts because of higher application potentials and synergism. Recently, CNT hybrids have demonstrated their pronounced capability as effective sorbents for the removal of heavy metal ions (the root trouble) and organic contaminants due to their high specific surface area, enhanced reactivity, and sequestration characteristics. The present abstract discusses removal efficiencies of organic, inorganic pollutants through CNT/PANI/ composites. It also represents the widespread applications of CNT like monitoring biological systems, biosensors, as heat resources for treating cancer, fire retardant applications of polymer/CNT composites etc. And considering the same, this article aims to brief the scenario of CNT-PANI nano-composites.

Keywords: biosensors, CNT, hybrids, polyaniline, synergism

Procedia PDF Downloads 369
993 Isoflavone and Mineral Content in Conventional Commercial Soybean Cultivars and Transgenic Soybean Planted in Minas Gerais, Brazil

Authors: Renata Adriana Labanca, Gabriela Rezende Costa, Nilton de Oliveira Couto e Silva, José Marcos Gontijo Mandarino, Rodrigo Santos Leite, Nilson César Castanheira Guimarães, Roberto Gonçalves Junqueira

Abstract:

The objective of this study was to evaluate the differences in composition between six brands of conventional soybean and six genetically modified cultivars (GM), all of them from Minas Gerais State, Brazil. We focused on the isoflavones profile and mineral content questioning the substantial equivalence between conventional and GM organisms. The statement of compliance label for conventional grains was verified for the presence of genetic modified genes by real time polymerase chain reaction (PCR). We did not detect the presence of the 35S promoter in commercial samples, indicating the absence of transgene insertion. For mineral analysis, we used the method of inductively coupled plasma-optical emission spectrometry (ICP-OES). Isoflavones quantification was performed by high performance liquid chromatography (HPLC). The results showed no statistical difference between the conventional and transgenic soybean groups concerning isoflavone content and mineral composition. The concentration of potassium, the main mineral component of soy, was the highest in conventional soybeans compared to that in GM soy, while GM samples presented the highest concentrations of iron.

Keywords: glycine max, genetically modified organism, bioactive compounds, ICP-OES, HPLC

Procedia PDF Downloads 452
992 The Diversity of DRB1 Locus of Exon 2 of MHC Molecule of Sudanese Indigenous Desert Sheep

Authors: Muna A. Eissawi, Safaa Abed Elfataah, Haytham Hago, Fatima E Abukunna, Ibtisam Amin Goreish, Nahid Gornas

Abstract:

The study examined and analyzed the genetic diversity of DRB1locus of exon 2 of major histocompatibility complex of Sudanese desert sheep using PCR-RFLP and DNA sequencing. Five hundred samples belonging to five ecotypes of Desert Sudanese sheep (Abrag (Ab), Ashgar (Ash), Hamari (H), Kabashi (K) and Watish (W) were included. Amplification of exon 2 of the DRB1 gene yielded (300bp) amplified product in different ecotypes. Nine different digestion patterns corresponding to Five distinct alleles were observed with Rsa1 digestion. Genotype (ag) was the most common among all ecotypes, with a percentage comprised (40.4 %). The Hardy-Weinberg equilibrium (HWE) test showed that the studied ecotypes have significantly deviated from the theoretical proportions of Rsa1 patterns; probability values of the Chi-square test for HWE for MHC-DRB1 gene in SDS were 0.00 in all ecotypes. The constructed phylogenetic tree revealed the relation of 22 Sudanese isolates with each other and showed the shared sequences with 47 published foreign sequences randomly selected from different geographic regions. The results of this study highlight the effect of heterozygosity of MHC genes of the Desert sheep of Sudan which may clarify some of genetic back ground of their disease resistance and adaptation to environment.

