Search results for: low temperature stress
8614 Effect of Postweld Soaking Temperature on Mechanical Properties of AISI 1018 Steel Plate Welded in Aqueous Environment
Authors: Yahaya Taiwo, Adedayo M. Segun
Abstract:
This study investigated the effect of postweld soaking temperature on mechanical properties of AISI 1018 steel plate welded in aqueous environment. Pairs of 90 x 70 x 12 mm, AISI 1018 steel plates were welded with weld zone beyond distance 10 mm from weld centerline immersed in a water jacket at 25°C. The welded specimens were tempered at temperature of 200, 300, 400, 500 and 600°C for 1.5 hours. Tensile, hardness and toughness tests at distances 15, 30, 45 and 60 mm from the weld centreline with micro structural evaluation were carried out. The results show that the aqueous environment as-weld sample exhibited higher hardness and tensile strength values of 45.3 HV and 448.12 N/mm2 respectively while the hardness and tensile strength of aqueous environment postweld heat treated samples were 44.9 HV and 378.98 N/mm2. This revealed 0.82% and 15.4% reduction in hardness and strength respectively. The metallographic tests showed that the postweld heat treated AISI 1018 steel micro structure contained tempered martensite with ferritic structure and precipitation of carbides. Postweld heat treatment produced materials of lower hardness and improved toughness.Keywords: air weld samples, aqueous environment weld samples, soaking temperature, water jacket
Procedia PDF Downloads 3368613 Deformation Mechanisms of Mg-Based Composite Studied by Neutron Diffraction and Acoustic Emission
Authors: G. Farkas, K. Mathis, J. Pilch, P. Minarik
Abstract:
Deformation mechanisms in an Mg-Al-Ca alloy reinforced with short alumina fibres were studied by acoustic emission and in-situ neutron diffraction method. The fibres plane orientation with respect to the loading axis was found to be a key parameter, which influences the acting deformation processes, such as twinning or dislocation slip. In-situ neutron diffraction tests were measured at different temperatures from room temperature (RT) to 200°C. The measurement shows the lattice strain changes in the matrix and also in the reinforcement phase depending on macroscopic compressive deformation and stress. In case of parallel fibre plane orientation, the increment of compressive lattice strain is lower in the matrix and higher in the fibres in comparison to perpendicular fibre orientation. Furthermore, acoustic emission results indicate a larger twinning activity and more frequent fibre cracking in sample with perpendicular fibre plane orientation. Both types of mechanisms are more dominant at elevated temperatures.Keywords: neutron diffraction, acoustic emission, magnesium based composite, deformation mechanisms
Procedia PDF Downloads 1648612 Analysis of the Effect of GSR on the Performance of Double Flow Corrugated Absorber Solar Air Heater
Authors: S. P. Sharma, Som Nath Saha
Abstract:
This study investigates the effect of Global Solar Radiation (GSR) on the performance of double flow corrugated absorber solar air heater. A mathematical model of a double flow solar air heater, in which air is flowing simultaneously over and under the absorbing plate is presented and solved by developing a computer program in C++ language. The performance evaluation is studied in terms of air temperature rise, energy, effective and exergy efficiencies. The performance of double flow corrugated absorber is compared with double flow flat plate and conventional solar air heaters. It is found that double flow effectively increases the air temperature rise and efficiencies in comparison to a conventional collector. However, corrugated absorber is more superior to that of flat plate double flow solar air heater. The results show that increasing the solar radiation leads to achieve higher air temperature rise and efficiencies.Keywords: corrugated absorber, double flow, flat plate, solar air heater
Procedia PDF Downloads 3538611 Effect of Al Addition on Microstructure and Properties of NbTiZrCrAl Refractory High Entropy Alloys
Authors: Xiping Guo, Fanglin Ge, Ping Guan
Abstract:
Refractory high entropy alloys are alternative materials expected to be employed at high temperatures. The comprehensive changes of microstructure and properties of NbTiZrCrAl refractory high entropy alloys are systematically studied by adjusting Al content. Five kinds of button alloy ingots with different contents of Al in NbTiZrCrAlX (X=0, 0.2, 0.5, 0.75, 1.0) were prepared by vacuum non-consumable arc melting technology. The microstructure analysis results show that the five alloys are composed of BCC solid solution phase rich in Nb and Ti and Laves phase rich in Cr, Zr, and Al. The addition of Al changes the structure from hypoeutectic to hypereutectic, increases the proportion of Laves phase, and changes the structure from cubic C15 to hexagonal C14. The hardness and fracture toughness of the five alloys were tested at room temperature, and the compressive mechanical properties were tested at 1000℃. The results showed that the addition of Al increased the proportion of Laves phase and decreased the proportion of the BCC phase, thus increasing the hardness and decreasing the fracture toughness at room temperature. However, at 1000℃, the strength of 0.5Al and 0.75Al alloys whose composition is close to the eutectic point is the best, which indicates that the eutectic structure is of great significance for the improvement of high temperature strength of NbTiZrCrAl refractory high entropy alloys. The five alloys were oxidized for 1 h and 20 h in static air at 1000℃. The results show that only the oxide film of 0Al alloy falls off after oxidizing for 1 h at 1000℃. After 20h, the oxide film of all the alloys fell off, but the oxide film of alloys containing Al was more dense and complete. By producing protective oxide Al₂O₃, inhibiting the preferential oxidation of Zr, promoting the preferential oxidation of Ti, and combination of Cr₂O₃ and Nb₂O₅ to form CrNbO₄, Al significantly improves the high temperature oxidation resistance of NbTiZrCrAl refractory high entropy alloys.Keywords: NbTiZrCrAl, refractory high entropy alloy, al content, microstructural evolution, room temperature mechanical properties, high temperature compressive strength, oxidation resistance
Procedia PDF Downloads 878610 Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump
Authors: Nur Dayana Khairunnisa Rosli, Seripah Awang Kechil
Abstract:
Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids.Keywords: heat transfer, power-law fluids, rotating disk, suction or injection, temperature jump, velocity slip
Procedia PDF Downloads 2718609 Alleviation of Endoplasmic Reticulum Stress in Mosquito Cells to Survive Dengue 2 Virus Infection
Authors: Jiun-Nan Hou, Tien-Huang Chen, Wei-June Chen
Abstract:
Dengue viruses (DENVs) are naturally transmitted between humans by mosquito vectors. Mosquito cells usually survive DENV infection, allowing infected mosquitoes to retain an active status for virus transmission. In this study, we found that DENV2 virus infection in mosquito cells causes the unfolded protein response (UPR) that activates the protein kinase RNA-like endoplasmic reticulum kinase (PERK) signal pathway, leading to shutdown of global protein translation in infected cells which was apparently regulated by the PERK signal pathway. According to observation in this study, the PERK signal pathway in DENV2-infected C6/36 cells alleviates ER stress, and reduces initiator and effector caspases, as well as the apoptosis rate via shutdown of cellular proteins. In fact, phosphorylation of eukaryotic initiation factor 2ɑ (eIF2ɑ) by the PERK signal pathway may impair recruitment of ribosomes that bind to the mRNA 5’-cap structure, resulting in an inhibitory effect on canonical cap-dependent cellular protein translation. The resultant pro-survival “byproduct” of infected mosquito cells is undoubtedly advantageous for viral replication. This finding provides insights into elucidating the PERK-mediated modulating web that is actively involved in dynamic protein synthesis, cell survival, and viral replication in mosquito cells.Keywords: cap-dependent protein translation, dengue virus, endoplasmic reticulum stress, mosquito cells, PERK signal pathway
Procedia PDF Downloads 2678608 Sinapic Acid Attenuation of Cyclophosphamide-Induced Liver Toxicity in Mice by Modulating Oxidative Stress, Nf-κB, and Caspase-3
Authors: Shiva Rezaei, Seyed Jalal Hosseinimehr, Abbasali Karimpour Malekshah, Mansooreh Mirzaei, Fereshteh Talebpour Amiri, Mehryar Zargari
Abstract:
Objective(s): Cyclophosphamide (CP), as an antineoplastic drug, is widely used in cancer patients, and liver toxicity is one of its complications. Sinapic acid (SA), as a natural phenylpropanoid, has antioxidant, anti-inflammatory, and anti-cancer properties. Materials and Methods: The purpose of the current study was to determine the protective effect of SA versus CP-induced liver toxicity. In this research, BALB/c mice were treated with SA (5 and 10 mg/kg) orally for one week, and CP (200 mg/kg) was injected on day 3 of the study. Oxidative stress markers, serum liver-specific enzymes, histopathological features, caspase-3, and nuclear factor kappa-B cells were then checked. Results: CP induced hepatotoxicity in mice and showed structural changes in liver tissue. CP significantly increased liver enzymes and lipid peroxidation and decreased glutathione. The immunoreactivity of caspase-3 and nuclear factor kappa-B cells was significantly increased. Administration of SA significantly maintained histochemical parameters and liver function enzymes in mice treated with CP. Immunohistochemical examination showed SA reduced apoptosis and inflammation. Conclusion: The data confirmed that SA with anti-apoptotic, anti-oxidative, and anti-inflammatory activities was able to preserve CP-induced liver injury in mice.Keywords: apoptosis, cyclophosphamide, liver injury, inflammation, oxidative stress, sinapic acid
Procedia PDF Downloads 588607 Spinach Lipid Extract as an Alternative Flow Aid for Fat Suspensions
Authors: Nizaha Juhaida Mohamad, David Gray, Bettina Wolf
Abstract:
Chocolate is a material composite with a high fraction of solid particles dispersed in a fat phase largely composed of cocoa butter. Viscosity properties of chocolate can be manipulated by the amount of fat - increased levels of fat lead to lower viscosity. However, a high content of cocoa butter can increase the cost of the chocolate and instead surfactants are used to manipulate viscosity behaviour. Most commonly, lecithin and polyglycerol polyricinoleate (PGPR) are used. Lecithin is a natural lipid emulsifier which is based on phospholipids while PGPR is a chemically produced emulsifier which based on the long continuous chain of ricinoleic acid. Lecithin and PGPR act to lower the viscosity and yield stress, respectively. Recently, natural lipid emulsifiers based on galactolipid as the functional ingredient have become of interest. Spinach lipid is found to have a high amount of galactolipid, specifically MGDG and DGDG. The aim of this research is to explore the influence of spinach lipid in comparison with PGPR and lecithin on the rheological properties of sugar/oil suspensions which serve as chocolate model system. For that purpose, icing sugar was dispersed from 40%, 45% and 50% (w/w) in oil which has spinach lipid at concentrations from 0.1 – 0.7% (w/w). Based on viscosity at 40 s-1 and yield value reported as shear stress measured at 5 s-1, it was found that spinach lipid shows viscosity reducing and yield stress lowering effects comparable to lecithin and PGPR, respectively. This characteristic of spinach lipid demonstrates great potential for it to act as single natural lipid emulsifier in chocolate.Keywords: chocolate viscosity, lecithin, polyglycerol polyricinoleate (PGPR), spinach lipid
Procedia PDF Downloads 2498606 Fatigue Life Estimation of Spiral Welded Waterworks Pipelines
Authors: Suk Woo Hong, Chang Sung Seok, Jae Mean Koo
Abstract:
Recently, the welding is widely used in modern industry for joining the structures. However, the waterworks pipes are exposed to the fatigue load by cars, earthquake and etc because of being buried underground. Moreover, the residual stress exists in weld zone by welding process and it is well known that the fatigue life of welded structures is degraded by residual stress. Due to such reasons, the crack can occur in the weld zone of pipeline. In this case, The ground subsidence or sinkhole can occur, if the soil and sand are washed down by fluid leaked from the crack of water pipe. These problems can lead to property damage and endangering lives. For these reasons, the estimation of fatigue characteristics for water pipeline weld zone is needed. Therefore, in this study, for fatigue characteristics estimation of spiral welded waterworks pipe, ASTM standard specimens and Curved Plate specimens were collected from the spiral welded waterworks pipe and the fatigue tests were performed. The S-N curves of each specimen were estimated, and then the fatigue life of weldment Curved Plate specimen was predicted by theoretical and analytical methods. After that, the weldment Curved Plate specimens were collected from the pipe and verification fatigue tests were performed. Finally, it was verified that the predicted S-N curve of weldment Curved Plate specimen was good agreement with fatigue test data.Keywords: spiral welded pipe, prediction fatigue life, endurance limit modifying factors, residual stress
