Search results for: spectroscopic characterization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2763

Search results for: spectroscopic characterization

963 Effect of Microwave Radiations on Natural Dyes’ Application on Cotton

Authors: Rafia Asghar, Abdul Hafeez

Abstract:

The current research was related with natural dyes’ extraction from the powder of Neem (Azadirachta indica) bark and studied characterization of this dye under microwave radiation’s influence. Both cotton fabric and dyeing powder were exposed to microwave rays for different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) using conventional oven. Aqueous, 60% Methanol and Ethyl Acetate solubilized extracts obtained from Neem (Azadirachta indica) bark were also exposed to different time intervals (2minutes, 4 minutes, 6 minutes, 8 minutes and 10 minutes) of microwave rays exposure. Pre, meta and post mordanting with Alum (2%, 4%, 6%, 8%, and 10%) was done to improve color strength of the extracted dye. Exposure of Neem (Azadirachta indica) bark extract and cotton to microwave rays enhanced the extraction process and dyeing process by reducing extraction time, dyeing time and dyeing temperature. Microwave rays treatment had a very strong influence on color fastness and color strength properties of cotton that was dyes using Neem (Azadirachta indica) bark for 30 minutes and dyeing cotton with that Neem bark extract for 75 minutes at 30°C. Among pre, meta and post mordanting, results indicated that 5% concentration of Alum in meta mordanting exhibited maximum color strength.

Keywords: dyes, natural dyeing, ecofriendly dyes, microwave treatment

Procedia PDF Downloads 690
962 Development of Wound Dressing System Based on Hydrogel Matrix Incorporated with pH-Sensitive Nanocarrier-Drug Systems

Authors: Dagmara Malina, Katarzyna Bialik-Wąs, Klaudia Pluta

Abstract:

The growing significance of transdermal systems, in which skin is a route for systemic drug delivery, has generated a considerable amount of data which has resulted in a deeper understanding of the mechanisms of transport across the skin in the context of the controlled and prolonged release of active substances. One of such solutions may be the use of carrier systems based on intelligent polymers with different physicochemical properties. In these systems, active substances, e.g. drugs, can be conjugated (attached), immobilized, or encapsulated in a polymer matrix that is sensitive to specific environmental conditions (e.g. pH or temperature changes). Intelligent polymers can be divided according to their sensitivity to specific environmental stimuli such as temperature, pH, light, electric, magnetic, sound, or electromagnetic fields. Materials & methods—The first stage of the presented research concerned the synthesis of pH-sensitive polymeric carriers by a radical polymerization reaction. Then, the selected active substance (hydrocortisone) was introduced into polymeric carriers. In a further stage, bio-hybrid sodium alginate/poly(vinyl alcohol) – SA/PVA-based hydrogel matrices modified with various carrier-drug systems were prepared with the chemical cross-linking method. The conducted research included the assessment of physicochemical properties of obtained materials i.e. degree of hydrogel swelling and degradation studies as a function of pH in distilled water and phosphate-buffered saline (PBS) at 37°C in time. The gel fraction represents the insoluble gel fraction as a result of inter-molecule cross-linking formation was also measured. Additionally, the chemical structure of obtained hydrogels was confirmed using FT-IR spectroscopic technique. The dynamic light scattering (DLS) technique was used for the analysis of the average particle size of polymer-carriers and carrier-drug systems. The nanocarriers morphology was observed using SEM microscopy. Results & Discussion—The analysis of the encapsulated polymeric carriers showed that it was possible to obtain the time-stable empty pH-sensitive carrier with an average size 479 nm and the encapsulated system containing hydrocortisone with an average 543 nm, which was introduced into hydrogel structure. Bio-hybrid hydrogel matrices are stable materials, and the presence of an additional component: pH-sensitive carrier – hydrocortisone system, does not reduce the degree of cross-linking of the matrix nor its swelling ability. Moreover, the results of swelling tests indicate that systems containing higher concentrations of the drug have a slightly higher sorption capacity in each of the media used. All analyzed materials show stable and statically changing swelling values in simulated body fluids - there is no sudden fluid uptake and no rapid release from the material. The analysis of FT-IR spectra confirms the chemical structure of the obtained bio-hybrid hydrogel matrices. In the case of modifications with a pH-sensitive carrier, a much more intense band can be observed in the 3200-3500 cm⁻¹ range, which most likely originates from the strong hydrogen interactions that occur between individual components.

Keywords: hydrogels, polymer nanocarriers, sodium alginate/poly(vinyl alcohol) matrices, wound dressings.

Procedia PDF Downloads 144
961 Characterization the Internal Corrosion Behavior by Using Natural Inhibitor in Crude Oil of Low Carbon Steel Pipeline

Authors: Iman Adnan Annon, Kadhim F. Alsultan

Abstract:

This study investigate the internal corrosion of low carbon steel pipelines in the crude oil, as well as prepare and use natural and locally available plant as a natural corrosion inhibiter, the nature extraction achieved by two types of solvents in order to show the solvent effect on inhibition process, the first being distilled water and the second is diethyl ether. FT-IR spectra and using a chemical reagents achieved to detection the presence of many active groups and the presence of tannins, phenols, and alkaloids in the natural extraction. Some experiments were achieved to estimate the performance of a new inhibitor, one of these tests include corrosion measurement by simple immersion in crude oil within and without inhibitors which added in different amounts 30,40,50and 60 ppm at tow temperature 300 and 323k, where the best inhibition efficiencies which get when added the inhibitors in a critical amounts or closest to it, since for the aqueous extract (EB-A) the inhibition efficiency reached (94.4) and (86.71)% at 300 and 323k respectively, and for diethyl ether extract (EB-D) reached (82.87) and (84.6)% at 300 and 323k respectively. Optical microscopy examination have been conducted to evaluate the corrosion nature where it show a clear difference in the topography of the immersed samples surface after add the inhibitors at two temperatures. The results show that the new corrosion inhibitor is not only equivalent to a chemical inhibitor but has greatly improvement properties such as: high efficiency, low cost, non-toxic, easily to produce, and nonpolluting as compared with chemical inhibitor.

