Search results for: open data
25182 The Comparison of Safety Factor in Dry and Rainy Condition at Coal Bearing Formation. Case Study: Lahat Area South Sumatera Province, Indonesia
Authors: Teguh Nurhidayat, Nurhamid, Dicky Muslim, Zufialdi Zakaria, Irvan Sophian
Abstract:
This paper presents the role of climate change as the factor that induces landslide. Case study is located at Lahat Regency, South Sumatera Province, Indonesia. Study area has high economic value of coal reserves (mostly subbituminous – bituminous), which is developable for open pit coal mining in the future. Seams are found in Muara Enim Formation. This formation is at south Sumatera basin which is formed at Tertiary as a result of collision between the indian plate and eurasian plate. South Sumatera basin which is a basin located in back arc basin. This study aims to unravel the relationship between slope stability with different season condition in tropical climate. Undisturbed soil samples were obtained in the field along with other geological data. Laboratory works were carried out to obtain physical and mechanical properties of soils. Methodology to analyze slope stability is bishop method. Bishop methods are used to identify safety factor of slope. Result shows that slopes in rainy season conditions are more prone to landslides than in dry season. In the dry seasons with moisture content is 22.65%, safety factor is 1.28 the slope in stable condition. If rain is approaching with moisture content increasing to 97.8%, the slope began to be critical. On wet condition groundwater levels is increased, followed by γ (unit weight), c (cohesion), and φ (angle of friction) at 18.04, 5,88 kN/m2, and 28,04°, respectively, which ultimately determines the security factor FS to be 1.01 (slope in unstable conditions).Keywords: rainfall, moisture content, slope analysis, landslide prone
Procedia PDF Downloads 31525181 Influence of Thickness on Electrical and Structural Properties of Zinc Oxide (ZnO) Thin Films Prepared by RF Sputtering Technique
Authors: M. Momoh, S. Abdullahi, A. U. Moreh
Abstract:
Zinc oxide (ZnO) thin films were prepared on corning (7059) glass substrates at a thickness of 75.5 and 130.5 nm by RF sputtering technique. The deposition was carried out at room temperature after which the samples were annealed in open air at 150°C. The electrical and structural properties of these films were studied. The electrical properties of the films were monitored by four-point probe method while the structural properties were studied by X-ray diffraction (XRD). It was found that the electrical resistance of the films decreases with increase in the thickness of the films. The XRD analysis of the films showed that the films have a peak located at 34.31°-34.35° with hkl (002). Other parameters calculated include the stress (σ) and the grain size (D).Keywords: electrical properties, film thickness, structural properties, zinc oxide
Procedia PDF Downloads 37925180 Environmental Implications of Groundwater Quality in Irrigated Agriculture in Kebbi State, Nigeria
Authors: O. I. Ojo, W. B. R. Graham, I. W. Pishiria
Abstract:
The quality of groundwater used for irrigation in Kebbi State, northwestern Nigeria was evaluated. Open-well, tube-well and borehole water samples were collected from various locations in the State. The water samples analyzed had pH values below the normal range for irrigation water and very low to moderate salinity (electrical conductivity 0.05-0.82 dS.m-1). The adjusted sodium adsorption ratio values in all the samples were also very low (<0.2), indicating very low sodicity hazards. However, irrigation water of very low salinity (<0.2dS.m-1) and low SAR can lead to problems of infiltration into soils. The Ca: Mg ratio (<1) in most of the samples may lead to Ca deficiency in soils after long term use. The nitrate concentration in most of the samples was high ranging from 4.5 to >50mg/L.Keywords: ground water quality, irrigation, characteristics, soil drainage, salinity, Fadama
Procedia PDF Downloads 28625179 Non-Linear Causality Inference Using BAMLSS and Bi-CAM in Finance
Authors: Flora Babongo, Valerie Chavez
Abstract:
Inferring causality from observational data is one of the fundamental subjects, especially in quantitative finance. So far most of the papers analyze additive noise models with either linearity, nonlinearity or Gaussian noise. We fill in the gap by providing a nonlinear and non-gaussian causal multiplicative noise model that aims to distinguish the cause from the effect using a two steps method based on Bayesian additive models for location, scale and shape (BAMLSS) and on causal additive models (CAM). We have tested our method on simulated and real data and we reached an accuracy of 0.86 on average. As real data, we considered the causality between financial indices such as S&P 500, Nasdaq, CAC 40 and Nikkei, and companies' log-returns. Our results can be useful in inferring causality when the data is heteroskedastic or non-injective.Keywords: causal inference, DAGs, BAMLSS, financial index
Procedia PDF Downloads 15125178 Managing Incomplete PSA Observations in Prostate Cancer Data: Key Strategies and Best Practices for Handling Loss to Follow-Up and Missing Data
