Search results for: Fourier neural operator
1177 Gum Arabic-Coated Magnetic Nanoparticles for Methylene Blue Removal
Authors: Eman Alzahrani
Abstract:
Magnetic nanoparticles (MNPs) were fabricated using the chemical co-precipitation method followed by coating the surface of magnetic Fe3O4 nanoparticles with gum arabic (GA). The fabricated magnetic nanoparticles were characterised using transmission electron microscopy (TEM) which showed that the Fe3O4 nanoparticles and GA-MNPs nanoparticles had a mean diameter of 33 nm, and 38 nm, respectively. Scanning electron microscopy (SEM) images showed that the MNPs modified with GA had homogeneous structure and agglomerated. The energy dispersive X-ray spectroscopy (EDAX) spectrum showed strong peaks of Fe and O. X-ray diffraction patterns (XRD) indicated that the naked magnetic nanoparticles were pure Fe3O4 with a spinel structure and the covering of GA did not result in a phase change. The covering of GA on the magnetic nanoparticles was also studied by BET analysis, and Fourier transform infrared spectroscopy. Moreover, the present study reports a fast and simple method for removal and recovery of methylene blue dye (MB) from aqueous solutions by using the synthesised magnetic nanoparticles modified with gum arabic as adsorbent. The experimental results show that the adsorption process attains equilibrium within five minutes. The data fit the Langmuir isotherm equation and the maximum adsorption capacities were 8.77 mg mg-1 and 14.3 mg mg-1 for MNPs and GA-MNPs, respectively. The results indicated that the homemade magnetic nanoparticles were quite efficient for removing MB and will be a promising adsorbent for the removal of harmful dyes from waste-water.Keywords: Fe3O4 magnetic nanoparticles, gum arabic, co-precipitation, adsorption dye, methylene blue, adsorption isotherm
Procedia PDF Downloads 4321176 Green Synthesis and Characterization of Zinc and Ferrous Nanoparticles for Their Potent Therapeutic Approach
Authors: Mukesh Saran, Ashima Bagaria
Abstract:
Green nanotechnology is the most researched field in the current scenario. Herein we study the synthesis of Zinc and Ferrous nanoparticles using Moringa oleifera leaf extracts. Our protocol using established protocols heat treatment of plant extracts along with the solution of copper sulphate in the ratio of 1:1. The leaf extracts of Moringa oleifera were prepared in deionized water. Copper sulfate solution (1mM) was added to this, and the change in color of the solution was observed indicating the formation of Cu nanoparticles. The as biosynthesized Cu nanoparticles were characterized with the help of Scanning Electron Microscopy (SEM), and Fourier Transforms Infrared Spectroscopy (FTIR). It was observed that the leaf extracts of Moringa oleifera can reduce copper ions into copper nanoparticles within 8 to 10 min of reaction time. The method thus can be used for rapid and eco-friendly biosynthesis of stable copper nanoparticles. Further, we checked their antimicrobial and antioxidant potential, and it was observed that maximum antioxidant activity was observed for the particles prepared using the heating method. The maximum antibacterial activity was observed in Streptomyces grisveus particles and in Triochoderma Reesei for the maximum antifungal activity. At present, we are engaged in studying the anti-inflammatory activities of these as prepared nanoparticles.Keywords: green synthesis, antibacterial, antioxidant, antifungal, anti-inflammatory
Procedia PDF Downloads 3491175 Cocrystals of Etodolac: A Crystal Engineering Approach with an Endeavor to Enhance Its Biopharmaceutical Assets
Authors: Sakshi Tomar, Renu Chadha
Abstract:
Cocrystallization comprises a selective route to the intensive design of pharmaceutical products with desired physiochemical and pharmacokinetic properties. The present study is focused on the preparation, characterization, and evaluation of etodolac (ET) co-crystals with coformers nicotinamide (ETNI) and Glutaric acid (ETGA), using cocrystallization approach. Preliminarily examination of the prepared co-crystal was done by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (PXRD). DSC thermographs of ETNI and ETGA cocrystals showed single sharp melting endotherms at 144°C and 135°C, respectively, which were different from the melting of drugs and coformers. FT-IR study points towards carbonyl-acid interaction sandwiched between the involving molecules. The emergence of new peaks in the PXRD pattern confirms the formation of new crystalline solid forms. Both the cocrystals exhibited better apparent solubility, and 3.8-5.0 folds increase in IDR were established, as compared to pure etodolac. Evaluations of these solid forms were done using anti-osteoarthritic activities. All the results indicate that etodolac cocrystals possess better anti-osteoarthritic efficacy than free drug. Thus loom of cocrystallization has been found to be a viable approach to resolve the solubility and bioavailability issues that circumvent the use of potential antiosteoarthritic molecules.Keywords: bioavailability, etodolac, nicotinamide, osteoarthritis