Keywords: corrosion in pipeline, inhibitors, crude oil, carbon steel, types of solvent

Procedia PDF Downloads 137
960 Characterization of Aluminosilicates and Verification of Their Impact on Quality of Ceramic Proppants Intended for Shale Gas Output

Authors: Joanna Szymanska, Paulina Wawulska-Marek, Jaroslaw Mizera

Abstract:

Nowadays, the rapid growth of global energy consumption and uncontrolled depletion of natural resources become a serious problem. Shale rocks are the largest and potential global basins containing hydrocarbons, trapped in closed pores of the shale matrix. Regardless of the shales origin, mining conditions are extremely unfavourable due to high reservoir pressure, great depths, increased clay minerals content and limited permeability (nanoDarcy) of the rocks. Taking into consideration such geomechanical barriers, effective extraction of natural gas from shales with plastic zones demands effective operations. Actually, hydraulic fracturing is the most developed technique based on the injection of pressurized fluid into a wellbore, to initiate fractures propagation. However, a rapid drop of pressure after fluid suction to the ground induces a fracture closure and conductivity reduction. In order to minimize this risk, proppants should be applied. They are solid granules transported with hydraulic fluids to locate inside the rock. Proppants act as a prop for the closing fracture, thus gas migration to a borehole is effective. Quartz sands are commonly applied proppants only at shallow deposits (USA). Whereas, ceramic proppants are designed to meet rigorous downhole conditions to intensify output. Ceramic granules predominate with higher mechanical strength, stability in strong acidic environment, spherical shape and homogeneity as well. Quality of ceramic proppants is conditioned by raw materials selection. Aim of this study was to obtain the proppants from aluminosilicates (the kaolinite subgroup) and mix of minerals with a high alumina content. These loamy minerals contain a tubular and platy morphology that improves mechanical properties and reduces their specific weight. Moreover, they are distinguished by well-developed surface area, high porosity, fine particle size, superb dispersion and nontoxic properties - very crucial for particles consolidation into spherical and crush-resistant granules in mechanical granulation process. The aluminosilicates were mixed with water and natural organic binder to improve liquid-bridges and pores formation between particles. Afterward, the green proppants were subjected to sintering at high temperatures. Evaluation of the minerals utility was based on their particle size distribution (laser diffraction study) and thermal stability (thermogravimetry). Scanning Electron Microscopy was useful for morphology and shape identification combined with specific surface area measurement (BET). Chemical composition was verified by Energy Dispersive Spectroscopy and X-ray Fluorescence. Moreover, bulk density and specific weight were measured. Such comprehensive characterization of loamy materials confirmed their favourable impact on the proppants granulation. The sintered granules were analyzed by SEM to verify the surface topography and phase transitions after sintering. Pores distribution was identified by X-Ray Tomography. This method enabled also the simulation of proppants settlement in a fracture, while measurement of bulk density was essential to predict their amount to fill a well. Roundness coefficient was also evaluated, whereas impact on mining environment was identified by turbidity and solubility in acid - to indicate risk of the material decay in a well. The obtained outcomes confirmed a positive influence of the loamy minerals on ceramic proppants properties with respect to the strict norms. This research is perspective for higher quality proppants production with costs reduction.

Keywords: aluminosilicates, ceramic proppants, mechanical granulation, shale gas

Procedia PDF Downloads 161
959 Preparation and Characterization of Titania-Coated Glass Fibrous Filters Using Aqueous Peroxotitanium Acid Solution

Authors: Ueda Honoka, Yasuo Hasegawa, Fumihiro Nishimura, Jae-Ho Kim, Susumu Yonezawa

Abstract:

Aqueous peroxotitanium acid solution prepared from the TiO₂ fluorinated by F₂ gas was used for the TiO₂ coating on glass fibrous filters in this study. The coating of TiO₂ on the surface of glass fibers was carried out at 120℃ and for 15 min ~ 24 h with aqueous peroxotitanium acid solution using a hydrothermal synthesis autoclave reactor. The morphology TiO₂ coating layer was largely dependent on the reaction time, as shown in the results of scanning electron microscopy and energy dispersive X-ray spectroscopy. Increasing the reaction times, the TiO₂ layer on the glass expanded uniformly. Moreover, the surface fluorination of glass fibers can promote the formation of the TiO₂ layer on the surface. The photocatalytic activity of prepared titania-coated glass fibrous filters was investigated by both the degradation test of methylene blue (MB) and the decomposition test of gaseous acetaldehyde. The MB decomposition ratio with fluorinated samples was about 95% for 30 min of UV irradiation time, and it was much higher than that (70%) with the untreated thing. The decomposition ratio (50%) of gaseous acetaldehyde with fluorinated samples was also higher than that (30%) with the untreated thing. Consequently, photocatalytic activity is enhanced by surface fluorination.

Keywords: aqueous peroxotitanium acid solution, titania-coated glass fibrous filters, photocatalytic activity, surface fluorination

Procedia PDF Downloads 83
958 Preparation and Characterization of Mixed Cu-Ag-Pd Oxide Supported Catalysts for Complete Catalytic Oxidation of Methane

Authors: Ts. Lazarova, V. Tumbalev, S. Atanacova-Vladimirova, G. Ivanov, A. Naydenov, D. Kovacheva

Abstract:

Methane is a major Greenhouse Gas (GHG) that accounts for 14% of the world’s total amount of GHG emissions, originating mainly from agriculture, Coal mines, land fields, wastewater and oil and gas facilities. Nowadays the problem caused by the methane emissions has been a subject of an increased concern. One of the methods for neutralization of the methane emissions is it's complete catalytic oxidation. The efforts of the researchers are focused on the development of new types of catalysts and optimizing the existing catalytic systems in order to prevent the sintering of the palladium, providing at the same time a sufficient activity at temperatures below 500oC. The aim of the present work is to prepare mixed Cu-Ag-Pd oxide catalysts supported on alumina and to test them for methane complete catalytic oxidation. Cu-Ag-Pd/Al2O3 were prepared on a γ-Al2O3 (BET surface area = 220 m2/g) by the incipient wetness method using the corresponding metal nitrates (Cu:Ag = 90:10, Cu:Pd =97:3, Cu:Ag:Pd= 87:10:3) as precursors. A second set of samples were prepared with addition of urea to the metal nitrate solutions with the above mentioned ratios assuming increased dispersivity of the catalysts. The catalyst samples were dried at 100°C for 3 hours and calcined at 550°C for 30 minutes. Catalysts samples were characterized using X-ray diffraction (XRD), low temperature adsorption of nitrogen (BET) and scanning electron microscopy (SEM). The catalytic activity tests were carried out in a continuous flow type of reactor at atmospheric pressure. The effect of catalyst aging at 500 oC for 120 h on the methane combustion activity was also investigated. The results clearly indicate the synergetic effect of Ag and Pd on the catalytic activity.