Authors: Madiha Liaqat, Rehan Ahmed Khan, Shahid Kamal
Abstract:
Multiple imputation with delta adjustment is a versatile and transparent technique for addressing univariate missing data in the presence of various missing mechanisms. This approach allows for the exploration of sensitivity to the missing-at-random (MAR) assumption. In this review, we outline the delta-adjustment procedure and illustrate its application for assessing the sensitivity to deviations from the MAR assumption. By examining diverse missingness scenarios and conducting sensitivity analyses, we gain valuable insights into the implications of missing data on our analyses, enhancing the reliability of our study's conclusions. In our study, we focused on assessing logPSA, a continuous biomarker in incomplete prostate cancer data, to examine the robustness of conclusions against plausible departures from the MAR assumption. We introduced several approaches for conducting sensitivity analyses, illustrating their application within the pattern mixture model (PMM) under the delta adjustment framework. This proposed approach effectively handles missing data, particularly loss to follow-up.Keywords: loss to follow-up, incomplete response, multiple imputation, sensitivity analysis, prostate cancer
Procedia PDF Downloads 8925177 Vibration-Based Data-Driven Model for Road Health Monitoring
Authors: Guru Prakash, Revanth Dugalam
Abstract:
A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.Keywords: SVM, data-driven, road health monitoring, pot-hole
Procedia PDF Downloads 8625176 General Architecture for Automation of Machine Learning Practices
Authors: U. Borasi, Amit Kr. Jain, Rakesh, Piyush Jain
Abstract:
Data collection, data preparation, model training, model evaluation, and deployment are all processes in a typical machine learning workflow. Training data needs to be gathered and organised. This often entails collecting a sizable dataset and cleaning it to remove or correct any inaccurate or missing information. Preparing the data for use in the machine learning model requires pre-processing it after it has been acquired. This often entails actions like scaling or normalising the data, handling outliers, selecting appropriate features, reducing dimensionality, etc. This pre-processed data is then used to train a model on some machine learning algorithm. After the model has been trained, it needs to be assessed by determining metrics like accuracy, precision, and recall, utilising a test dataset. Every time a new model is built, both data pre-processing and model training—two crucial processes in the Machine learning (ML) workflow—must be carried out. Thus, there are various Machine Learning algorithms that can be employed for every single approach to data pre-processing, generating a large set of combinations to choose from. Example: for every method to handle missing values (dropping records, replacing with mean, etc.), for every scaling technique, and for every combination of features selected, a different algorithm can be used. As a result, in order to get the optimum outcomes, these tasks are frequently repeated in different combinations. This paper suggests a simple architecture for organizing this largely produced “combination set of pre-processing steps and algorithms” into an automated workflow which simplifies the task of carrying out all possibilities.Keywords: machine learning, automation, AUTOML, architecture, operator pool, configuration, scheduler
Procedia PDF Downloads 5825175 School-Based Oral Assessment in Malaysian Schools
Authors: Sedigheh Abbasnasab Sardareh
Abstract:
The current study investigates ESL teachers' voices in order to formulate further research on the effectiveness of the SBOA practices. It is an attempt to find out (1) what are ESL experienced teachers’ perceptions, experiences, attitudes, and beliefs of SBOA; (2) what teaching and learning aspects of SBOA needs focus to enhance its effectiveness; (3) external issues related to the implementation of SBOA; (4) internal issues related to the implementation of SBOA; and also (5) perceived recommendations on SBOA. The study utilized focus group discussion sessions. 9 experienced ESL (5 females and 4 males) teachers were selected based on the consent letters sent to them. These teachers had over 20 years experience in both traditional and SBOA-type assessment and the train-the-trainer experts recommended by the Ministry of Education. Respondents were guided with open-ended questions to extracts their perceived experiences implementing SBOA guided structurally by the author as the moderator. Data were first discussed with the respondents for further clarifications and then only analyzed and re-confirmed with some recommendations before the final presentation of this preliminary results were presented here. The focus group discussions yielded some important perceived views on the SBOA implementation. Some of the themes were discussed and some recommendations were proposed for further in-depth study by the Ministry of Education. Some of the future directions based on the results were also put forward. Some external and internal variables were important in order for successful implementation of SBOA. Mere implementing a policy should be taken into consideration because this might impede some of the teaching and learning processes both by the classroom stakeholders such as teachers and student. More research methods such as the use of questionnaires could be utilized to further investigate to large populations of teacher educators in Malaysia.Keywords: school based oral assessment, Malaysia, ESL, focus group discussion