Procedia PDF Downloads 2998605 Wt1 and FoxL2 Genes Expression Pattern in Mesonephros-Gonad Complexes of Green Sea Turtle (Chelonia mydas) Embryos Incubated in Feminization and Masculinization Temperature
Authors: Fitria D. Ayuningtyas, Anggraini Barlian
Abstract:
Green turtle (Chelonia mydas) is one of TSD (Temperature-dependent Sex Determination, TSD) animals which sex is determined by the egg’s incubation temperature. GSD (Genotypic Sex Determination) homologous genes such as Wilms’ Tumor (Wt1) and Forkhead Box L2 (FoxL2) play a role in TSD animal sex determination process. Wt1 plays a role in both male pathway, as a transcription factor for Sf1 gene and in female pathway, as a transcription factor for Dax1. FoxL2 plays a role specifically in female sex determination, and known as transcriptional factor for Aromatase gene. Until now, research on the pattern of Wt1 and FoxL2 genes expression in C.mydas has not been conducted yet. The aim of this research is to know the pattern of Wt1 and FoxL2 genes expression in Mesonephros-Gonad (MG) complexes of Chelonia mydas embryos incubated in masculinizing temperature (MT) and feminizing temperature (FT). Eggs of C.mydas incubated in 3 different stage of TSP (Thermosensitive Period) at masculinizing temperature (26±10C, MT) and feminizing temperature (31±10C FT). Mesonefros-gonad complexes were isolated at Pre-TSP stage (FT at days 14th, MT at days 24th), TSP stage (FT at days 24th, MT at days 36th) and differentiated stage (FT at days 40th, MT at days 58th). RNA from mesonephros-gonad (MG) complexes were converted into cDNA by RT-PCR process, and the pattern of Wt1 and FoxL2 genes expression is analyzed by quantitative Real Time PCR (qPCR) method, β-actin gene is used as an internal control. The pattern of Wt1 gene expression in Pre-TSP stage was almost the same between MG complexes incubated at MT or FT, while TSP and differentiation stage, the pattern of Wt1 gene expression in MG complexes incubated at MT or FT was increased. Wt1 gene expression of MG complexes that incubated at FT was higher than at MT. There was a difference pattern between Wt1 gene expression in this research compared to the previous research in protein level. It could be assumed that the difference caused by post-transcriptional regulation mechanisms before mRNA of Wt1 gene translated into protein structure. The pattern of FoxL2 gene expression in Pre-TSP stage was almost the same between MG complexes that incubated at MT and FT, and increased in both TSP and differentiated stage. The FoxL2 gene expression in MG complexes that incubated in FT is higher than MT on TSP and differentiated stage. Based on the results of this research, it can be assumed that Wt1 and FoxL2 gene were expressed in MG complexes that incubated both at MT and FT since Pre-TSP stage. The pattern of Wt1 gene expression was increased in every stage of gonadal development, and so do the pattern of FoxL2 gene expression. Wt1 and FoxL2 gene expressions were higher in MG complexes incubated at FT than MT.Keywords: chelonia mydas, FoxL2, gene expression, TSD, Wt1
Procedia PDF Downloads 4098604 Effects of Packaging Method, Storage Temperature and Storage Time on the Quality Properties of Cold-Dried Beef Slices
Authors: Elif Aykın Dinçer, Mustafa Erbaş
Abstract:
The effects of packaging method (modified atmosphere packaging (MAP) and aerobic packaging (AP)), storage temperature (4 and 25°C) and storage time (0, 15, 30, 45, 60, 75 and 90 days) on the chemical, microbiological and sensory properties of cold-dried beef slices were investigated. Beef slices were dried at 10°C and 3 m/s after pasteurization with hot steam and then packaged in order to determine the effect of different storage conditions. As the storage temperature and time increased, it was determined that the amount of CO2 decreased in the MAP packed samples and that the amount of O2 decreased while the amount of CO2 increased in the AP packed samples. The water activity value of stored beef slices decreased from 0.91 to 0.88 during 90 days of storage. The pH, TBARS and NPN-M values of stored beef slices were higher in the AP packed samples and pH value increased from 5.68 to 5.93, TBARS increased from 25.25 to 60.11 μmol MDA/kg and NPN-M value increased from 4.37 to 6.66 g/100g during the 90 days of storage. It was determined that the microbiological quality of MAP packed samples was higher and the mean counts of TAMB, TPB, Micrococcus/Staphylococcus, LAB and yeast-mold were 4.10, 3.28, 3.46, 2.99 and 3.14 log cfu/g, respectively. As a result of sensory evaluation, it was found that the quality of samples packed MAP and stored at low temperature was higher and the shelf life of samples was 90 days at 4°C and 75 days at 25°C for MAP treatment, and 60 days at 4°C and 45 days at 25°C for AP treatment.Keywords: cold drying, dried meat, packaging, storage
Procedia PDF Downloads 1528603 Study on the Influence of Different Lengths of Tunnel High Temperature Zones on Train Aerodynamic Resistance
Authors: Chong Hu, Tiantian Wang, Zhe Li, Ourui Huang, Yichen Pan
Abstract:
When the train is running in a high geothermal tunnel, changes in the temperature field will cause disturbances in the propagation and superposition of pressure waves in the tunnel, which in turn have an effect on the aerodynamic resistance of the train. The aim of this paper is to investigate the effect of the changes in the lengths of the high-temperature zone of the tunnel on the aerodynamic resistance of the train, clarifying the evolution mechanism of aerodynamic resistance of trains in tunnels with high ground temperatures. Firstly, moving model tests of trains passing through wall-heated tunnels were conducted to verify the reliability of the numerical method in this paper. Subsequently, based on the three-dimensional unsteady compressible RANS method and the standard k-ε two-equation turbulence model, the change laws of the average aerodynamic resistance under different high-temperature zone lengths were analyzed, and the influence of frictional resistance and pressure difference resistance on total