Keywords: catalysts, XRD, BET, SEM, catalytic oxidation

Procedia PDF Downloads 381
957 Development and Characterization of Biscuits Incorporated with Jackfruit (Artocarpus heterophyllus) Seeds and Cassava (Manihot esculenta)

Authors: Elina Brahma Hazarika, Jeuti Basumatary, Deepanka Saikia, Jaydeep Das, Micky Moni D'mary, Fungkha Basumatary

Abstract:

This study includes development of two varieties of biscuits incorporated with: the seeds of Jack fruit (Artocarpus heterophyllus), which post-consumption of it’s pulp, is discarded as a waste, and Cassava (Manihot esculenta) tubers.The jack fruit seeds and cassava were first ground into flour and its proximate and physiochemical properties were studied. The biscuits that were developed incorporating them had 50% wheat flour and 50% jackfruit seed flour and 50% cassava flours as the major composition, apart from the other general ingredients use in making biscuits. Various trials of compositions were made for baking to get the overall desirable acceptability in biscuits through sensory evaluation. Finally, the best composition of ingredients was selected to make the biscuits, and hence studies were done accordingly to compare it with the properties of their respective raw flours. The results showed that the proximate composition of the biscuits fared better than that of their respective flours: There was a decrease in the Moisture content of both Jackfruit Seed Biscuits and Cassava Biscuits to 4.5% and 6.7% than that of their respective raw flours (8 and 12%). Post-baking, there is increase in the percentages of ash, protein, and fibre contents in both Jackfruit Seed Biscuits and Cassava Biscuits; the values being 3% and 3.8%, 13.2% and 3.3%, and 3.2 and 4.1% respectively. Also the total carbohydrate content in Jackfruit Seed Biscuits and Cassava Biscuits were 66.7% and 71.7% respectively. Their sensory evaluation and texture study also yielded a clear review that they have an overall good acceptability.

Keywords: baking, proximate, sensory, texture

Procedia PDF Downloads 317
956 Effect of Hydroxy Propyl Methyl Cellulose (HPMC) Coating in Combination with MGSO4 on Some Guava Cultivars

Authors: Muhammad Randhawa, Muhammad Nadeem

Abstract:

Guava (Psidium guajava L.) is a vital source of minerals, vitamins, dietary fiber and antioxidants. Owing to highly perishable nature and proning towards chilling injury, diseases, insect-pests and physical damage the main drawbacks of guava after harvesting, present study was designed. Due to its delicacy in physiology, economic importance, effects of pre and postharvest factors and maturity indices, guava fruits should be given prime importance for good quality attributes. In this study guava fruits were stored at 10°C with 80% relative humidity after treating with different levels of sulphate salt of magnesium followed by dipping in cellulose based edible coating hydroxy propyl methyl cellulose (HPMC). The main objective of this coating was to enhance the shelf life of guava by inhibiting the respiration and also by binding the dissolved solids with salt application. Characterization for quality attributes including physical, physiological and bio chemical analysis was performed after every 7 days interval till the fruit remains edible during the storage period of 4 weeks. Finally, data obtained was subjected to statistical analysis. It was concluded on statistical basis that Surahi variety (treated with 5% MgSO4) showed best storage stability and kept its original quality up to almost 23 days during storage.

Keywords: edible coating, guava cultivars, physicochemical attributes, storage

Procedia PDF Downloads 323
955 Antibiotic Susceptibility Profile and Horizontal Gene Transfer in Pseudomonas sp. Isolated from Clinical Specimens

Authors: Sadaf Ilyas, Saba Riaz

Abstract:

The extensive use of antibiotics has led to increases emergence of antibiotic-resistant organisms. Pseudomonas is a notorious opportunistic pathogen involoved in nosocomial infections and exhibit innate resistance to many antibiotics. The present study was conducted to assess the prevalence, levels of antimicrobial susceptibility and resistance mechanisms of Pseudomonas. A total of thirty clinical strains of Pseudomonas were isolated from different clinical sites of infection. All clinical specimens were collected from Chughtais Lahore Lab. Jail road, during 8-07-2010 to 11-01-2011. Biochemical characterization was done using routine biochemical tests. Antimicrobial susceptibility was determined by Kirby-Baeur method. The plasmids were isolated from all the strains and digested with restriction enzyme PstI and EcoRI. Transfer of Multi-resistance plasmid was checked via transformation and conjugation to confirm the plasmid mediated resistance to antibiotics. The prevalence of Pseudomonas in clinical specimens was found out to be 14% of all bacterial infections. IPM has shown to be the most effective drug against Pseudomonas followed by CES, PTB and meropenem, wheareas most of the Pseudomonas strains have developed significant resistance against Penicillins and some Cephalasporins. Antibiotic resistance determinants were carried by plasmids, as they conferred resistance to transformed K1 strains. The isolates readily undergo conjugation, transferring the resistant genes to other strains, illustrating the high rates of cross infection and nosocomial infection in the immunocompromised patients.

Keywords: pseudomonas, antibiotics, drug resistance, horizontal gene transfer

Procedia PDF Downloads 343
954 Full Characterization of Heterogeneous Antibody Samples under Denaturing and Native Conditions on a Hybrid Quadrupole-Orbitrap Mass Spectrometer

Authors: Rowan Moore, Kai Scheffler, Eugen Damoc, Jennifer Sutton, Aaron Bailey, Stephane Houel, Simon Cubbon, Jonathan Josephs

Abstract:

Purpose: MS analysis of monoclonal antibodies (mAbs) at the protein and peptide levels is critical during development and production of biopharmaceuticals. The compositions of current generation therapeutic proteins are often complex due to various modifications which may affect efficacy. Intact proteins analyzed by MS are detected in higher charge states that also provide more complexity in mass spectra. Protein analysis in native or native-like conditions with zero or minimal organic solvent and neutral or weakly acidic pH decreases charge state value resulting in mAb detection at higher m/z ranges with more spatial resolution. Methods: Three commercially available mAbs were used for all experiments. Intact proteins were desalted online using size exclusion chromatography (SEC) or reversed phase chromatography coupled on-line with a mass spectrometer. For streamlined use of the LC- MS platform we used a single SEC column and alternately selected specific mobile phases to perform separations in either denaturing or native-like conditions: buffer A (20 % ACN, 0.1 % FA) with Buffer B (100 mM ammonium acetate). For peptide analysis mAbs were proteolytically digested with and without prior reduction and alkylation. The mass spectrometer used for all experiments was a commercially available Thermo Scientific™ hybrid Quadrupole-Orbitrap™ mass spectrometer, equipped with the new BioPharma option which includes a new High Mass Range (HMR) mode that allows for improved high mass transmission and mass detection up to 8000 m/z. Results: We have analyzed the profiles of three mAbs under reducing and native conditions by direct infusion with offline desalting and with on-line desalting via size exclusion and reversed phase type columns. The presence of high salt under denaturing conditions was found to influence the observed charge state envelope and impact mass accuracy after spectral deconvolution. The significantly lower charge states observed under native conditions improves the spatial resolution of protein signals and has significant benefits for the analysis of antibody mixtures, e.g. lysine variants, degradants or sequence variants. This type of analysis requires the detection of masses beyond the standard mass range ranging up to 6000 m/z requiring the extended capabilities available in the new HMR mode. We have compared each antibody sample that was analyzed individually with mixtures in various relative concentrations. For this type of analysis, we observed that apparent native structures persist and ESI is benefited by the addition of low amounts of acetonitrile and formic acid in combination with the ammonium acetate-buffered mobile phase. For analyses on the peptide level we analyzed reduced/alkylated, and non-reduced proteolytic digests of the individual antibodies separated via reversed phase chromatography aiming to retrieve as much information as possible regarding sequence coverage, disulfide bridges, post-translational modifications such as various glycans, sequence variants, and their relative quantification. All data acquired were submitted to a single software package for analysis aiming to obtain a complete picture of the molecules analyzed. Here we demonstrate the capabilities of the mass spectrometer to fully characterize homogeneous and heterogeneous therapeutic proteins on one single platform. Conclusion: Full characterization of heterogeneous intact protein mixtures by improved mass separation on a quadrupole-Orbitrap™ mass spectrometer with extended capabilities has been demonstrated.