Procedia PDF Downloads 32525174 Collaboration of Game Based Learning with Models Roaming the Stairs Using the Tajribi Method on the Eye PAI Lessons at the Ummul Mukminin Islamic Boarding School, Makassar South Sulawesi
Authors: Ratna Wulandari, Shahidin
Abstract:
This article aims to see how the Game Based Learning learning model with the Roaming The Stairs game makes a tajribi method can make PAI lessons active and interactive learning. This research uses a qualitative approach with a case study type of research. Data collection methods were carried out using interviews, observation, and documentation. Data analysis was carried out through the stages of data reduction, data display, and verification and drawing conclusions. The data validity test was carried out using the triangulation method. and drawing conclusions. The results of the research show that (1) children in grades 9A, 9B, and 9C like learning PAI using the Roaming The Stairs game (2) children in grades 9A, 9B, and 9C are active and can work in groups to solve problems in the Roaming The Stairs game (3) the class atmosphere becomes fun with learning method, namely learning while playing.Keywords: game based learning, Roaming The Stairs, Tajribi PAI
Procedia PDF Downloads 2225173 Wedding Organizer Strategy in the Era Covid-19 Pandemic In Surabaya, Indonesia
Authors: Rifky Cahya Putra
Abstract:
At this time of corona makes some countries affected difficult. As a result, many traders or companies are difficult to work in this pandemic era. So human activities in some fields must implement a new lifestyle or known as new normal. The transition from the one activity to another certainly requires high adaptation. So that almost in all sectors experience the impact of this phase, on of which is the wedding organizer. This research aims to find out what strategies are used so that the company can run in this pandemic. Techniques in data collection in the form interview to the owner of the wedding organizer and his team. Data analysis qualitative descriptive use interactive model analysis consisting of three main things, namely data reduction, data presentaion, and conclusion. For the result of the interview, the conclusion is that there are three strategies consisting of social media, sponsorship, and promotion.Keywords: strategy, wedding organizer, pandemic, indonesia
Procedia PDF Downloads 13525172 Preparation of Papers: Impacts of COVIDSAFE Practices and CO₂ Feedback Devices on Indoor Air Quality in Classrooms
Authors: Chun Yu, Tahlia M. Farrant, Max G. Marschall
Abstract:
Most of Australia’s school classrooms are equipped with operable windows and occupant-controlled air-conditioners that do not provide fresh air. This can result in insufficient ventilation and high indoor CO₂ levels, which comes at a detriment to occupant productivity and health. This paper reports on the results of an in-situ study capturing indoor CO₂ levels in classrooms at a school in Victoria, Australia. The study consisted of 3 measurement periods: First, CO₂ levels pre-pandemic were measured, finding that the readings exceeded the recommended ASHRAE threshold of 1000 ppm more than 50% of the time, with levels often rising as high as 5000 ppm. Then, after the staff had been informed of the poor indoor air quality and the Victorian government had put COVIDSAFE measures in place, a second data set was captured; the impact was significant, with now only about 30% of readings above the ASHRAE threshold, and values rarely exceeding 2500 ppm. Finally, devices were installed that gave the occupants visual feedback when CO₂ levels were high, thus prompting them to open the windows; this further improved the air quality, with now less than 20% of readings above the threshold and values rarely exceeding 1500 ppm. The study suggests that, while relying on occupants to operate windows can lead to poor indoor air quality due to insufficient ventilation, it is possible to considerably influence occupant behavior through education and feedback devices. While these interventions alone did not mitigate the problem of inadequate ventilation entirely, they were sufficient to keep CO₂ levels within a generally healthy range. Considering the large energy savings that are possible by foregoing mechanical ventilation, it is evident that natural ventilation is a feasible operation method for school buildings in temperate climates, as long as classrooms are equipped with CO₂ feedback devices.Keywords: COVID, CO₂, education, feedback devices, health, indoor air quality, natural ventilation, occupant behaviour
Procedia PDF Downloads 10825171 The Racism Found in Capitalism’s Poetry
Authors: Rich Murphy
Abstract:
‘The Racism Found in Capitalism’s Poetry’ claims that since the death of philosophy and the end of art modern poetry has been upstaged by capitalist poetry using similar strategies and techniques; while both sublime moments use spectacle one is more effective. The essay also claims that capitalist poetry is open to racism and analyzes KFC advertising campaign to produce evidence of wide spread acceptance in an era of ‘micro-aggressions’ and confederate flag removals. The essay spends considerable time outlining the history of advertising and the weak literary counters to it that inevitably lent its assistance in education. The essay also suggests that the concept of ‘Enormous Irony’ may be the only way to counter. However, as long as capitalism is the method of the economy and governance, the essay suggests, there was little hope in spite of Obama’s election.Keywords: modern poetry, advertising, Kentucky fried chicken, capitalism, poetry
Procedia PDF Downloads 25425170 Research on Routing Protocol in Ship Dynamic Positioning Based on WSN Clustering Data Fusion System
Authors: Zhou Mo, Dennis Chow
Abstract:
In the dynamic positioning system (DPS) for vessels, the reliable information transmission between each note basically relies on the wireless protocols. From the perspective of cluster-based routing pro-tocols for wireless sensor networks, the data fusion technology based on the sleep scheduling mechanism and remaining energy in network layer is proposed, which applies the sleep scheduling mechanism to the routing protocols, considering the remaining energy of node and location information when selecting cluster-head. The problem of uneven distribution of nodes in each cluster is solved by the Equilibrium. At the same time, Classified Forwarding Mechanism as well as Redelivery Policy strategy is adopted to avoid congestion in the transmission of huge amount of data, reduce the delay in data delivery and enhance the real-time response. In this paper, a simulation test is conducted to improve the routing protocols, which turns out to reduce the energy consumption of nodes and increase the efficiency of data delivery.Keywords: DPS for vessel, wireless sensor network, data fusion, routing protocols
Procedia PDF Downloads 46725169 Navigating Shadows: Examining a Moderation Mediation model of Punitive supervision, Innovative Work Behavior and Employee’s Knowledge Hiding
Authors: Sadia Anwara, Weng Qingxionga, Jahan Zeb Aslamb
Abstract:
Drawing on the Conservation of Resources Theory and Theory of Displaced Aggression, current research study aims to explore the impact of an emerging destructive leadership style i.e., Punitive Supervision on the Employees’ Innovative Work Behavior (IWB) and Employee’s Knowledge Hiding (EKH) within the hospitality sector of Pakistan. This paper further elaborates the underlying mechanism by introducing job security as the mediator and Perceived Organisational Support (POS) as the coping mechanism to manage the deteriorating effects of Punitive supervision on the IWS and EKH. Two wave data (N=267) was obtained from the frontline employees of the hospitality sector of Pakistan in order to test the hypothesized moderation mediation model. Study findings unveiled that, punitive supervision negatively affects employees' innovative work behavior (IWB) and increases employee’s knowledge hiding (EKH), with job insecurity serving as a significant mediator in these relationships. Specifically, punitive supervision increases employees' perceptions of job insecurity, decreasing their innovative work behaviors and increasing their tendencies to engage in knowledge hiding. From a managerial perspective, this research study suggests that managers must evaluate their behavior and leadership style to prevent the drastic effect of dark leadership on the employee’s IWB and EKH. In addition, organizations must strive to foster an organizational culture of trust and open communication to reduce job insecurity. Employees should receive sufficient training and development opportunities to reduce job insecurity, while clear performance expectations and constructive feedback should be encouraged to help them excel.Keywords: punitive supervision, job insecurity, perceived organisational support, innovative work behavior, knowledge hiding
Procedia PDF Downloads 2425168 MapReduce Algorithm for Geometric and Topological Information Extraction from 3D CAD Models
Authors: Ahmed Fradi
Abstract:
In a digital world in perpetual evolution and acceleration, data more and more voluminous, rich and varied, the new software solutions emerged with the Big Data phenomenon offer new opportunities to the company enabling it not only to optimize its business and to evolve its production model, but also to reorganize itself to increase competitiveness and to identify new strategic axes. Design and manufacturing industrial companies, like the others, face these challenges, data represent a major asset, provided that they know how to capture, refine, combine and analyze them. The objective of our paper is to propose a solution allowing geometric and topological information extraction from 3D CAD model (precisely STEP files) databases, with specific algorithm based on the programming paradigm MapReduce. Our proposal is the first step of our future approach to 3D CAD object retrieval.Keywords: Big Data, MapReduce, 3D object retrieval, CAD, STEP format