Procedia PDF Downloads 2021174 Biosynthesis of Selenium Oxide Nanoparticles by Streptomyces bikiniensis and Its Cytotoxicity as Antitumor Agents against Hepatocellular and Breast Cells Carcinoma
Authors: Maged Syed Ahamd, Manal Mohamed Yasser, Essam Sholkamy
Abstract:
In this paper, we reported that selenium (Se) nanoparticles were firstly biosynthesized with a simple and eco-friendly biological method. Their shape, size, FTIR (Fourier Transform Infrared spectroscopy), UV–vis spectra, TEM (Transmission Electron Microscopy) images and EDS (Energy Dispersive Spectroscopy) pattern have been analyzed. TEM analyses of the samples obtained at different stages indicated that the formation of these Se nanostructures was governed by an incubation time (12- 24- 48 hours). The Se nanoparticles were initially generated and then would transform into crystal seeds for the subsequent growth of nanowires; however obtaining stable Se nanowire with a diameter of about 15-100 nm. EDS shows that Se nanoparticles are entirely pure. The IR spectra showed the peaks at 550 cm-1, 1635 cm-1, 1994 cm-1 and 3430 cm-1 correspond to the presence of Se-O bending and stretching vibrations. The concentrations of Se-NPs (0, 1, 2, 5 µg/ml) did not give significantly effect on both two cell lines while the highest concentrations (10- 100 µg/ml gave significantly effects on them. The lethal dose (ID50%) of Se-NPs on Hep2 G and MCF-7 cells was obtained at 75.96 and 61.86 µg/ml, respectively. Results showed that Se nanoparticles as anticancer agent against MCF-7 cells were more effective than Hep2 G cells. Our results suggest that Se-NPs may be a candidate for further evaluation as a chemotherapeutic agent for breast and liver cancers.Keywords: selenium nanoparticle, Streptomyces bikiniensis, nanowires, chemotherapeutic agent
Procedia PDF Downloads 4451173 Understanding the Conflict Between Ecological Environment and Human Activities in the Process of Urbanization
Authors: Yazhou Zhou, Yong Huang, Guoqin Ge
Abstract:
In the process of human social development, the coupling and coordinated development among the ecological environment(E), production(P), and living functions(L) is of great significance for sustainable development. This study uses an improved coupling coordination degree model (CCDM) to discover the coordination conflict between E and human settlement environment. The main work of this study is as follows: (1) It is found that in the process of urbanization development of Ya 'an city from 2014 to 2018, the degree of coupling (DOC) value between E, P, and L is high, but the coupling coordination degree (CCD) of the three is low, especially the DOC value of E and the other two has the biggest decline. (2) A more objective weight value is obtained, which can avoid the analysis error caused by subjective judgment weight value.Keywords: ecological environment, coupling coordination degree, neural network, sustainable development
Procedia PDF Downloads 821172 Structure Clustering for Milestoning Applications of Complex Conformational Transitions
Authors: Amani Tahat, Serdal Kirmizialtin
Abstract:
Trajectory fragment methods such as Markov State Models (MSM), Milestoning (MS) and Transition Path sampling are the prime choice of extending the timescale of all atom Molecular Dynamics simulations. In these approaches, a set of structures that covers the accessible phase space has to be chosen a priori using cluster analysis. Structural clustering serves to partition the conformational state into natural subgroups based on their similarity, an essential statistical methodology that is used for analyzing numerous sets of empirical data produced by Molecular Dynamics (MD) simulations. Local transition kernel among these clusters later used to connect the metastable states using a Markovian kinetic model in MSM and a non-Markovian model in MS. The choice of clustering approach in constructing such kernel is crucial since the high dimensionality of the biomolecular structures might easily confuse the identification of clusters when using the traditional hierarchical clustering methodology. Of particular interest, in the case of MS where the milestones are very close to each other, accurate