Keywords: disulfide bond analysis, intact analysis, native analysis, mass spectrometry, monoclonal antibodies, peptide mapping, post-translational modifications, sequence variants, size exclusion chromatography, therapeutic protein analysis, UHPLC

Procedia PDF Downloads 360
953 Raman Spectral Fingerprints of Healthy and Cancerous Human Colorectal Tissues

Authors: Maria Karnachoriti, Ellas Spyratou, Dimitrios Lykidis, Maria Lambropoulou, Yiannis S. Raptis, Ioannis Seimenis, Efstathios P. Efstathopoulos, Athanassios G. Kontos

Abstract:

Colorectal cancer is the third most common cancer diagnosed in Europe, according to the latest incidence data provided by the World Health Organization (WHO), and early diagnosis has proved to be the key in reducing cancer-related mortality. In cases where surgical interventions are required for cancer treatment, the accurate discrimination between healthy and cancerous tissues is critical for the postoperative care of the patient. The current study focuses on the ex vivo handling of surgically excised colorectal specimens and the acquisition of their spectral fingerprints using Raman spectroscopy. Acquired data were analyzed in an effort to discriminate, in microscopic scale, between healthy and malignant margins. Raman spectroscopy is a spectroscopic technique with high detection sensitivity and spatial resolution of few micrometers. The spectral fingerprint which is produced during laser-tissue interaction is unique and characterizes the biostructure and its inflammatory or cancer state. Numerous published studies have demonstrated the potential of the technique as a tool for the discrimination between healthy and malignant tissues/cells either ex vivo or in vivo. However, the handling of the excised human specimens and the Raman measurement conditions remain challenging, unavoidably affecting measurement reliability and repeatability, as well as the technique’s overall accuracy and sensitivity. Therefore, tissue handling has to be optimized and standardized to ensure preservation of cell integrity and hydration level. Various strategies have been implemented in the past, including the use of balanced salt solutions, small humidifiers or pump-reservoir-pipette systems. In the current study, human colorectal specimens of 10X5 mm were collected from 5 patients up to now who underwent open surgery for colorectal cancer. A novel, non-toxic zinc-based fixative (Z7) was used for tissue preservation. Z7 demonstrates excellent protein preservation and protection against tissue autolysis. Micro-Raman spectra were recorded with a Renishaw Invia spectrometer from successive random 2 micrometers spots upon excitation at 785 nm to decrease fluorescent background and secure avoidance of tissue photodegradation. A temperature-controlled approach was adopted to stabilize the tissue at 2 °C, thus minimizing dehydration effects and consequent focus drift during measurement. A broad spectral range, 500-3200 cm-1,was covered with five consecutive full scans that lasted for 20 minutes in total. The average spectra were used for least square fitting analysis of the Raman modes.Subtle Raman differences were observed between normal and cancerous colorectal tissues mainly in the intensities of the 1556 cm-1 and 1628 cm-1 Raman modes which correspond to v(C=C) vibrations in porphyrins, as well as in the range of 2800-3000 cm-1 due to CH2 stretching of lipids and CH3 stretching of proteins. Raman spectra evaluation was supported by histological findings from twin specimens. This study demonstrates that Raman spectroscopy may constitute a promising tool for real-time verification of clear margins in colorectal cancer open surgery.

Keywords: colorectal cancer, Raman spectroscopy, malignant margins, spectral fingerprints

Procedia PDF Downloads 90
952 Water Diffusivity in Amorphous Epoxy Resins: An Autonomous Basin Climbing-Based Simulation Method

Authors: Betim Bahtiri, B. Arash, R. Rolfes

Abstract:

Epoxy-based materials are frequently exposed to high-humidity environments in many engineering applications. As a result, their material properties would be degraded by water absorption. A full characterization of the material properties under hygrothermal conditions requires time- and cost-consuming experimental tests. To gain insights into the physics of diffusion mechanisms, atomistic simulations have been shown to be effective tools. Concerning the diffusion of water in polymers, spatial trajectories of water molecules are obtained from molecular dynamics (MD) simulations allowing the interpretation of diffusion pathways at the nanoscale in a polymer network. Conventional MD simulations of water diffusion in amorphous polymers lead to discrepancies at low temperatures due to the short timescales of the simulations. In the proposed model, this issue is solved by using a combined scheme of autonomous basin climbing (ABC) with kinetic Monte Carlo and reactive MD simulations to investigate the diffusivity of water molecules in epoxy resins across a wide range of temperatures. It is shown that the proposed simulation framework estimates kinetic properties of water diffusion in epoxy resins that are consistent with experimental observations and provide a predictive tool for investigating the diffusion of small molecules in other amorphous polymers.

Keywords: epoxy resins, water diffusion, autonomous basin climbing, kinetic Monte Carlo, reactive molecular dynamics

Procedia PDF Downloads 65
951 Localized Analysis of Cellulosic Fibrous Insulation Materials

Authors: Chady El Hachem, Pan Ye, Kamilia Abahri, Rachid Bennacer

Abstract:

Considered as a building construction material, and regarding its environmental benefits, wood fiber insulation is the material of interest in this work. The definition of adequate elementary representative volume that guarantees reliable understanding of the hygrothermal macroscopic phenomena is very critical. At the microscopic scale, when subjected to hygric solicitations, fibers undergo local dimensionless variations. It is therefore necessary to master this behavior, which affects the global response of the material. This study consists of an experimental procedure using the non-destructive method, X-ray tomography, followed by morphological post-processing analysis using ImageJ software. A refine investigation took place in order to identify the representative elementary volume and the sufficient resolution for accurate structural analysis. The second part of this work was to evaluate the microscopic hygric behavior of the studied material. Many parameters were taken into consideration, like the evolution of the fiber diameters, distribution along the sorption cycle and the porosity, and the water content evolution. In addition, heat transfer simulations based on the energy equation resolution were achieved on the real structure. Further, the problematic of representative elementary volume was elaborated for such heterogeneous material. Moreover, the material’s porosity and its fibers’ thicknesses show very big correlation with the water content. These results provide the literature with very good understanding of wood fiber insulation’s behavior.