Procedia PDF Downloads 54125167 Effect of Waste Dumping on Groundwater Quality at Guntun Layi Funtua, Katsina State
Authors: Isiya Aminu Dabai, Adebola Kayode, Adeosun Kayode Daniel
Abstract:
Rural water supply relies mainly on groundwater exploitation, because it is more accessible, reliable, cheaper to develop and maintain, also with good quality compared to the surface water. Despite these advantages, groundwater has come under pollution threats like waste dumps, mineral exploitation, industrialization etc. This study investigates the effects of an open dumping to the surrounding groundwater. Ten hand dug well water samples were collected from the surroundings and tested. The average result shows that temperature, colour and turbidity to be 8.50 c, 6.1 TCU and 3.1 NTU respectively and pH, conductivity, total dissolved solids, chloride content and hardness to be 7.2, 4.78, 1.8, 5.7, and 3.4 respectively while in the bacteriological test well no. 1, 2, 3, and 5 shows the presence of coliforms and E. Coli bacteria.Keywords: groundwater, pollution, waste, dump site, unsafe, quality
Procedia PDF Downloads 68125166 Data Hiding in Gray Image Using ASCII Value and Scanning Technique
Authors: R. K. Pateriya, Jyoti Bharti
Abstract:
This paper presents an approach for data hiding methods which provides a secret communication between sender and receiver. The data is hidden in gray-scale images and the boundary of gray-scale image is used to store the mapping information. In this an approach data is in ASCII format and the mapping is in between ASCII value of hidden message and pixel value of cover image, since pixel value of an image as well as ASCII value is in range of 0 to 255 and this mapping information is occupying only 1 bit per character of hidden message as compared to 8 bit per character thus maintaining good quality of stego image.Keywords: ASCII value, cover image, PSNR, pixel value, stego image, secret message
Procedia PDF Downloads 41625165 DCASH: Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y Synchronizing Mobile Database Systems
Authors: Gunasekaran Raja, Kottilingam Kottursamy, Rajakumar Arul, Ramkumar Jayaraman, Krithika Sairam, Lakshmi Ravi
Abstract:
The synchronization server maintains a dynamically changing cache, which contains the data items which were requested and collected by the mobile node from the server. The order and presence of tuples in the cache changes dynamically according to the frequency of updates performed on the data, by the server and client. To synchronize, the data which has been modified by client and the server at an instant are collected, batched together by the type of modification (insert/ update/ delete), and sorted according to their update frequencies. This ensures that the DCASH (Dynamic Cache Synchronization Algorithm for Heterogeneous Reverse Y synchronizing Mobile Database Systems) gives priority to the frequently accessed data with high usage. The optimal memory management algorithm is proposed to manage data items according to their frequency, theorems were written to show the current mobile data activity is reverse Y in nature and the experiments were tested with 2g and 3g networks for various mobile devices to show the reduced response time and energy consumption.Keywords: mobile databases, synchronization, cache, response time
Procedia PDF Downloads 40625164 Unified Structured Process for Health Analytics
Authors: Supunmali Ahangama, Danny Chiang Choon Poo
Abstract:
Health analytics (HA) is used in healthcare systems for effective decision-making, management, and planning of healthcare and related activities. However, user resistance, the unique position of medical data content, and structure (including heterogeneous and unstructured data) and impromptu HA projects have held up the progress in HA applications. Notably, the accuracy of outcomes depends on the skills and the domain knowledge of the data analyst working on the healthcare data. The success of HA depends on having a sound process model, effective project management and availability of supporting tools. Thus, to overcome these challenges through an effective process model, we propose an HA process model with features from the rational unified process (RUP) model and agile methodology.Keywords: agile methodology, health analytics, unified process model, UML
Procedia PDF Downloads 50625163 Use of Life Cycle Data for State-Oriented Maintenance
Authors: Maximilian Winkens, Matthias Goerke
Abstract:
The state-oriented maintenance enables the preventive intervention before the failure of a component and guarantees avoidance of expensive breakdowns. Because the timing of the maintenance is defined by the component’s state, the remaining service life can be exhausted to the limit. The basic requirement for the state-oriented maintenance is the ability to define the component’s state. New potential for this is offered by gentelligent components. They are developed at the Corporative Research Centre 653 of the German Research Foundation (DFG). Because of their sensory ability they enable the registration of stresses during the component’s use. The data is gathered and evaluated. The methodology developed determines the current state of the gentelligent component based on the gathered data. This article presents this methodology as well as current research. The main focus of the current scientific work is to improve the quality of the state determination based on the life-cycle data analysis. The methodology developed until now evaluates the data of the usage phase and based on it predicts the timing of the gentelligent component’s failure. The real failure timing though, deviate from the predicted one because the effects from the production phase aren’t considered. The goal of the current research is to develop a methodology for state determination which considers both production and usage data.Keywords: state-oriented maintenance, life-cycle data, gentelligent component, preventive intervention
Procedia PDF Downloads 49525162 Hamiltonian Related Properties with and without Faults of the Dual-Cube Interconnection Network and Their Variations
Authors: Shih-Yan Chen, Shin-Shin Kao
Abstract:
In this paper, a thorough review about dual-cubes, DCn, the related studies and their variations are given. DCn was introduced to be a network which retains the pleasing properties of hypercube Qn but has a much smaller diameter. In fact, it is so constructed that the number of vertices of DCn is equal to the number of vertices of Q2n +1. However, each vertex in DCn is adjacent to n + 1 neighbors and so DCn has (n + 1) × 2^2n edges in total, which is roughly half the number of edges of Q2n+1. In addition, the diameter of any DCn is 2n +2, which is of the same order of that of Q2n+1. For selfcompleteness, basic definitions, construction rules and symbols are provided. We chronicle the results, where eleven significant theorems are presented, and include some open problems at the end.Keywords: dual-cubes, dual-cube extensive networks, dual-cube-like networks, hypercubes, fault-tolerant hamiltonian property
Procedia PDF Downloads 47025161 Social Enterprises in India: Conceptualization and Challenges
Authors: Prajakta Khare
Abstract:
There is a huge number of social enterprises operating in India, across all enterprise sizes and forms addressing diverse social issues. Some cases such as such as Aravind eye care, Narayana Hridalaya, SEWA have been studied extensively in management literature and are known cases in social entrepreneurship. But there are several smaller social enterprises in India that are not called so per se due to the lack of understanding of the concept. There is a lack of academic research on social entrepreneurship in India and the term ‘social entrepreneurship’ is not yet widely known in the country, even by people working in this field as was found by this study. The present study aims to identify the most prominent form of social enterprises in India, the profile of the entrepreneurs, challenges faced, the lessons (theory and practices) emerging from their functioning and finally the factors contributing to the enterprises’ success. This is a preliminary exploratory study using primary data from 30 social enterprises in India. The study used snow ball sampling and a qualitative analysis. Data was collected from founders of social enterprises through written structured questionnaires, open-ended interviews and field visits to enterprises. The sample covered enterprises across sectors such as environment, affordable education, children’s rights, rain water harvesting, women empowerment etc. The interview questions focused on founder’s background and motivation, qualifications, funding, challenges, founder’s understanding and perspectives on social entrepreneurship, government support, linkages with other organizations etc. apart from several others. The interviews were conducted across 3 languages - Hindi, Marathi, English and were then translated and transcribed. 50% of founders were women and 65% of the total founders were highly qualified with a MBA, PhD or MBBS. The most important challenge faced by these entrepreneurs is recruiting skilled people. When asked about their understanding of the term, founders had diverse perspectives. Also, their understandings about the term social enterprise and social entrepreneur were extremely varied. Some founders identified the terms with doing something good for the society, some thought that every business can be called a social enterprise. 35% of the founders were not aware of the term social entrepreneur/ social entrepreneurship. They said that they could identify themselves as social entrepreneurs after discussions with the researcher. The general perception in India is that ‘NGOs are corrupt’- fighting against this perception to secure funds is also another problem as pointed out by some founders. There are unique challenges that social entrepreneurs in India face, as the political, social, economic environment around them is rapidly changing; and getting adequate support from the government is a problem. The research in its subsequent stages aims to clarify existing, missing and new definitions of the term to provide deeper insights in the terminology and issues relating to Social Entrepreneurship in India.Keywords: challenges, India, social entrepreneurship, social entrepreneurs