determination of the milestone identity of the trajectory becomes a challenging issue. Throughout this work we present two cluster analysis methods applied to the cis–trans isomerism of dinucleotide AA. The choice of nucleic acids to commonly used proteins to study the cluster analysis is two fold: i) the energy landscape is rugged; hence transitions are more complex, enabling a more realistic model to study conformational transitions, ii) Nucleic acids conformational space is high dimensional. A diverse set of internal coordinates is necessary to describe the metastable states in nucleic acids, posing a challenge in studying the conformational transitions. Herein, we need improved clustering methods that accurately identify the AA structure in its metastable states in a robust way for a wide range of confused data conditions. The single linkage approach of the hierarchical clustering available in GROMACS MD-package is the first clustering methodology applied to our data. Self Organizing Map (SOM) neural network, that also known as a Kohonen network, is the second data clustering methodology. The performance comparison of the neural network as well as hierarchical clustering method is studied by means of computing the mean first passage times for the cis-trans conformational rates. Our hope is that this study provides insight into the complexities and need in determining the appropriate clustering algorithm for kinetic analysis. Our results can improve the effectiveness of decisions based on clustering confused empirical data in studying conformational transitions in biomolecules.Keywords: milestoning, self organizing map, single linkage, structure clustering
Procedia PDF Downloads 2241171 Application of Neuro-Fuzzy Technique for Optimizing the PVC Membrane Sensor
Authors: Majid Rezayi, Sh. Shahaboddin, HNM E. Mahmud, A. Yadollah, A. Saeid, A. Yatimah
Abstract:
In this study, the adaptive neuro-fuzzy inference system (ANFIS) was applied to obtain the membrane composition model affecting the potential response of our reported polymeric PVC sensor for determining the titanium (III) ions. The performance statistics of the artificial neural network (ANN) and linear regression models for potential slope prediction of membrane composition of titanium (III) ion selective electrode were compared with ANFIS technique. The results show that the ANFIS model can be used as a practical tool for obtaining the Nerntian slope of the proposed sensor in this study.Keywords: adaptive neuro fuzzy inference, PVC sensor, titanium (III) ions, Nerntian slope
Procedia PDF Downloads 2871170 Synthesize And Physicochemical Characterization Of Biomimetic Scaffold Of Gelatin/zn-incorporated 58s Bioactive Glass
Authors: SeyedMohammad Hosseini, Amirhossein Moghanian
Abstract:
The main purpose of this research was to design a biomimetic system by freeze-drying method for evaluating the effect of adding 5 and 10 mol. % of zinc (Zn)in 58S bioactive glass and gelatin (5ZnBG/G and 10ZnBG/G) in terms of structural and biological changes. The structural analyses of samples were performed by X-Ray Diffraction (XRD), scanning electron microscopy (SEM), and Fourier-transform infrared spectroscopy (FTIR). Also, 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide(MTT) and alkaline phosphate (ALP) activity test were carried out for investigation of MC3T3-E1cell behaviors. The SEM results demonstrated the spherical shape of the formed hydroxyapatite (HA) phases, and also HA characteristic peaks were detected by X-ray diffraction spectroscopy (XRD)after 3 days of immersion in the simulated body fluid (SBF) solution. Meanwhile, FTIR spectra proved that the intensity of P–O peaks for 5ZnBG/G was more than 10ZnBG/G and control samples. Moreover, the results of alkaline phosphatase activity (ALP) test illustrated that the optimal amount of Zn (5ZnBG/G) caused a considerable enhancement in bone cell growth. Taken together, the scaffold with 5 mol.% Zn was introduced as an optimal sample because of its higher biocompatibility, in vitro bioactivity, and growth of MC3T3-E1cellsin in comparison with other samples in bone tissue engineering.Keywords: scaffold, gelatin, modified bioactive glass, alp, bone tissue engineering
Procedia PDF Downloads 941169 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence
Authors: Seyed Sobhan Alvani, Mohammad Gohari
Abstract:
By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.Keywords: traffic index, population growth rate, cities wideness, artificial neural network
Procedia PDF Downloads 411168 Integrated Gesture and Voice-Activated Mouse Control System
Authors: Dev Pratap Singh, Harshika Hasija, Ashwini S.