Keywords: hygric behavior, morphological characterization, wood fiber insulation material, x-ray tomography

Procedia PDF Downloads 266
950 Synthesis of Visible-Light-Driven Magnetically Recoverable N-TiO2@SiO2@Fe3O4 Nanophotocatalyst for Enhanced Degradation of Ibuprofen

Authors: Ashutosh Kumar, Irene M. C. Lo

Abstract:

Ever since the discovery of TiO2 for decomposition of cyanide in water, it has been investigated extensively for the photocatalytic degradation of environmental pollutants, and became the most practical and prevalent photocatalyst. The superiority of TiO2 is due to its chemical and biological inertness, nontoxicity, strong oxidizing power and cost-effectiveness. However, during degradation of pollutants in wastewater, it suffers from problems, such as (a) separation after use, and (b) its poor photocatalytic performance under visible light irradiation (~45% of the solar spectrum). In order to bridge the research gaps, N-TiO2@SiO2@Fe3O4 nanophotocatalysts of average size 19 nm and effective surface area 47 m2 gm-1 were synthesized using sol-gel method. The characterization was performed using BET, TEM-EDX, VSM and XRD. The performance was improved by considering different factors involved during the synthesis, such as calcination temperature, amount of Fe3O4 nanoparticles used and amount of urea used for N-doping. The final nanophotocatalyst was calcined at 500 °C which was able to degrade 94% of the ibuprofen within 5 h of irradiation time. Under the influence of ~200 mT electromagnetic field, 95% nanophotocatalysts separation efficiency was achieved within 20-25 min. Moreover, the effect of different visible light source of similar irradiance, such as compact fluorescent lamp (CFL) and light emitting diode (LED), is also investigated in this research. The performance of nanophotocatalysts was found to be comparatively higher under ~310 µW cm-2 irradiance with peak emissive wavelengths of 543 nm emitted by CFL. Therefore, a promising visible-light-driven magnetically separable TiO2-based nanophotocatalysts was synthesized for the efficient degradation of ibuprofen.

Keywords: ibuprofen, magnetic N-TiO2, photocatalysis, visible light sources

Procedia PDF Downloads 247
949 Induced Chemistry for Dissociative Electron Attachment to Focused Electron Beam Induced Deposition Precursors Based on Ti, Si and Fe Metal Elements

Authors: Maria Pintea, Nigel Mason

Abstract:

Induced chemistry is one of the newest pathways in the nanotechnology field with applications in the focused electron beam induced processes for deposition of nm scale structures. Si(OPr)₄ and Ti(OEt)₄ are two of the precursors that have not been so extensively researched, though highly sought for semiconductor and medical applications fields, the two compounds make good candidates for FEBIP and are the subject of velocity slice map imaging analysis for deposition purposes, offering information on kinetic energies, fragmentation channels, and angular distributions. The velocity slice map imaging technique is a method used for the characterization of molecular dynamics of the molecule and the fragmentation channels as a result of induced chemistry. To support the gas-phase analysis, Meso-Bio-Nano simulations of irradiation dynamics studies are employed with final results on Fe(CO)₅ deposited on various substrates. The software is capable of running large scale simulations for complex biomolecular, nano- and mesoscopic systems with applications to thermos-mechanical DNA damage, complex materials, gases, nanoparticles for cancer research and deposition applications for nanotechnology, using a large library of classical potentials, many-body force fields, molecular force fields involved in the classical molecular dynamics.

Keywords: focused electron beam induced deposition, FEBID, induced chemistry, molecular dynamics, velocity map slice imaging

Procedia PDF Downloads 107
948 Development and Characterization of Soya Phosphatidylcholine Complex of Coumestans from Eclipta alba for the Management of Hepatotoxicity

Authors: Abhishek Kumar Jain, Anki Jain, Yuvraj Singh Dangi, Brajesh Kumar Tiwari

Abstract:

The plant Eclipta alba Hassk. (Family: Compositae) contains coumestans (wedelolactone and demethyl wedelolactone) used in liver disorders. The objective of the present investigation was to develop a formulation of these coumestans in combination with the soya phosphatidylcholine (PC), in order to overcome the limitation of absorption and to investigate the protective effect of coumestans–phosphatidylcholine complex (C-PC) on carbon tetrachloride induced acute liver damage in rats. Methanolic extract (ME) of the whole plant of Eclipta alba was fractionated with water and then with ehylacetate. Coumestans were characterized in the ethylacetate fraction of methanolic extract (EFME). The C-PC was prepared by dissolving EFME and PC in 1:1 ratio in dichloromethane and heating at 60°C for 2 h. The C-PC was characterized by DSC and FTIR spectroscopy. In vitro drug release from EFME and C-PC through egg membrane was measured using UV-Visible spectrophotometer. The hepatoprotective activity of C-PC (equivalent to 5.35 and 10.7 mg/kg body weight of EFME), ME 250 mg/kg and EFME 5.35 mg/kg was evaluated by measuring various enzymes level. C-PC significantly provided better protection to the liver by restoring the enzyme levels of SGPT, SGOT, ALP and total billirubin with respect to carbon tetrachloride (CCl4) treated group (P < 0.001). Histopathological studies were also performed. The C-PC provided better protection to rat liver than ME and EFME at similar doses as well as shown significant regeneration of hepatocytes, central vein, intact cytoplasm, and nucleus.

Keywords: hepatotoxicity, wedelolactone, soya phosphatidylcholine, eclipta alba

Procedia PDF Downloads 403
947 Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Neem (Azadiractha Indica) Leaf Extract and Investigate Its Antibacterial Activities

Authors: Elmineh Tsegahun Gedif

Abstract:

Zinc oxide nanoparticles (ZnO NPs) have attracted huge attention due to catalytic, optical, photonic, and antibacterial activity. Zinc oxide nanoparticles were successfully synthesized via a fast, non-toxic, cost-effective, and eco-friendly method by biologically reducing Zn(NO3)2.6H2O solution with Neem (Azadirachta indica) leaf extract under optimum conditions (pH = 9). The presence of active flavonoids, phenolic groups, alkaloids, terpenoids, and tannins, which were in the biomass of the Neem leaf extract before and after reduction, was identified using qualitative screening methods (observing the color changes) and FT-IR Spectroscopy. The formation of ZnO NPs was visually indicated by the color changes from colorless to light yellow color. Biosynthesized nanoparticles were also characterized by UV-visible, FT-IR, and XRD spectroscopies. The reduction process was simple and convenient to handle and was monitored by UV-visible spectroscopy that showed surface plasmon resonance (SPR) of the ZnO NPs at 321 nm. This result clearly revealed the formation of ZnO NPs. X-ray diffraction was used to investigate the crystal structure. The average particle size of ZnO powder and around 20 nm using the line width of the plane, and the refraction peak using Scherrer’s equation. The synthesized zinc oxide nanoparticles were evaluated for antimicrobial activities against Gram-positive and Gram-negative bacteria. Zinc nanoparticles exhibited the maximum zone of inhibition against Escherichia coli (15 mm), while the least activity was seen against Staphylococcus aureus.