Keywords: desert sheep, MHC, Ovar-DRB1, polymerase chain reaction (PCR), restriction fragment length polymorphism (RFLP)

Procedia PDF Downloads 68
991 Computational Approach for Grp78–Nf-ΚB Binding Interactions in the Context of Neuroprotective Pathway in Brain Injuries

Authors: Janneth Gonzalez, Marco Avila, George Barreto

Abstract:

GRP78 participates in multiple functions in the cell during normal and pathological conditions, controlling calcium homeostasis, protein folding and unfolded protein response. GRP78 is located in the endoplasmic reticulum, but it can change its location under stress, hypoxic and apoptotic conditions. NF-κB represents the keystone of the inflammatory process and regulates the transcription of several genes related with apoptosis, differentiation, and cell growth. The possible relationship between GRP78-NF-κB could support and explain several mechanisms that may regulate a variety of cell functions, especially following brain injuries. Although several reports show interactions between NF-κB and heat shock proteins family members, there is a lack of information on how GRP78 may be interacting with NF-κB, and possibly regulating its downstream activation. Therefore, we assessed the computational predictions of the GRP78 (Chain A) and NF-κB complex (IkB alpha and p65) protein-protein interactions. The interaction interface of the docking model showed that the amino acids ASN 47, GLU 215, GLY 403 of GRP78 and THR 54, ASN 182 and HIS 184 of NF-κB are key residues involved in the docking. The electrostatic field between GRP78-NF-κB interfaces and molecular dynamic simulations support the possible interaction between the proteins. In conclusion, this work shed some light in the possible GRP78-NF-κB complex indicating key residues in this crosstalk, which may be used as an input for better drug design strategy targeting NF-κB downstream signaling as a new therapeutic approach following brain injuries.

Keywords: computational biology, protein interactions, Grp78, bioinformatics, molecular dynamics

Procedia PDF Downloads 341
990 Revealing Potential Drug Targets against Proto-Oncogene Wnt10B by Comparative Molecular Docking

Authors: Shazia Mannan, Zunera Khalid, Hammad-Ul-Mubeen

Abstract:

Wingless type Mouse mammary tumor virus (MMTV) Integration site-10B (Wnt10B) is an important member of the Wnt protein family that functions as cellular messenger in paracrine manner. Aberrant Wnt10B activity is the cause of several abnormalities including cancers of breast, cervix, liver, gastric tract, esophagus, pancreas as well as physiological problems like obesity, and osteoporosis. The objective of this study was to determine the possible inhibitors against aberrant expression of Wnt10B in order to prevent and treat the physiological disorders associated with it. Wnt10B3D structure was predicted by using comparative modeling and then analyzed by PROCHECK, Verify3D, and Errat. The model having 84.54% quality value was selected and acylated to satisfy the hydrophobic nature of Wnt10B. For search of inhibitors, virtual screening was performed on Natural Products (NP) database. The compounds were filtered and ligand-based screening was performed using the antagonist for mouse Wnt-3A. This resulted in a library of 272 unique compounds having most potent drug like activities for Wnt-4. Out of the 271 molecules analyzed three small molecules ZINC35442871, ZINC85876388, and ZINC00754234 having activity against Wnt4 abbarent expression were found common through docking experiment of Wnt10B. It is concluded that the three molecules ZINC35442871, ZINC85876388, and ZINC00754234 can be considered as lead compounds for performing further drug designing experiments against aberrant Wnt expressions.

Keywords: Wnt10B inhibitors, comparative computational studies, proto-oncogene, molecular docking

Procedia PDF Downloads 148
989 Sesamol Decreases Melanin Biosynthesis via Melanogenesis-Related Gene Expressions in Melan-a Cells

Authors: Seung-Hwa Baek, In-Jung Nam, Sang-Han Lee

Abstract:

The development of anti-melanogenic agents is important for the prevention of serious esthetic problem like a melasma, freckle, age spots, and chloasma. The aim of this study was to investigate the anti-melanogenic effect of sesamol, an active lignan isolated from sesame seed, by mushroom and cellular tyrosinase assay, melanin content and the analysis of melanogensis-related mRNA expressions in melana cells. Sesamol showed strong inhibitory activity against the mushroom tyrosinase in a dose-dependent manner. Intracellular tyrosinase inhibition activity was also confirmed by zymography. At a concentration of 50 μM, sesamol inhibited melanin production in melan-a cells with no cytoxicity while those of phenylthiourea (PTU) as a positive control were the same condition. Sesamol significantly inhibited the expression of melanogensis-related genes, such as tyrosinase, tyrosinase-related protein-1 (TRP-1), dopachrome tautomerase (Dct), microphthalmia-associated transcription factor (MITF) and melanocortin 1 receptor (MC1R). These findings indicate that sesamol could reduce melanin biosynthesis via the downregulation of tyrosinase activity and melanin production via subsequent gene expression of melanogenesis-related proteins. Together, these results suggest that the sesamol have strong potential in inhibiting melanin biosynthesis, in that the substance may be used as a new skin-whitening agent of cosmetic materials.