Abstract:
The project aims to provide a touchless, intuitive interface for human-computer interaction, enabling users to control their computers using hand gestures and voice commands. The system leverages advanced computer vision techniques using the Media Pipe framework and OpenCV to detect and interpret real-time hand gestures, transforming them into mouse actions such as clicking, dragging, and scrolling. Additionally, the integration of a voice assistant powered by the speech recognition library allows for seamless execution of tasks like web searches, location navigation, and gesture control in the system through voice commands.Keywords: gesture recognition, hand tracking, machine learning, convolutional neural networks, natural language processing, voice assistant
Procedia PDF Downloads 101167 Intelligent Control of Bioprocesses: A Software Application
Authors: Mihai Caramihai, Dan Vasilescu
Abstract:
The main research objective of the experimental bioprocess analyzed in this paper was to obtain large biomass quantities. The bioprocess is performed in 100 L Bioengineering bioreactor with 42 L cultivation medium made of peptone, meat extract and sodium chloride. The reactor was equipped with pH, temperature, dissolved oxygen, and agitation controllers. The operating parameters were 37 oC, 1.2 atm, 250 rpm and air flow rate of 15 L/min. The main objective of this paper is to present a case study to demonstrate that intelligent control, describing the complexity of the biological process in a qualitative and subjective manner as perceived by human operator, is an efficient control strategy for this kind of bioprocesses. In order to simulate the bioprocess evolution, an intelligent control structure, based on fuzzy logic has been designed. The specific objective is to present a fuzzy control approach, based on human expert’ rules vs. a modeling approach of the cells growth based on bioprocess experimental data. The kinetic modeling may represent only a small number of bioprocesses for overall biosystem behavior while fuzzy control system (FCS) can manipulate incomplete and uncertain information about the process assuring high control performance and provides an alternative solution to non-linear control as it is closer to the real world. Due to the high degree of non-linearity and time variance of bioprocesses, the need of control mechanism arises. BIOSIM, an original developed software package, implements such a control structure. The simulation study has showed that the fuzzy technique is quite appropriate for this non-linear, time-varying system vs. the classical control method based on a priori model.Keywords: intelligent, control, fuzzy model, bioprocess optimization
Procedia PDF Downloads 3271166 Development of Catalyst from Waste Egg Shell for Biodiesel Production by Using Waste Vegetable Oil
Authors: Victor Chinecherem Ejeke, Raphael Eze Nnam
Abstract:
The main objective of this research is to produce biodiesel from waste vegetable oil using activated eggshell waste as solid catalysts. A transesterification reaction was performed for the conversion to biodiesel. Waste eggshells were calcined at 700°C, 800°C and 900°C for a time period of 3hrs for the preparation of the renewable catalyst. The calcined waste eggshell catalyst was characterized using X-Ray Florescence (XRF) Spectroscopy, which revealed CaO as the major constituent (90.86%); this was further confirmed by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) analyses. The prepared catalyst was used for transesterification reaction and the effects of calcination temperature (700 to 900°C), Deep Eutectic Solvent DES loading (3 to 18 wt. %), Waste Egg Shell (WES) catalyst loading (6 to 14 wt. %) on the conversion to biodiesel were studied. The yield of biodiesel using a waste eggshell catalyst (91%) is comparable to conventional catalyst like sodium hydroxide with a yield of 80-90%. The maximum biodiesel production yield was obtained at a specific oil-to methanol molar ratio of 1:10, a temperature of 65°C and a catalyst loading of 14g-wt%. The biodiesel produced was characterized as being composed of methyl Tetradecanoate (C₁₄H₂₈O₂) 30.92% using the Gas Chromatographic (GC-MS) analysis. The fuel properties of the biodiesel (Flashpoint 138ᵒC) were comparable to commercial diesel, and hence it can be used in compression-ignition engines. The results indicated that the catalysts derived from waste eggshell had high potential to be used as biodiesel production catalysts in transesterification of waste vegetable oil with the advantage of reusability and also not requiring water washing steps.Keywords: waste vegetable oil, catalyst , biodiesel , waste egg shell
Procedia PDF Downloads 2111165 Design and Development of an Algorithm to Predict Fluctuations of Currency Rates
Authors: Nuwan Kuruwitaarachchi, M. K. M. Peiris, C. N. Madawala, K. M. A. R. Perera, V. U. N Perera
Abstract:
Dealing with businesses with the foreign market always took a special place in a country’s economy. Political and social factors came into play making currency rate changes fluctuate rapidly. Currency rate prediction has become an important factor for larger international businesses since large amounts of money exchanged between countries. This research focuses on comparing the accuracy of mainly three models; Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Networks(ANN) and Support Vector Machines(SVM). series of data import, export, USD currency exchange rate respect to LKR has been selected for training using above mentioned algorithms. After training the data set and comparing each algorithm, it was able to see that prediction in SVM performed better than other models. It was improved more by combining SVM and SVR models together.Keywords: ARIMA, ANN, FFNN, RMSE, SVM, SVR