Keywords: antimicrobial activity, azadirachta indica, green synthesis, ZnO NPs

Procedia PDF Downloads 110
946 Estimation of Shear Wave Velocity from Cone Penetration Test for Structured Busan Clays

Authors: Vinod K. Singh, S. G. Chung

Abstract:

The degree of structuration of Busan clays at the mouth of Nakdong River mouth was highly influenced by the depositional environment, i.e., flow of the river stream, marine regression, and transgression during the sedimentation process. As a result, the geotechnical properties also varies along the depth with change in degree of structuration. Thus, the in-situ tests such as cone penetration test (CPT) could not be used to predict various geotechnical properties properly by using the conventional empirical methods. In this paper, the shear wave velocity (Vs) was measured from the field using the seismic dilatometer. The Vs was also measured in the laboratory from high quality undisturbed and remolded samples using bender element method to evaluate the degree of structuration. The degree of structuration was quantitatively defined by the modulus ratio of undisturbed to remolded soil samples which is found well correlated with the normalized void ratio (e0/eL) where eL is the void ratio at the liquid limit. It is revealed that the empirical method based on laboratory results incorporating e0/eL can predict Vs from the field more accurately. Thereafter, the CPT based empirical method was developed to estimate the shear wave velocity taking the effect of structuration in the consideration. The developed method was found to predict shear wave velocity reasonably for Busan clays.

Keywords: level of structuration, normalized modulus, normalized void ratio, shear wave velocity, site characterization

Procedia PDF Downloads 234
945 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major

Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd

Abstract:

Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.

Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania

Procedia PDF Downloads 447
944 Characterization of Printed Reflectarray Elements on Variable Substrate Thicknesses

Authors: M. Y. Ismail, Arslan Kiyani

Abstract:

Narrow bandwidth and high loss performance limits the use of reflectarray antennas in some applications. This article reports on the feasibility of employing strategic reflectarray resonant elements to characterize the reflectivity performance of reflectarrays in X-band frequency range. Strategic reflectarray resonant elements incorporating variable substrate thicknesses ranging from 0.016λ to 0.052λ have been analyzed in terms of reflection loss and reflection phase performance. The effect of substrate thickness has been validated by using waveguide scattering parameter technique. It has been demonstrated that as the substrate thickness is increased from 0.508mm to 1.57mm the measured reflection loss of dipole element decreased from 5.66dB to 3.70dB with increment in 10% bandwidth of 39MHz to 64MHz. Similarly the measured reflection loss of triangular loop element is decreased from 20.25dB to 7.02dB with an increment in 10% bandwidth of 12MHz to 23MHz. The results also show a significant decrease in the slope of reflection phase curve as well. A Figure of Merit (FoM) has also been defined for the comparison of static phase range of resonant elements under consideration. Moreover, a novel numerical model based on analytical equations has been established incorporating the material properties of dielectric substrate and electrical properties of different reflectarray resonant elements to obtain the progressive phase distribution for each individual reflectarray resonant element.

Keywords: numerical model, reflectarray resonant elements, scattering parameter measurements, variable substrate thickness

Procedia PDF Downloads 274
943 Characterization of Mineralogy, Geochemical and Origin of Nephelinitic Jurf Ed-darawish Volcano in Western Central Jordan

Authors: Hassan Farhan Alfugha

Abstract:

the cenozoic volcanism in westt central jordan which show homohgenous lava from upper mantle.es represented by basaltic scoria cones and flows and covers approximately 10 km. fourtten nephelinitic rock samples were collected at jurf ed-darawish volcanism to analyze major minor and trace elements by using XRF.. geochemical parameters of these samp;es such as MG/MG+FE+2, the ratio range from 0.41 to 0.45 and high ti contents 3.09-3.28wt % indicate that the corresponding magmas are nearly of primary origin . this magma show low variable abundances of compatible and incompatible trace elements reflecting a homogenous source. the studied volcanic rocks, which are mainly nephlinites, belong to the alkaline rocks series containing 4.38-5.95wt% alkali oxides they are usually undersaturated in regard it the silica content, which ranges between 39.88-41.50wt.%.value compared to other jordanien basaltic rocks majorminor and trace elementes data as well as mantel xenoliths entrained in the volcanic rocks are spinel iherzolites that suggest the lithospheric mantle as the source for the pleistocene volcanism these xenoliths resided at shallow mantle depths (45 km ) because a geothermobarometric analysis yielded p-t conditions close to 15 kbar and 1100c the mantle nodules did not equilibrate with the melts indicating a fast transport from the mantle to the surface and a mgma >65 km deeper source area of the melts.

Keywords: nephelinite plestocene western central jordan, western central jordan, volcano in western central jordan, central jordan

Procedia PDF Downloads 76
942 Optimization of Photocatalytic Degradation of Para-Nitrophenol in Visible Light by Nitrogen and Phosphorus Co-Doped Zinc Oxide Using Factorial Design of Experimental

Authors: Friday Godwin Okibe, Elaoyi David Paul, Oladayo Thomas Ojekunle

Abstract:

In this study, Nitrogen and Phosphorous co-doped Zinc Oxide (NPZ) was prepared through a solvent-free reaction. The NPZ was characterized by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy. The photocatalytic activity of the catalyst was investigated by monitoring the degradation of para-nitrophenol (PNP) under visible light irradiation and the process was optimized using factorial design of experiment. The factors investigated were initial concentration of para-nitrophenol, catalyst loading, pH and irradiation time. The characterization results revealed a successful doping of ZnO by nitrogen and phosphorus and an improvement in the surface morphology of the catalyst. The photo-catalyst exhibited improved photocatalytic activity under visible light by 73.8%. The statistical analysis of the optimization result showed that the model terms were significant at 95% confidence level. Interactions plots revealed that irradiation time was the most significant factor affecting the degradation process. The cube plots of the interactions of the variables showed that an optimum degradation efficiency of 66.9% was achieved at 10mg/L initial PNP concentration, 0.5g catalyst loading, pH 7 and 150 minutes irradiation time.