Procedia PDF Downloads 46725160 A Hybrid System for Boreholes Soil Sample
Authors: Ali Ulvi Uzer
Abstract:
Data reduction is an important topic in the field of pattern recognition applications. The basic concept is the reduction of multitudinous amounts of data down to the meaningful parts. The Principal Component Analysis (PCA) method is frequently used for data reduction. The Support Vector Machine (SVM) method is a discriminative classifier formally defined by a separating hyperplane. In other words, given labeled training data, the algorithm outputs an optimal hyperplane which categorizes new examples. This study offers a hybrid approach that uses the PCA for data reduction and Support Vector Machines (SVM) for classification. In order to detect the accuracy of the suggested system, two boreholes taken from the soil sample was used. The classification accuracies for this dataset were obtained through using ten-fold cross-validation method. As the results suggest, this system, which is performed through size reduction, is a feasible system for faster recognition of dataset so our study result appears to be very promising.Keywords: feature selection, sequential forward selection, support vector machines, soil sample
Procedia PDF Downloads 45525159 Predicting Customer Purchasing Behaviour in Retail Marketing: A Research for a Supermarket Chain
Authors: Sabri Serkan Güllüoğlu
Abstract:
Analysis can be defined as the process of gathering, recording and researching data related to products and services, in order to learn something. But for marketers, analyses are not only used for learning but also an essential and critical part of the business, because this allows companies to offer products or services which are focused and well targeted. Market analysis also identify market trends, demographics, customer’s buying habits and important information on the competition. Data mining is used instead of traditional research, because it extracts predictive information about customer and sales from large databases. In contrast to traditional research, data mining relies on information that is already available. Simply the goal is to improve the efficiency of supermarkets. In this study, the purpose is to find dependency on products. For instance, which items are bought together, using association rules in data mining. Moreover, this information will be used for improving the profitability of customers such as increasing shopping time and sales of fewer sold items.Keywords: data mining, association rule mining, market basket analysis, purchasing
Procedia PDF Downloads 48325158 Predicting Medical Check-Up Patient Re-Coming Using Sequential Pattern Mining and Association Rules
Authors: Rizka Aisha Rahmi Hariadi, Chao Ou-Yang, Han-Cheng Wang, Rajesri Govindaraju
Abstract:
As the increasing of medical check-up popularity, there are a huge number of medical check-up data stored in database and have not been useful. These data actually can be very useful for future strategic planning if we mine it correctly. In other side, a lot of patients come with unpredictable coming and also limited available facilities make medical check-up service offered by hospital not maximal. To solve that problem, this study used those medical check-up data to predict patient re-coming. Sequential pattern mining (SPM) and association rules method were chosen because these methods are suitable for predicting patient re-coming using sequential data. First, based on patient personal information the data was grouped into … groups then discriminant analysis was done to check significant of the grouping. Second, for each group some frequent patterns were generated using SPM method. Third, based on frequent patterns of each group, pairs of variable can be extracted using association rules to get general pattern of re-coming patient. Last, discussion and conclusion was done to give some implications of the results.Keywords: patient re-coming, medical check-up, health examination, data mining, sequential pattern mining, association rules, discriminant analysis
Procedia PDF Downloads 64025157 Continual Learning Using Data Generation for Hyperspectral Remote Sensing Scene Classification
Authors: Samiah Alammari, Nassim Ammour
Abstract:
When providing a massive number of tasks successively to a deep learning process, a good performance of the model requires preserving the previous tasks data to retrain the model for each upcoming classification. Otherwise, the model performs poorly due to the catastrophic forgetting phenomenon. To overcome this shortcoming, we developed a successful continual learning deep model for remote sensing hyperspectral image regions classification. The proposed neural network architecture encapsulates two trainable subnetworks. The first module adapts its weights by minimizing the discrimination error between the land-cover classes during the new task learning, and the second module tries to learn how to replicate the data of the previous tasks by discovering the latent data structure of the new task dataset. We conduct experiments on HSI dataset Indian Pines. The results confirm the capability of the proposed method.Keywords: continual learning, data reconstruction, remote sensing, hyperspectral image segmentation