Procedia PDF Downloads 2121164 Valonea Tannin Supported AgCl/ZnO/Fe3O4 Nanocomposite, a Magnetically Separable Photocatalyst with Enhanced Photocatalytic Performance under Visible Light Irradiation
Authors: Nuray Güy, Mahmut Özacar
Abstract:
In the past few decades, considerable attention has been devoted to the photocatalysts for the photocatalytic degradation of environmental pollutants. Many novel nanostructured photocatalysts for wastewater treatment have been investigated, such as TiO2 and, CdS, ZnO and silver halides (AgX, X = Cl, Br, I). The silver halides are photosensitive materials which can absorb photons in the visible region to produce electron–hole pairs. Silver halides are expensive that restricts their applications in large-scale photocatalytic processes. Tannin contains hydroxyl functional groups, it was employed as a modifier to improve the surface properties and adsorption capacity of the activated carbon towards the metal cations uptake. In this work, we designed a new structure of magnetically separable photocatalyst that combines AgCl/ZnO nanoparticles with Fe3O4 nanoparticles deposited on tannin, which was denoted as (AgI/ZnO)-Fe3O4/Tannin. The as-prepared products are characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), Fourier transform infrared (FTIR), diffuse reflectance spectra (DRS) and vibrating sample magnetometer (VSM). The photocatalyst exhibited high activity degrading a textile dye under visible light irradiation. Moreover, the excellent magnetic property gives a more convenient way to recycle the photocatalysts.Keywords: AgI/ZnO-Fe3O4/Tannin, visible light, magnetically separable, photocatalyst
Procedia PDF Downloads 2171163 Path Planning for Collision Detection between two Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
This study aimed to propose, a different architecture of a Path Planning using the NECMOP. where several nonlinear objective functions must be optimized in a conflicting situation. The ability to detect and avoid collision is very important for mobile intelligent machines. However, many artificial vision systems are not yet able to quickly and cheaply extract the wealth information. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons linear and threshold logic, which simplified the actual implementation of all the networks proposed. This article represents a comprehensive algorithm that determine through the AMAXNET network a measure (a mini-maximum point) in a fixed time, which allows us to detect the presence of a potential collision.Keywords: path planning, collision detection, convex polyhedron, neural network
Procedia PDF Downloads 4381162 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection
Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya
Abstract:
Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.Keywords: carbon nanotubes network, biosensor, human serum albumin
Procedia PDF Downloads 1371161 Preparation and Conductivity Measurements of LSM/YSZ Composite Solid Oxide Electrolysis Cell Anode Materials
Authors: Christian C. Vaso, Rinlee Butch M. Cervera
Abstract:
One of the most promising anode materials for solid oxide electrolysis cell (SOEC) application is the Sr-doped LaMnO3 (LSM) which is known to have a high electronic conductivity but low ionic conductivity. To increase the ionic conductivity or diffusion of ions through the anode, Yttria-stabilized Zirconia (YSZ), which has good ionic conductivity, is proposed to be combined with LSM to create a composite electrode and to obtain a high mixed ionic and electronic conducting anode. In this study, composite of lanthanum strontium manganite and YSZ oxide, La0.8Sr0.2MnO3/Zr0.92Y0.08O2 (LSM/YSZ), with different wt.% compositions of LSM and YSZ were synthesized using solid-state reaction. The obtained prepared composite samples of 60, 50, and 40 wt.% LSM with remaining wt.% of 40, 50, and 60, respectively for YSZ were fully characterized for its microstructure by using powder X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Fourier transform infrared (FTIR), and Scanning electron microscope/Energy dispersive spectroscopy (SEM/EDS) analyses. Surface morphology of the samples via SEM analysis revealed a well-sintered and densified pure LSM, while a more porous composite sample of LSM/YSZ was obtained. Electrochemical impedance measurements at intermediate temperature range (500-700 °C) of the synthesized samples were also performed which revealed that the 50 wt.% LSM with 50 wt.% YSZ (L50Y50) sample showed the highest total conductivity of 8.27x10-1 S/cm at 600 oC with 0.22 eV activation energy.Keywords: ceramics, microstructure, fuel cells, electrochemical impedance spectroscopy
Procedia PDF Downloads 2491160 A Survey on Intelligent Techniques Based Modelling of Size Enlargement Process for Fine Materials
Authors: Mohammad Nadeem, Haider Banka, R. Venugopal
Abstract:
Granulation or agglomeration is a size enlargement process to transform the fine particulates into larger aggregates since the fine size of available materials and minerals poses difficulty in their utilization. Though a long list of methods is available in the literature for the modeling of granulation process to facilitate the in-depth understanding and interpretation of the system, there is still scope of improvements using novel tools and techniques. Intelligent techniques, such as artificial neural network, fuzzy logic, self-organizing map, support vector machine and others, have emerged as compelling alternatives for dealing with imprecision and complex non-linearity of the systems. The present study tries to review the applications of intelligent techniques in the modeling of size enlargement process for fine materials.Keywords: fine material, granulation, intelligent technique, modelling