Keywords: nitrogen and phosphorous co-doped Zno, p-nitrophenol, photocatalytic degradation, optimization, factorial design of experimental

Procedia PDF Downloads 520
941 Hydro-Chemical Characterization of Glacial Melt Waters Draining from Shaune Garang Glacier, Himachal Himalaya

Authors: Ramesh Kumar, Rajesh Kumar, Shaktiman Singh, Atar Singh, Anshuman Bhardwaj, Ravindra Kumar Sinha, Anupma Kumari

Abstract:

A detailed study of the ion chemistry of the Shaune Garnag glacier meltwater has been carried out to assess the role of active glacier in the chemical denudation rate. The chemical compositions of various ions in meltwater of the Shaune Garang glacier were analyzed during the melting period 2015 and 2016. Total 112 of melt water samples twice in a day were collected during ablation season of 2015 and 2016. To identify various factors controlling the dissolved ionic strength of Shaune Garang Glacier meltwater statistical analysis such as correlation matrix, Principle Component Analysis (PCA) and factor analysis were applied to deduce the result. Cation concentration for Ca²⁺ > Mg²⁺ > Na⁺ > K⁺ in the meltwater for both the years can be arranged in the order as Ca²⁺ > Mg²⁺ > Na⁺ > K⁺. Study showed that Ca²⁺ and HCO₃⁻ found to be dominant on the both melting period. Carbonate weathering identified as the dominant process controlling the dissolved ion chemistry of meltwater due to the high ratios of (Ca²⁺ + Mg²⁺) versus TZ+ and (Ca²⁺ + Mg²⁺) versus (Na⁺ + K⁺) in the study area. The cation denudation rate of the Shaune Garnag catchment is 3412.2 m⁻² a⁻¹, i.e. higher than the other glacierised catchment in the Himalaya, indicating intense chemical erosion in this catchment.

Keywords: Shaune Garang glacier, Hydrochemistry, chemical composition, cation denudation rate, carbonate weathering

Procedia PDF Downloads 373
940 Isolation, Characterization and Myogenic Differentiation of Synovial Mesenchymal Stem Cells

Authors: Fatma Y. Meligy

Abstract:

Objectives: The objectives of this study aimed to isolate and characterize mesenchymal stem cells (MSCs) derived from synovial membrane. Then to assess the potentiality of myogenic differentiation of these isolated MSCs. Methods: The MSCs were isolated from synovial membrane by digestion method. Three adult rats were used. The 5 -azacytidine was added to the cultured cells for one day. The isolated cells and treated cells are assessed using immunoflouresence, flowcytometry, PCR and real time PCR. Results: The isolated stem cells showed morphological aspect of stem cells they showed strong positivity to CD44 and CD90 in immunoflouresence while in CD34 and CD45 showed negative reaction. The treated cells with 5-azacytidine was shown to have positive reaction for desmin. Flowcytometric analysis showed that synovial MSCs had strong positive percentage for CD44(%98)and CD90 (%97) and low percentage for CD34 & CD45 while the treated cells showed positive percentage for myogenic marker myogenin (85%). As regard the PCR and Real time PCR, the treated cells showed positive reaction to the desmin primer. Conclusion: The adult MSCs were isolated successfully from synovial membrane and characterized with stem cell markers. The isolated cells could be differentiated in vitro into myogenic cells. These differentiated cells could be used in auto-replacement of diseased or traumatized muscle cells as a regenerative therapy for muscle disorders and trauma.

Keywords: mesenchymal stem cells, synovial membrane, myogenic differentiation

Procedia PDF Downloads 305
939 Wind Speed Forecasting Based on Historical Data Using Modern Prediction Methods in Selected Sites of Geba Catchment, Ethiopia

Authors: Halefom Kidane

Abstract:

This study aims to assess the wind resource potential and characterize the urban area wind patterns in Hawassa City, Ethiopia. The estimation and characterization of wind resources are crucial for sustainable urban planning, renewable energy development, and climate change mitigation strategies. A secondary data collection method was used to carry out the study. The collected data at 2 meters was analyzed statistically and extrapolated to the standard heights of 10-meter and 30-meter heights using the power law equation. The standard deviation method was used to calculate the value of scale and shape factors. From the analysis presented, the maximum and minimum mean daily wind speed at 2 meters in 2016 was 1.33 m/s and 0.05 m/s in 2017, 1.67 m/s and 0.14 m/s in 2018, 1.61m and 0.07 m/s, respectively. The maximum monthly average wind speed of Hawassa City in 2016 at 2 meters was noticed in the month of December, which is around 0.78 m/s, while in 2017, the maximum wind speed was recorded in the month of January with a wind speed magnitude of 0.80 m/s and in 2018 June was maximum speed which is 0.76 m/s. On the other hand, October was the month with the minimum mean wind speed in all years, with a value of 0.47 m/s in 2016,0.47 in 2017 and 0.34 in 2018. The annual mean wind speed was 0.61 m/s in 2016,0.64, m/s in 2017 and 0.57 m/s in 2018 at a height of 2 meters. From extrapolation, the annual mean wind speeds for the years 2016,2017 and 2018 at 10 heights were 1.17 m/s,1.22 m/s, and 1.11 m/s, and at the height of 30 meters, were 3.34m/s,3.78 m/s, and 3.01 m/s respectively/Thus, the site consists mainly primarily classes-I of wind speed even at the extrapolated heights.

Keywords: artificial neural networks, forecasting, min-max normalization, wind speed

Procedia PDF Downloads 74
938 Barrier Characteristics of Molecular Semiconductor-Based Organic/Inorganic Au/C₄₂H₂₈/n-InP Hybrid Junctions

Authors: Bahattin Abay

Abstract:

Thin film of polycyclic aromatic hydrocarbon rubrene, C₄₂H₂₈ (5,6,11,12-tetraphenyltetracene), has been surfaced on Moderately Doped (MD) n-InP substrate as an interfacial layer by means of spin coating technique for the electronic modification of Au/MD n-InP structure. Ex situ annealing has been carried out at 150 °C for three minutes under a brisk flow of nitrogen for the better adhesion of the deposited film with the substrate surface. Room temperature electrical characterization has been performed on the C₄₂H₂₈/MD n-InP hybrid junctions by current-voltage (I-V) and capacitance-voltage (C-V) measurement in the dark. It has been seen that the C₄₂H₂₈/MD n-InP structure demonstrated extraordinary rectifying behavior. An effective barrier height (BH) as high as 0.743 eV, along with an ideality factor very close to unity (n=1.203), has been achieved for C₄₂H₂₈/n-InP organic/inorganic device. A thin C₄₂H₂₈ interfacial layer between Au and MD n-InP also reduce the reverse leakage current by almost four orders of magnitude and enhance the BH about 0.278 eV. This good performance of the device is ascribed to the passivation effect of organic interfacial layer between Au and n-InP. By using C-V measurement, in addition, the value of BH of the C₄₂H₂₈/n-InP organic/inorganic hybrid junctions have been obtained as 0.796 eV. It has been seen that both of the BH value (0.743 and 0.796 eV) for the organic/inorganic hybrid junction obtained I-V and C-V measurement, respectively are significantly larger than that of the conventional Au/n-InP structure (0.465 and 0.503 eV). It was also seen that the device had good sensitivity to the light under 100 mW/cm² illumination conditions. The obtained results indicated that modification of the interfacial potential barrier for Metal/n-InP junctions might be attained using polycyclic aromatic hydrocarbon thin interlayer C₄₂H₂₈.