resistance at different times was discussed. The results show that as the length of the high-temperature zone LH increases, the average aerodynamic resistance of a train running in a tunnel gradually decreases; when LH = 330 m, the aerodynamic resistance can be reduced by 5.7%. At the moment of maximum resistance, the total resistance, differential pressure resistance, and friction resistance all decrease gradually with the increase of LH and then remain basically unchanged. At the moment of the minimum value of resistance, with the increase of LH, the total resistance first increases and then slowly decreases; the differential pressure resistance first increases and then remains unchanged, while the friction resistance first remains unchanged and then gradually decreases, and the ratio of the differential pressure resistance to the total resistance gradually increases with the increase of LH. The results of this paper can provide guidance for scholars who need to investigate the mechanism of aerodynamic resistance change of trains in high geothermal environments, as well as provide a new way of thinking for resistance reduction in non-high geothermal tunnels.Keywords: high-speed trains, aerodynamic resistance, high-ground temperature, tunnel
Procedia PDF Downloads 708602 Adaptor Protein APPL2 Could Be a Therapeutic Target for Improving Hippocampal Neurogenesis and Attenuating Depressant Behaviors and Olfactory Dysfunctions in Chronic Corticosterone-induced Depression
Authors: Jiangang Shen
Abstract:
Olfactory dysfunction is a common symptom companied by anxiety- and depressive-like behaviors in depressive patients. Chronic stress triggers hormone responses and inhibits the proliferation and differentiation of neural stem cells (NSCs) in the hippocampus and subventricular zone (SVZ)-olfactory bulb (OB), contributing to depressive behaviors and olfactory dysfunction. However, the cellular signaling molecules to regulate chronic stress mediated olfactory dysfunction are largely unclear. Adaptor proteins containing the pleckstrin homology domain, phosphotyrosine binding domain, and leucine zipper motif (APPLs) are multifunctional adaptor proteins. Herein, we tested the hypothesis that APPL2 could inhibit hippocampal neurogenesis by affecting glucocorticoid receptor (GR) signaling, subsequently contributing to depressive and anxiety behaviors as well as olfactory dysfunctions. The major discoveries are included: (1) APPL2 Tg mice had enhanced GR phosphorylation under basic conditions but had no different plasma corticosterone (CORT) level and GR phosphorylation under stress stimulation. (2) APPL2 Tg mice had impaired hippocampal neurogenesis and revealed depressive and anxiety behaviors. (3) GR antagonist RU486 reversed the impaired hippocampal neurogenesis in the APPL2 Tg mice. (4) APPL2 Tg mice displayed higher GR activity and less capacity for neurogenesis at the olfactory system with lesser olfactory sensitivity than WT mice. (5) APPL2 negatively regulates olfactory functions by switching fate commitments of NSCs in adult olfactory bulbs via interaction with Notch1 signaling. Furthermore, baicalin, a natural medicinal compound, was found to be a promising agent targeting APPL2/GR signaling and promoting adult neurogenesis in APPL2 Tg mice and chronic corticosterone-induced depression mouse models. Behavioral tests revealed that baicalin had antidepressant and olfactory-improving effects. Taken together, APPL2 is a critical therapeutic target for antidepressant treatment.Keywords: APPL2, hippocampal neurogenesis, depressive behaviors and olfactory dysfunction, stress
Procedia PDF Downloads 768601 Insight into the Physical Ageing of Poly(Butylene Succinate)
Authors: I. Georgousopoulou, S. Vouyiouka, C. Papaspyrides
Abstract:
The hydrolytic degradation of poly(butylene succinate) (PBS) was investigated when exposed to different humidity-temperature environments. To this direction different PBS grades were submitted to hydrolysis runs. Results indicated that the increment of hydrolysis temperature and relative humidity induced significant decrease in the molecular weight and thermal properties of the bioplastic. Τhe derived data can be considered to construct degradation kinetics based on carboxyl content variation versus time.Keywords: hydrolytic degradation, physical ageing, poly(butylene succinate), polyester
Procedia PDF Downloads 2858600 Tool Condition Monitoring of Ceramic Inserted Tools in High Speed Machining through Image Processing
Authors: Javier A. Dominguez Caballero, Graeme A. Manson, Matthew B. Marshall
Abstract:
Cutting tools with ceramic inserts are often used in the process of machining many types of superalloy, mainly due to their high strength and thermal resistance. Nevertheless, during the cutting process, the plastic flow wear generated in these inserts enhances and propagates cracks due to high temperature and high mechanical stress. This leads to a very variable failure of the cutting tool. This article explores the relationship between the continuous wear that ceramic SiAlON (solid solutions based on the Si3N4 structure) inserts experience during a high-speed machining process and the evolution of sparks created during the same process. These sparks were analysed through pictures of the cutting process recorded using an SLR camera. Features relating to the intensity and area of the cutting sparks were extracted from the individual pictures using image processing techniques. These features were then related to the ceramic insert’s crater wear area.Keywords: ceramic cutting tools, high speed machining, image processing, tool condition monitoring, tool wear
Procedia PDF Downloads 3018599 Synthesis and Characterization of TiO₂, N Doped TiO₂ and AG Doped TiO₂ for Photocatalytic Degradation of Methylene Blue in Adwa Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, urea, NH₄OH, and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400°C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM, and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was an efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21% under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 400⁰C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination, methylene blue
Procedia PDF Downloads 178598 Development of Pediatric Medical Trauma Stress (PMTS) Among Children at Risk
Authors: Amichai Ben ari, Daniella Margalit
Abstract:
Medical procedures, such as surgery, may have traumatic significance for some children. This study examines the relationship between maltreatment in children and the development Pediatric Medical Traumatic Stress (PMTS). To this end, differences in the level of distress of children after surgery were examined between two groups: children who were maltreated ("children at risk") and children from the control group ("children who are not at risk"). The study involved 230 parents of children who came to the hospital to undergo surgery. Parents filled out demographic questionnaires to measure socioeconomic variables and psychological questionnaires to measure the distress of the child and parent before surgery. After 6 months from the time of surgery, the parents again filled in the questionnaire measuring the child's distress. The results of the study showed that the level of distress experienced by children at risk after surgery was significantly higher relative to children who are not at risk. It was also found that the level of distress experienced by parents of children at risk in relation to their child’s surgery is significantly higher compared to parents of children who are not at risk. Finally, it was found that the variables: (1) pre-morbid psychological functioning of the child. (2) Parental and family functioning in daily life. (3) Exposure of the child to traumatic events. (4) Support factors for the family. Are variables that predict the development of PMTS in children after surgery, but only for children at risk and not for children who are not at risk. The significance of the findings in relation to the need to identify at-risk populations in the hospitals and the policies derived from them were discussed, and several directions were raised for further research.Keywords: children at risk, pediatric medical traumatic stress (PMTS), PTSD, medical procedures
Procedia PDF Downloads 1288597 Effects of Temperature and Enzyme Concentration on Quality of Pineapple and Pawpaw Blended Juice
Authors: Ndidi F. Amulu, Calistus N. Ude, Patrick E. Amulu, Nneka N. Uchegbu
Abstract:
The effects of temperature and enzyme concentration on the quality of mixed pineapple and pawpaw blended fruits juice were studied. Extracts of the two fruit juices were separately treated at 70 for 15 min each so as to inactivate micro-organisms. They were analyzed and blended in different proportions of 70% pawpaw and 30% pineapple, 60% pawpaw and 40% pineapple, 50% pineapple and 50% pawpaw, 40% pawpaw and 60% pineapple. The characterization of the fresh pawpaw and pineapple juice before blending showed that the juices have good quality. The high water content of the product may have affected the viscosity, vitamin C content and total soluble solid of the blended juice to be low. The effects of the process parameters on the quality showed that better quality of the blended juice can be obtained within the optimum temperature range of (50-70 °C) and enzyme concentration range (0.12-0.18 w/v). The ratio of mix 60% pineapple juice: 40% pawpaw juice has better quality. This showed that pawpaw and pineapple juices can blend effectively to produce a quality juice.Keywords: clarification, pawpaw, pineapple, viscosity, vitamin C
Procedia PDF Downloads 3048596 The Impact of an Ionic Liquid on Hydrogen Generation from a Redox Process Involving Magnesium and Acidic Oilfield Water
Authors: Mohamed A. Deyab, Ahmed E. Awadallah
Abstract:
Under various conditions, we present a promising method for producing pure hydrogen energy from the electrochemical reaction of Mg metal in waste oilfield water (WOW). Mg metal and WOW are primarily consumed in this process. The results show that the hydrogen gas output is highly dependent on temperature and solution pH. The best conditions for hydrogen production were found to be a low pH (2.5) and a high temperature (338 K). For the first time, the Allyl methylimidazolium bis-trifluoromethyl sulfonyl imide) (IL) ionic liquid is used to regulate the rate of hydrogen generation. It has been confirmed that increasing the solution temperature and decreasing the solution pH accelerates Mg dissolution and produces more hydrogen per unit of time. The adsorption of IL on the active sites of the Mg surface is unrestricted by mixing physical and chemical orientation. Inspections using scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and FT-IR spectroscopy were used to identify and characterise surface corrosion of Mg in WOW. This process is also completely safe and can create energy on demand.Keywords: hydrogen production, Mg, wastewater, ionic liquid
Procedia PDF Downloads 1608595 Effect of Sanitary-Environmental Conditions of Diabetic Hypertension Incidence of Displaced Persons
Authors: Radmila Maksimovic, Sonja Ketin, Rade Biocanin, Jelena Maksimovic
Abstract:
The abnormal conditions of life and work genetic factors often play a major role in incidence of diabetes-diabetes, heart disease and vascular disease, jaundice, and post traumatic stress. Trauma and post traumatic stress are most common in the displaced persons,and the focus of this paper is to shed light on this issue in former Yugoslavia, Yugoslavia and now in our country. This is caused by increased beta-cell sensitivity to viruses, the development of autoimmune antibodies against its own pancreascells, degenerative changes in cells that r esult in change of structure and insulin. In this paper, we dealt with traumatic events and long-term psycho social consequences for internally displaced persons, several years after displacement, and found a high level of PTSD symptoms. This stress is present in almost 1/3 of internally displaced persons, and every sixth person is suffering from PTSD in the past. Respondents generally suffer from symptoms of intrusion, but there was a large number of symptoms, avoidance and increased arousal. We also found that gender, age andeducation related to the symptoms. Females, and older respondents and internally displaced persons with lower levels of education how a higher level of PTSD symptoms, especially symptoms of intrusion and increase darousal. It is a highly traumatized sample in which more than 1/2 of respondents experienced more than three traumatic events in life,although the number of traumas experienced before, during and after the conflict varies.We found that during the war, internally displaced persons haveexperienced more traumatic events compared with the periodbefore and after the conflict. Trauma are different in type. No significant correlation between the number of experienced trauma and PTSD, suggesting that it is necessary to further study the structure of past traumas and the intermediary effects of certain risk factors and protective factors.Keywords: living environment, displaced persons, jaundice, diabetes, trauma, diabetic hypertension, post-traumatic stress (PTSD), treatment