Procedia PDF Downloads 3741159 Preparation and Characterizations of Hydroxyapatite-Sodium Alginate Nanocomposites for Biomedical Applications
Authors: Friday Godwin Okibe, Christian Chinweuba Onoyima, Edith Bolanle Agbaji, Victor Olatunji Ajibola
Abstract:
Polymer-inorganic nanocomposites are presently impacting diverse areas, specifically in biomedical sciences. In this research, hydroxyapatite-sodium alginate has been prepared, and characterized, with emphasis on the influence of sodium alginate on its characteristics. In situ wet chemical precipitation method was used in the preparation. The prepared nanocomposite was characterized with Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), with image analysis, and X-Ray Diffraction (XRD). The FTIR study shows peaks characteristics of hydroxyapatite and confirmed formation of the nanocomposite via chemical interaction between sodium alginate and hydroxyapatite. Image analysis shows the nanocomposites to be of irregular morphologies which did not show significant change with increasing sodium alginate addition, while particle size decreased with increase in sodium alginate addition (359.46 nm to 109.98 nm). From the XRD data, both the crystallite size and degree of crystallinity also decreased with increasing sodium alginate composition (32.36 nm to 9.47 nm and 72.87% to 1.82% respectively), while the specific surface area and microstrain increased with increasing sodium alginate composition (0.0041 to 0.0139 and 58.99 m²/g to 201.58 m²/g respectively). The results show that the formulation with 50%wt of sodium alginate (HASA-50%wt), possess exceptional characteristics for biomedical applications such as drug delivery.Keywords: nanocomposite, sodium alginate, hydroxyapatite, biomedical, FTIR, XRD, SEM
Procedia PDF Downloads 3301158 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography
Authors: Mulatu Kassie Birhanu
Abstract:
Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane
Procedia PDF Downloads 2381157 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: dialogue management, response generation, deep learning, evaluation
Procedia PDF Downloads 1671156 Numerical and Sensitivity Analysis of Modeling the Newcastle Disease Dynamics
Authors: Nurudeen Oluwasola Lasisi
Abstract:
Newcastle disease is a highly contagious disease of birds caused by a para-myxo virus. In this paper, we presented Novel quarantine-adjusted incident and linear incident of Newcastle disease model equations. We considered the dynamics of transmission and control of Newcastle disease. The existence and uniqueness of the solutions were obtained. The existence of disease-free points was shown, and the model threshold parameter was examined using the next-generation operator method. The sensitivity analysis was carried out in order to identify the most sensitive parameters of the disease transmission. This revealed that as parameters β,ω, and ᴧ increase while keeping other parameters constant, the effective reproduction number R_ev increases. This implies that the parameters increase the endemicity of the infection of individuals. More so, when the parameters μ,ε,γ,δ_1, and α increase, while keeping other parameters constant, the effective reproduction number R_ev decreases. This implies the parameters decrease the endemicity of the infection as they have negative indices. Analytical results were numerically verified by the Differential Transformation Method (DTM) and quantitative views of the model equations were showcased. We established that as contact rate (β) increases, the effective reproduction number R_ev increases, as the effectiveness of drug usage increases, the R_ev decreases and as the quarantined individual decreases, the R_ev decreases. The results of the simulations showed that the infected individual increases when the susceptible person approaches zero, also the vaccination individual increases when the infected individual decreases and simultaneously increases the recovery individual.Keywords: disease-free equilibrium, effective reproduction number, endemicity, Newcastle disease model, numerical, Sensitivity analysis
Procedia PDF Downloads 451155 Predicting Football Player Performance: Integrating Data Visualization and Machine Learning
Authors: Saahith M. S., Sivakami R.
Abstract:
In the realm of football analytics, particularly focusing on predicting football player performance, the ability to forecast player success accurately is of paramount importance for teams, managers, and fans. This study introduces an elaborate examination of predicting football player performance through the integration of data visualization methods and machine learning algorithms. The research entails the compilation of an extensive dataset comprising player attributes, conducting data preprocessing, feature selection, model selection, and model training to construct predictive models. The analysis within this study will involve delving into feature significance using methodologies like Select Best and Recursive Feature Elimination (RFE) to pinpoint pertinent attributes for predicting player performance. Various machine learning algorithms, including Random Forest, Decision Tree, Linear Regression, Support Vector Regression (SVR), and Artificial Neural Networks (ANN), will be explored to develop predictive models. The evaluation of each model's performance utilizing metrics such as Mean Squared Error (MSE) and R-squared will be executed to gauge their efficacy in predicting player performance. Furthermore, this investigation will encompass a top player analysis to recognize the top-performing players based on the anticipated overall performance scores. Nationality analysis will entail