Keywords: sesamol, sesame seed, melanin biosynthesis, melanogenesis-related gene, skin-whitening agent

Procedia PDF Downloads 382
988 Examining the Role of Soil pH on the Composition and Abundance of Nitrite Oxidising Bacteria

Authors: Mansur Abdulrasheed, Hussein I. Ibrahim, Ahmed F. Umar

Abstract:

Nitrification, the microbial oxidation of ammonia to nitrate (NO3-) via nitrite (NO2-) is a vital process in the biogeochemical nitrogen cycle and is performed by two distinct functional groups; ammonia oxidisers (comprised of ammonia oxidising bacteria (AOB) and ammonia oxidising archaea (AOA)) and nitrite oxidising bacteria. Autotrophic nitrification is said to occur in acidic soils, even though most laboratory cultures of isolated ammonia and nitrite oxidising bacteria fail to grow below neutral pH. Published studies revealed that soil pH is a major driver for determining the distribution and abundance of AOB and AOA. To determine whether distinct populations of nitrite oxidising bacteria within the lineages of Nitrospira and Nitrobacter are adapted to a particular range of pH as observed in ammonia oxidising organisms, the community structure of Nitrospira-like and Nitrobacter-like NOB were examined across a pH gradient (4.5–7.5) by amplifying nitrite oxido-reductase (nxrA) and 16S rRNA genes followed by denaturing gradient gel electrophoresis (DGGE). The community structure of both Nitrospira and Nitrobacter changed with soil pH, with distinct populations observed in acidic and neutral soils. The abundance of Nitrospira-like 16S rRNA and Nitrobacter-like nxrA gene copies contrasted across the pH gradient. Nitrobacter-like nxrA gene abundance decreased with increasing soil pH, whereas Nitrospira-like 16S rRNA gene abundance increased with increasing pH. Findings indicated that abundance and distributions of soil NOB is influence by soil pH.

Keywords: nitrospira, nitrobacter, nitrite-oxidizing bacteria, nitrification, pH, soil

Procedia PDF Downloads 292
987 Caecotrophy Behaviour of the Rabbits (Oryctolagus cuniculus)

Authors: Awadhesh Kishore

Abstract:

One of the most unique characteristics of rabbit feeding behaviour is caecotrophy, which involves the excretion and immediate consumption of specific faeces known as soft faeces. Caecotrophy in rabbits is the instinctual behaviour of eating soft faeces; reduced caecotrophy decreases rabbit growth and lipid synthesis in the liver. Caecotroph ingestion is highest when rabbits are fed a diet high in indigestible fibre. The colon produces two types of waste: hard and soft pellets. The hard pellets are expelled, but the soft pellets are re-ingested by the rabbit directly upon being expelled from the anus by twisting itself around and sucking in those pellets as they emerge from the anus. The type of alfalfa hay in the feed of the rabbits does not affect volatile fatty acid concentration, the pattern of fermentation, or pH in the faeces. The cecal content and the soft faeces contain significant amounts of retinoids and carotenoids, while in the tissues (blood, liver, and kidney), these pigments do not occur in substantial amounts. Preventing caecotrophy reduced growth and altered lipid metabolism, depressing the development of new approaches for rabbit feeding and production. Relative abundance is depressed for genes related to metabolic pathways such as vitamin C and sugar metabolism, vitamin B2 metabolism, and bile secretion. The key microorganisms that regulate the rapid growth performance of rabbits may provide useful references for future research and the development of microecological preparations.

Keywords: caecocolonic microorganisms, caecotrophy, fasting caecotrophy, rabbits, soft pellets

Procedia PDF Downloads 42