Procedia PDF Downloads 3938594 Investigating the Rate of Migration of Plasticizers from PET Bottles into Salad Oil during Storage
Authors: Simin Asadollahi, Amir H. Soruri, Ali Moghimi
Abstract:
Nowadays, salad oils are used in many countries around the world. Therefore, it is of great importance to ensure the safety of these food products which are usually packaged in Polyethylene terephthalate (PET) bottles and come on the market. This study investigated the effects of storage time and temperature on the migration rate of phthalate compounds from PET bottle to salad oil. In more detail, migration rate of bis (2-ethylhexyl) phthalate from bottles to salad oil samples was measured in 1st, the 30th, and the 60th days of storage at a temperature of either 20 or 40 °C. At both storage temperatures, an increase in the storage time led to a statistically significant increase in the migration rate of phthalate compounds (p<.01). Regarding this, the highest migration rate occurred after 60 days of storage in to the samples. Furthermore, it was revealed bis (2-ethylhexyl) phthalate had a higher migration rate at 40 °C than at 20 °C which showed that an increase in the storage temperature would lead to an increase in the migration rate. The highest migration rate occurred in relation to salad oil stored at 40 °C and after 60 days of storage.Keywords: salad oil, migration rate, polyethylene terephthalate, bis (2-ethylhexyl) phthalate
Procedia PDF Downloads 3668593 Kinetic Studies on CO₂ Gasification of Low and High Ash Indian Coals in Context of Underground Coal Gasification
Authors: Geeta Kumari, Prabu Vairakannu
Abstract:
Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts unmineable coals into calorific valuable gases. This technology avoids ash disposal, coal mining, and storage problems. CO₂ gas can be a potential gasifying medium for UCG. CO₂ is a greenhouse gas and, the liberation of this gas to the atmosphere from thermal power plant industries leads to global warming. Hence, the capture and reutilization of CO₂ gas are crucial for clean energy production. However, the reactivity of high ash Indian coals with CO₂ needs to be assessed. In the present study, two varieties of Indian coals (low ash and high ash) are used for thermogravimetric analyses (TGA). Two low ash north east Indian coals (LAC) and a typical high ash Indian coal (HAC) are procured from the coal mines of India. Low ash coal with 9% ash (LAC-1) and 4% ash (LAC-2) and high ash coal (HAC) with 42% ash are used for the study. TGA studies are carried out to evaluate the activation energy for pyrolysis and gasification of coal under N₂ and CO₂ atmosphere. Coats and Redfern method is used to estimate the activation energy of coal under different temperature regimes. Volumetric model is assumed for the estimation of the activation energy. The activation energy estimated under different temperature range. The inherent properties of coals play a major role in their reactivity. The results show that the activation energy decreases with the decrease in the inherent percentage of coal ash due to the ash layer hindrance. A reverse trend was observed with volatile matter. High volatile matter of coal leads to the estimation of low activation energy. It was observed that the activation energy under CO₂ atmosphere at 400-600°C is less as compared to N₂ inert atmosphere. At this temperature range, it is estimated that 15-23% reduction in the activation energy under CO₂ atmosphere. This shows the reactivity of CO₂ gas with higher hydrocarbons of the coal volatile matters. The reactivity of CO₂ with the volatile matter of coal might occur through dry reforming reaction in which CO₂ reacts with higher hydrocarbon, aromatics of the tar content. The observed trend of Ea in the temperature range of 150-200˚C and 400-600˚C is HAC > LAC-1 >LAC-2 in both N₂ and CO₂ atmosphere. At the temperature range of 850-1000˚C, higher activation energy is estimated when compared to those values in the temperature range of 400-600°C. Above 800°C, char gasification through Boudouard reaction progressed under CO₂ atmosphere. It was observed that 8-20 kJ/mol of activation energy is increased during char gasification above 800°C compared to volatile matter pyrolysis between the temperature ranges of 400-600°C. The overall activation energy of the coals in the temperature range of 30-1000˚C is higher in N₂ atmosphere than CO₂ atmosphere. It can be concluded that higher hydrocarbons such as tar effectively undergoes cracking and reforming reactions in presence of CO₂. Thus, CO₂ gas is beneficial for the production of high calorific value syngas using high ash Indian coals.Keywords: clean coal technology, CO₂ gasification, activation energy, underground coal gasification
Procedia PDF Downloads 1738592 Epidemiology and Risk Factors of Injury and Stress Fractures in Male and Female Runners
Authors: Balazs Patczai, Katalin Gocze, Gabriella Kiss, Dorottya Szabo, Tibor Mintal
Abstract:
Introduction: Running has become increasingly popular on a global scale in the past decades. Amateur athletes are taking their sport to a new level in an attempt to surpass their performance goals. The aim of our study was to assess the musculoskeletal condition of amateur runners and the prevalence of injuries with a special focus on stress fracture risk. Methods: The cross sectional analysis included ankle mobility, hamstring and lower back flexibility, the use of Renne’s test for iliotibial band syndrome, functional tests for trunk and rotary stability, and measurements of bone density. Data was collected at 2 major half-marathon events in Hungary. Results: Participants (n=134) mean age was 41.76±8.57 years (males: 40.67±8.83, females: 42.08±8.56). Measures of hamstring and lower back flexibility fell into the category of good for both genders (males: 7.13±6.83cm, females: 10.17±6.67cm). No side asymmetry nor gender differences were characteristic in the case of ankle mobility. Trunk stability was significantly better for males than in females (p=0.004). Markers of bone health were in the low normal range for females and were significantly better for males (T-score: p=0.003, T-ratio: p=0.014, Z-score: p=0.034, Z-ratio: p=0.011). 5.2% of females had a previous stress fracture and 24.1% experienced irregular menstrual cycles during the past year. As for the knowledge on the possible association of energy deficiency, menstrual disturbances and their effect on bone health, Only 8.6% of females have heard of the female athlete triad either during their studies or from a health professional. Discussion: The overall musculoskeletal state was satisfactory for both genders both physically and functionally. More attention and effort should be placed on primary and secondary prevention of amateur runners. Very few active women are well informed about the effects of low energy availability and menstrual dysfunction and the negative impact these have on bone health.Keywords: bone health, flexibility, running, stress fracture