scrutinizing the player distribution based on nationality and investigating potential correlations between nationality and player performance. Positional analysis will concentrate on examining the player distribution across various positions and assessing the average performance of players in each position. Age analysis will evaluate the influence of age on player performance and identify any discernible trends or patterns associated with player age groups. The primary objective is to predict a football player's overall performance accurately based on their individual attributes, leveraging data-driven insights to enrich the comprehension of player success on the field. By amalgamating data visualization and machine learning methodologies, the aim is to furnish valuable tools for teams, managers, and fans to effectively analyze and forecast player performance. This research contributes to the progression of sports analytics by showcasing the potential of machine learning in predicting football player performance and offering actionable insights for diverse stakeholders in the football industry.Keywords: football analytics, player performance prediction, data visualization, machine learning algorithms, random forest, decision tree, linear regression, support vector regression, artificial neural networks, model evaluation, top player analysis, nationality analysis, positional analysis
Procedia PDF Downloads 381154 Bidirectional Encoder Representations from Transformers Sentiment Analysis Applied to Three Presidential Pre-Candidates in Costa Rica
Authors: Félix David Suárez Bonilla
Abstract:
A sentiment analysis service to detect polarity (positive, neural, and negative), based on transfer learning, was built using a Spanish version of BERT and applied to tweets written in Spanish. The dataset that was used consisted of 11975 reviews, which were extracted from Google Play using the google-play-scrapper package. The BETO trained model used: the AdamW optimizer, a batch size of 16, a learning rate of 2x10⁻⁵ and 10 epochs. The system was tested using tweets of three presidential pre-candidates from Costa Rica. The system was finally validated using human labeled examples, achieving an accuracy of 83.3%.Keywords: NLP, transfer learning, BERT, sentiment analysis, social media, opinion mining
Procedia PDF Downloads 1741153 Iron and/or Titanium Containing Microporous Silico-Alumino-Phosphates as a Photocatalyst for Hydrogen Production by Water Splitting
Authors: I. Ben Kaddour, S. Larbaoui
Abstract:
Since their first synthesis, the Silicoaluminophosphates materials have proved their efficiency as a good adsorbent and catalyst in several environmental and energetic applications. In this work, the photocatalytic hydrogen production from water splitting reactions has been conducted under visible radiations in the presence of a series of iron and/or titanium-containing microporous silico-alumino-phosphates materials synthesized by hydrothermal method, using triethylamine as an organic structuring agent to obtain the AFI structure type. These photo-catalysts were then characterized by various physicochemical methods to determine their structural, textural and morphological properties such as X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with X rays microanalysis, nitrogen adsorption measurements, UV-visible diffuse reflectance spectroscopy (UV-Vis-DRS), and X-rays photoelectron spectroscopy (XPS) and the analysis revealed that these materials have significant photocatalytic properties. The hydrogen production process has been followed by photoelectrochemical characterization (PEC). The results showed that hydrogen is the only gas produced, and the reaction takes place in the conduction band where water is reduced to hydrogen. The electron recombination has also been avoided, as holes are entrapped using hole scavengers. In addition, these catalysts have been shown to remain stable during reuse for up to five cycles.Keywords: photocatalysis, SAPO-5, hydrothermal synthesis, hydrogen production
Procedia PDF Downloads 651152 Information Literacy among Faculty and Students of Medical Colleges of Haryana, Punjab and Chandigarh
Authors: Sanjeev Sharma, Suman Lata
Abstract:
With the availability of diverse printed, electronic literature and web sites on medical and health related information, it is impossible for the medical professional to get the information he seeks in the shortest possible time. For all these problems information literacy is the only solution. Thus, information literacy is recognized as an important aspect of medical education. In the present study, an attempt has been made to know the information literacy skills of the faculty and students at medical colleges of Haryana, Punjab and Chandigarh. The scope of the study was confined to the 12 selected medical colleges of three States (Haryana, Punjab, and Chandigarh). The findings of the study were based on the data collected through 1018 questionnaires filled by the respondents of the medical colleges. It was found that Online Medical Websites (such as WebMD, eMedicine and Mayo Clinic etc.) were frequently used by 63.43% of the respondents of Chandigarh which is slightly more than Haryana (61%) and Punjab (55.65%). As well, 30.86% of the respondents of Chandigarh, 27.41% of Haryana and 27.05% of Punjab were familiar with the controlled vocabulary tool; 25.14% respondents of Chandigarh, 23.80% of Punjab, 23.17% of Haryana were familiar with the Boolean operators; 33.05% of the respondents of Punjab, 28.19% of Haryana and 25.14% of Chandigarh were familiar with the use and importance of the keywords while searching an electronic database; and 51.43% of the respondents of Chandigarh, 44.52% of Punjab and 36.29% of Haryana were able to make effective use of the retrieved information. For accessing information in electronic format, 47.74% of the respondents rated their skills high, while the majority of respondents (76.13%) were unfamiliar with the basic search technique i.e. Boolean operator used for searching information in an online database. On the basis of the findings, it was suggested that a comprehensive training program based on medical professionals information needs should be organized frequently. Furthermore, it was also suggested that information literacy may be included as a subject in the health science curriculum so as to make the medical professionals information literate and independent lifelong learners.Keywords: information, information literacy, medical professionals, medical colleges