Procedia PDF Downloads 26625156 Local Differential Privacy-Based Data-Sharing Scheme for Smart Utilities
Authors: Veniamin Boiarkin, Bruno Bogaz Zarpelão, Muttukrishnan Rajarajan
Abstract:
The manufacturing sector is a vital component of most economies, which leads to a large number of cyberattacks on organisations, whereas disruption in operation may lead to significant economic consequences. Adversaries aim to disrupt the production processes of manufacturing companies, gain financial advantages, and steal intellectual property by getting unauthorised access to sensitive data. Access to sensitive data helps organisations to enhance the production and management processes. However, the majority of the existing data-sharing mechanisms are either susceptible to different cyber attacks or heavy in terms of computation overhead. In this paper, a privacy-preserving data-sharing scheme for smart utilities is proposed. First, a customer’s privacy adjustment mechanism is proposed to make sure that end-users have control over their privacy, which is required by the latest government regulations, such as the General Data Protection Regulation. Secondly, a local differential privacy-based mechanism is proposed to ensure the privacy of the end-users by hiding real data based on the end-user preferences. The proposed scheme may be applied to different industrial control systems, whereas in this study, it is validated for energy utility use cases consisting of smart, intelligent devices. The results show that the proposed scheme may guarantee the required level of privacy with an expected relative error in utility.Keywords: data-sharing, local differential privacy, manufacturing, privacy-preserving mechanism, smart utility
Procedia PDF Downloads 7725155 Changes in the Subjective Interpretation of Poverty Due to COVID-19: The Case of a Peripheral County of Hungary
Authors: Eszter Siposne Nandori
Abstract:
The paper describes how the subjective interpretation of poverty changed during the COVID-19 pandemic. The results of data collection at the end of 2020 are compared to the results of a similar survey from 2019. The methods of systematic data collection are used to collect data about the beliefs of the population about poverty. The analysis is carried out in Borsod-Abaúj-Zemplén County, one of the most backward areas in Hungary. The paper concludes that poverty is mainly linked to material values, and it did not change from 2019 to 2020. Some slight changes, however, highlight the effect of the pandemic: poverty is increasingly seen as a generational problem in 2020, and another important change is that isolation became more closely related to poverty.Keywords: Hungary, interpretation of poverty, pandemic, systematic data collection, subjective poverty
Procedia PDF Downloads 12725154 Collaborative Team Work in Higher Education: A Case Study
Authors: Swapna Bhargavi Gantasala
Abstract:
If teamwork is the key to organizational learning, productivity, and growth, then, why do some teams succeed in achieving these, while others falter at different stages? Building teams in higher education institutions has been a challenge and an open-ended constructivist approach was considered on an experimental basis for this study to address this challenge. For this research, teams of students from the MBA program were chosen to study the effect of teamwork in learning, the motivation levels among student team members, and the effect of collaboration in achieving team goals. The teams were built on shared vision and goals, cohesion was ensured, positive induction in the form of faculty mentoring was provided for each participating team and the results have been presented with conclusions and suggestions.Keywords: teamwork, leadership, motivation and reinforcement, collaboration
Procedia PDF Downloads 37725153 An Encapsulation of a Navigable Tree Position: Theory, Specification, and Verification
Authors: Nicodemus M. J. Mbwambo, Yu-Shan Sun, Murali Sitaraman, Joan Krone
Abstract:
This paper presents a generic data abstraction that captures a navigable tree position. The mathematical modeling of the abstraction encapsulates the current tree position, which can be used to navigate and modify the tree. The encapsulation of the tree position in the data abstraction specification avoids the use of explicit references and aliasing, thereby simplifying verification of (imperative) client code that uses the data abstraction. To ease the tasks of such specification and verification, a general tree theory, rich with mathematical notations and results, has been developed. The paper contains an example to illustrate automated verification ramifications. With sufficient tree theory development, automated proving seems plausible even in the absence of a special-purpose tree solver.Keywords: automation, data abstraction, maps, specification, tree, verification
Procedia PDF Downloads 166