Procedia PDF Downloads 1278591 Seismic Performance Evaluation of Bridge Structures Using 3D Finite Element Methods in South Korea
Authors: Woo Young Jung, Bu Seog Ju
Abstract:
This study described the seismic performance evaluation of bridge structures, located near Daegu metropolitan city in Korea. The structural design code or regulatory guidelines is focusing on the protection of brittle failure or collapse in bridges’ lifetime during an earthquake. This paper illustrated the procedure in terms of the safety evaluation of bridges using simple linear elastic 3D Finite Element (FE) model in ABAQUS platform. The design response spectra based on KBC 2009 were then developed, in order to understand the seismic behavior of bridge structures. Besides, the multiple directional earthquakes were applied and it revealed that the most dominated earthquake direction was transverse direction of the bridge. Also, the bridge structure under the compressive stress was more fragile than the tensile stress and the vertical direction of seismic ground motions was not significantly affected to the structural system.Keywords: seismic, bridge, FEM, evaluation, numerical analysis
Procedia PDF Downloads 3688590 Flame Propagation Velocity of Selected Gas Mixtures Depending on the Temperature
Authors: Kaczmarzyk Piotr, Anna Dziechciarz, Wojciech Klapsa
Abstract:
The purpose of this paper is demonstration the test results of research influence of temperature on the velocity of flame propagation using gas and air mixtures for selected gas mixtures. The research was conducted on the test apparatus in the form of duct 2 m long. The test apparatus was funded from the project: “Development of methods to neutralize threats of explosion for determined tanks contained technical gases, including alternative sources of supply in the fire environment, taking into account needs of rescuers” number: DOB-BIO6/02/50/2014. The Project is funded by The National Centre for Research and Development. This paper presents the results of measurement of rate of pressure rise and rate in flame propagation, using test apparatus for mixtures air and methane or air and propane. This paper presents the results performed using the test apparatus in the form of duct measuring the rate of flame and overpressure wave. Studies were performed using three gas mixtures with different concentrations: Methane (3% to 8% vol), Propane (3% to 6% vol). As regard to the above concentrations, tests were carried out at temperatures 20 and 30 ̊C. The gas mixture was supplied to the inside of the duct by the partial pressure molecules. Data acquisition was made using 5 dynamic pressure transducers and 5 ionization probes, arranged along of the duct. Temperature conditions changes were performed using heater which was mounted on the duct’s bottom. During the tests, following parameters were recorded: maximum explosion pressure, maximum pressure recorded by sensors and voltage recorded by ionization probes. Performed tests, for flammable gas and air mixtures, indicate that temperature changes have an influence on overpressure velocity. It should be noted, that temperature changes do not have a major impact on the flame front velocity. In the case of propane and air mixtures (temperature 30 ̊C) was observed DDT (Deflagration to Detonation) phenomena. The velocity increased from 2 to 20 m/s. This kind of explosion could turn into a detonation, but the duct length is too short (2 m).Keywords: flame propagation, flame propagation velocity, explosion, propane, methane
Procedia PDF Downloads 2278589 Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia
Authors: Mulugeta Gurum Gerechal
Abstract:
Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination and methylene blue
Procedia PDF Downloads 668588 Effect of Temperature on the Permeability and Time-Dependent Change in Thermal Volume of Bentonite Clay During the Heating-Cooling Cycle
Authors: Nilufar Chowdhury, Fereydoun Najafian Jazi, Omid Ghasemi-Fare
Abstract:
The thermal effect on soil properties induces significant variations in hydraulic conductivity, which is attributable to temperature-dependent transitions in soil properties. With the elevation of temperature, there can be a notable increase in intrinsic permeability due to the degeneration of bound water molecules into a free state facilitated by thermal energy input. Conversely, thermal consolidation may cause a reduction in intrinsic permeability as soil particles undergo densification. This thermal response of soil permeability exhibits pronounced heterogeneity across different soil types. Furthermore, this temperature-induced disruption of the bound water within clay matrices can enhance the mineral-to-mineral contact, initiating irreversible deformation within the clay structure. This indicates that when soil undergoes heating-cooling cycles, plastic strain can develop, which needs to be investigated for every soil type to understand the thermo-hydro mechanical behavior of clay properly. This research aims to study the effect of the heating-cooling cycle on the intrinsic permeability and time-dependent evaluation of thermal volume change of sodium Bentonite clay. A temperature-controlled triaxial permeameter cell is used in this study. The selected temperature is 20° C, 40° C, 40° C and 80° C. The hydraulic conductivity of Bentonite clay under 100 kPa confining stresses was measured. Hydraulic conductivity analysis was performed on a saturated sample for a void ratio e = 0.9, corresponding to a dry density of 1.2 Mg/m3. Different hydraulic gradients were applied between the top and bottom of the sample to obtain a measurable flow through the sample. The hydraulic gradient used for the experiment was 4000. The diameter and thickness of the sample are 101. 