Procedia PDF Downloads 1571151 Characterization of Fresh, Charcoal Flue Gas Treated and Boiled Beef Samples Using FTIR For Consumption Safety
Authors: Catherine W. Njeru, Clarence Murithi W., Isaac W. Mwangi, Ruth Wanjau, Grace N. Kiriro, Gerald W. Mbugua
Abstract:
Flesh from animals is one of the most nutritious food materials that is rich in Vitamin B12, B3 (Niacin), B6, iron, zinc, selenium, and plenty of other vitamins and minerals and a high content of fats Meat consumption projection indicates an increase from 5.5 to 13.3 million tons by 2025 and this demand has been associated with livestock revolution. This study used charcoal flue gases sourced from the combustion of charcoal briquettes to prolong beef shelf life. The FT-IR technique is based on the specific absorption of infrared radiation by carbon monoxide and carbon dioxide molecules. The characterization of the functional groups was done using Fourier transform infrared spectroscopy (Shimadzu IR Tracer-100). The fresh, treated and boiled beef was ground with potassium bromide (KBr) into pellets and analyzed using FT-IR at a range of 400-3600 cm-1. The reaction of fresh, charcoal flue gas treated and boiled beef samples are as shown in the FT-IR spectrums. The fresh and boiled beef spectrums are similar, while the charcoal flue-treated beef samples show distinct peaks at 2100 and 2290 cm-1, which correspond to carbon monoxide and carbon dioxide, respectively. The study proposes the use of FT-IR in the determination of beef for consumption quality studies.Keywords: FT-IR, charcoal flue gases, beef, charcoal flue gases
Procedia PDF Downloads 251150 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3371149 Existence of Minimal and Maximal Mild Solutions for Non-Local in Time Subdiffusion Equations of Neutral Type
Authors: Jorge Gonzalez-Camus
Abstract:
In this work is proved the existence of at least one minimal and maximal mild solutions to the Cauchy problem, for fractional evolution equation of neutral type, involving a general kernel. An operator A generating a resolvent family and integral resolvent family on a Banach space X and a kernel belonging to a large class appears in the equation, which covers many relevant cases from physics applications, in particular, the important case of time - fractional evolution equations of neutral type. The main tool used in this work was the Kuratowski measure of noncompactness and fixed point theorems, specifically Darbo-type, and an iterative method of lower and upper solutions, based in an order in X induced by a normal cone P. Initially, the equation is a Cauchy problem, involving a fractional derivate in Caputo sense. Then, is formulated the equivalent integral version, and defining a convenient functional, using the theory of resolvent families, and verifying the hypothesis of the fixed point theorem of Darbo type, give us the existence of mild solution for the initial problem. Furthermore, the existence of minimal and maximal mild solutions was proved through in an iterative method of lower and upper solutions, using the Azcoli-Arzela Theorem, and the Gronwall’s inequality. Finally, we recovered the case derivate in Caputo sense.Keywords: fractional evolution equations, Volterra integral equations, minimal and maximal mild solutions, neutral type equations, non-local in time equations
Procedia PDF Downloads 1761148 Water-Repellent Finishing on Cotton Fabric by SF₆ Plasma
Authors: We'aam Alali, Ziad Saffour, Saker Saloum
Abstract:
Low-pressure, sulfur hexafluoride (SF₆) remote radio-frequency (RF) plasma, ignited in a hollow cathode discharge (HCD-L300) plasma system, has been shown to be a powerful method in cotton fabric finishing to achieve water-repellent property. This plasma was ignited at an SF6 flow rate of (200 cm), low pressure (0.5 mbar), and radio frequency (13.56 MHz) with a power of (300 W). The contact angle has been measured as a function of the plasma exposure period using the water contact angle measuring device (WCA), and the changes in the morphology, chemical structure, and mechanical properties as tensile strength and elongation at the break of the fabric have also been investigated using the scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflectance Fourier transform Infrared spectroscopy (ATR-FTIR), and tensile test device, respectively. In addition, weight loss of the fabric and the fastness of washing have been studied. It was found that the exposure period of the fabric to the plasma is an important parameter. Moreover, a good water-repellent cotton fabric can be obtained by treating it with SF₆ plasma for a short time (1 min) without degrading its mechanical properties. Regarding the modified morphology of the cotton fabric, it was found that grooves were formed on the surface of the fibers after treatment. Chemically, the fluorine atoms were attached to the surface of the fibers.Keywords: cotton fabric, SEM, SF₆ plasma, water-repellency
Procedia PDF Downloads 81