6 mm, and 25.4 mm, respectively. Both for heating and cooling, the hydraulic conductivity at each temperature is measured after the flow reaches the steady state condition to make sure the volume change due to thermal loading is stabilized. Thus, soil specimens were kept at a constant temperature during both the heating and cooling phases for at least 10-18 days to facilitate the equilibration of hydraulic transients. To assess the influence of temperature-induced volume changes of Bentonite clay, the evaluation of void ratio change during this time period has been monitored. It is observed that the intrinsic permeability increases by 30-40% during the heating cycle. The permeability during the cooling cycle is 10-12% lower compared to the permeability observed during the heating cycle at a particular temperature. This reduction in permeability implies a change in soil fabric due to the thermal effect. An initial increase followed by a rapid decrease in void ratio was observed, representing the occurrence of possible osmotic swelling phenomena followed by thermal consolidation. It has been observed that after a complete heating-cooling cycle, there is a significant change in the void ratio compared to the initial void ratio of the sample. The results obtained suggest that Bentonite clay’s microstructure can change subject to a complete heating-cooling process, which regulates macro behavior such as the permeability of Bentonite clay.Keywords: bentonite, permeability, temperature, thermal volume change
Procedia PDF Downloads 588587 Phytotoxicity of Lead on the Physiological Parameters of Two Varieties of Broad Bean (Vicia faba)
Authors: El H. Bouziani, H. A. Reguieg Yssaad
Abstract:
The phytotoxicity of heavy metals can be expressed on roots and visible part of plants and is characterized by molecular and metabolic answers at various levels of organization of the whole plant. The present study was undertaken on two varieties of broad bean Vicia faba (Sidi Aïch and Super Aguadulce). The device was mounted on a substrate prepared by mixing sand, soil and compost, the substrate was artificially contaminated with three doses of lead nitrate [Pb(NO3)2] 0, 500 and 1000 ppm. Our objective is to follow the behavior of plant opposite the stress by evaluating the physiological parameters. The results reveal a reduction in the parameters of the productivity (chlorophyll and proteins production) with an increase in the osmoregulators (soluble sugars and proline).These results show that the production of broad bean is strongly modified by the disturbance of its internal physiology under lead exposure.Keywords: broad bean, lead, stress, physiological parameters, phytotoxicity
Procedia PDF Downloads 3098586 Phytochemicals and Photosynthesis of Grape Berry Exocarp and Seed (Vitis vinifera, cv. Alvarinho): Effects of Foliar Kaolin and Irrigation
Authors: Andreia Garrido, Artur Conde, Ana Cunha, Ric De Vos
Abstract:
Climate changes predictions point to increases in abiotic stress for crop plants in Portugal, like pronounced temperature variation and decreased precipitation, which will have negative impact on grapevine physiology and consequently, on grape berry and wine quality. Short-term mitigation strategies have, therefore, been implemented to alleviate the impacts caused by adverse climatic periods. These strategies include foliar application of kaolin, an inert mineral, which has radiation reflection proprieties that decreases stress from excessive heat/radiation absorbed by its leaves, as well as smart irrigation strategies to avoid water stress. However, little is known about the influence of these mitigation measures on grape berries, neither on the photosynthetic activity nor on the photosynthesis-related metabolic profiles of its various tissues. Moreover, the role of fruit photosynthesis on berry quality is poorly understood. The main objective of our work was to assess the effects of kaolin and irrigation treatments on the photosynthetic activity of grape berry tissues (exocarp and seeds) and on their global metabolic profile, also investigating their possible relationship. We therefore collected berries of field-grown plants of the white grape variety Alvarinho from two distinct microclimates, i.e. from clusters exposed to high light (HL, 150 µmol photons m⁻² s⁻¹) and low light (LL, 50 µmol photons m⁻² s⁻¹), from both kaolin and non-kaolin (control) treated plants at three fruit developmental stages (green, véraison and mature). Plant irrigation was applied after harvesting the green berries, which also enabled comparison of véraison and mature berries from irrigated and non-irrigated growth conditions. Photosynthesis was assessed by pulse amplitude modulated chlorophyll fluorescence imaging analysis, and the metabolite profile of both tissues was assessed by complementary metabolomics approaches. Foliar kaolin application resulted in, for instance, an increased photosynthetic activity of the exocarp of LL-grown berries at green developmental stage, as compared to the control non-kaolin treatment, with a concomitant increase in the levels of several lipid-soluble isoprenoids (chlorophylls, carotenoids, and tocopherols). The exocarp of mature berries grown at HL microclimate on kaolin-sprayed non-irrigated plants had higher total sugar levels content than all other treatments, suggesting that foliar application of this mineral results in an increased accumulation of photoassimilates in mature berries. Unbiased liquid chromatography-mass spectrometry-based profiling of semi-polar compounds followed by ASCA (ANOVA simultaneous component analysis) and ANOVA statistical analysis indicated that kaolin had no or inconsistent effect on the flavonoid and phenylpropanoid composition in both seed and exocarp at any developmental stage; in contrast, both microclimate and irrigation influenced the level of several of these compounds depending on berry ripening stage. Overall, our study provides more insight into the effects of mitigation strategies on berry tissue photosynthesis and phytochemistry, under contrasting conditions of cluster light microclimate. We hope that this may contribute to develop sustainable management in vineyards and to maintain grape berries and wines with high quality even at increasing abiotic stress challenges.Keywords: climate change, grape berry tissues, metabolomics, mitigation strategies
Procedia PDF Downloads 1258585 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm
Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović
Abstract:
This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.Keywords: genetic algorithms, machining parameters, response surface methodology, turning process
Procedia PDF Downloads 189