Keywords: I-V and C-V measurements, heterojunction, n-InP, rubrene, surface passivation

Procedia PDF Downloads 161
937 Electrochemical Properties of Bimetallic Silver-Platinum Core-Shell Nanoparticles

Authors: Fredrick O. Okumu, Mangaka C. Matoetoe

Abstract:

Silver-platinum (Ag-Pt) bimetallic nanoparticles (NPs) with varying mole fractions (1:1, 1:3 and 3:1) were prepared by co-reduction of hexachloroplatinate and silver nitrate with sodium citrate. Upon successful formation of both monometallic and bimetallic (BM) core shell nanoparticles, cyclic voltammetry (CV) was used to characterize the NPs. The drop coated nanofilms on the GC substrate showed characteristic peaks of monometallic Ag NPs; Ag+/Ag0 redox couple as well as the Pt NPs; hydrogen adsorption and desorption peaks. These characteristic peaks were confirmed in the bimetallic NPs voltammograms. The following varying current trends were observed in the BM NPs ratios; GCE/Ag-Pt 1:3 > GCE/Ag-Pt 3:1 > GCE/Ag-Pt 1:1. Fundamental electrochemical properties which directly or indirectly affects the applicability of films such as; diffusion coefficient (D), electroactive surface coverage, electrochemical band gap, electron transfer coefficient (α) and charge (Q) were assessed using Randles - Sevcik plot and Laviron’s equations . High charge and surface coverage was observed in GCE/Ag-Pt 1:3 which supports its enhanced current. GCE/Ag-Pt 3:1 showed high diffusion coefficient while GCE/Ag-Pt 1:1 possessed high electron transfer coefficient that is facilitated by its high apparent heterogeneous rate constant relative to other BM NPs ratios. Surface redox reaction was determined as adsorption controlled in all modified GCEs. Surface coverage is inversely proportional to size; therefore the surface coverage data suggests that Ag-Pt 1:1 NPs have a small particle size. Generally, GCE/Ag-Pt 1:3 depicts the best electrochemical properties.

Keywords: characterization, core-shell, electrochemical, nanoparticles

Procedia PDF Downloads 267
936 Energy Absorption Capacity of Aluminium Foam Manufactured by Kelvin Model Loaded Under Different Biaxial Combined Compression-Torsion Conditions

Authors: H. Solomon, A. Abdul-Latif, R. Baleh, I. Deiab, K. Khanafer

Abstract:

Aluminum foams were developed and tested due to their high energy absorption abilities for multifunctional applications. The aim of this research work was to investigate experimentally the effect of quasi-static biaxial loading complexity (combined compression-torsion) on the energy absorption capacity of highly uniform architecture open-cell aluminum foam manufactured by kelvin cell model. The two generated aluminum foams have 80% and 85% porosities, spherical-shaped pores having 11mm in diameter. These foams were tested by means of several square-section specimens. A patented rig called ACTP (Absorption par Compression-Torsion Plastique), was used to investigate the foam response under quasi-static complex loading paths having different torsional components (i.e., 0°, 37° and 53°). The main mechanical responses of the aluminum foams were studied under simple, intermediate and severe loading conditions. In fact, the key responses to be examined were stress plateau and energy absorption capacity of the two foams with respect to loading complexity. It was concluded that the higher the loading complexity and the higher the relative density, the greater the energy absorption capacity of the foam. The highest energy absorption was thus recorded under the most complicated loading path (i.e., biaxial-53°) for the denser foam (i.e., 80% porosity).

Keywords: open-cell aluminum foams, biaxial loading complexity, foams porosity, energy absorption capacity, characterization

Procedia PDF Downloads 129
935 Fusion Neutron Generator Dosimetry and Applications for Medical, Security, and Industry

Authors: Kaouther Bergaui, Nafaa Reguigui, Charles Gary

Abstract:

Characterization and the applications of deuterium-deuterium (DD) neutron generator developed by Adelphie technology and acquired by the National Centre of Nuclear Science and Technology (NCNST) were presented in this work. We study the performance of the neutron generator in terms of neutron yield, production efficiency, and the ionic current as a function of the acceleration voltage at various RF powers. We provide the design and optimization of the PGNAA chamber and thus give insight into the capabilities of the planned PGNAA facility. Additional non-destructive techniques were studied employing the DD neutron generator, such as PGNAA and neutron radiography: The PGNAA is used for determining the concentration of 10B in Si and SiO2 matrices by using a germanium detector HPGe and the results obtained are compared with PGNAA system using a Sodium Iodide detector (NaI (Tl)); Neutron radiography facility was tested and simulated, using a camera device CCD and simulated by the Monte Carlo code; and the explosive detection system (EDS) also simulated using the Monte Carlo code. The study allows us to show that the new models of DD neutron generators are feasible and that superior-quality neutron beams could be produced and used for various applications. The feasibility of Boron neutron capture therapy (BNCT) for cancer treatment using a neutron generator was assessed by optimizing Beam Shaping Assembly (BSA) on a phantom using Monte-Carlo (MCNP6) simulations.

Keywords: neutron generator deuterium-deuterium, Monte Carlo method, radiation, neutron flux, neutron activation analysis, born, neutron radiography, explosive detection, BNCT

Procedia PDF Downloads 191
934 Isolation, Identification and Characterization of the Bacteria and Yeast from the Fermented Stevia Extract

Authors: Asato Takaishi, Masashi Nasuhara, Ayuko Itsuki, Kenichi Suga

Abstract:

Stevia (Stevia rebaudiana Bertoni) is a composite plant native to Paraguay. Stevia sweetener is derived from a hot water extract of Stevia (Stevia extract), which has some effects such as histamine decomposition, antioxidative effect, and blood sugar level-lowering function. The steviol glycosides in the Stevia extract are considered to contribute to these effects. In addition, these effects increase by the fermentation. However, it takes a long time for fermentation of Stevia extract and the fermentation liquid sometimes decays during the fermentation process because natural fermentation method is used. The aim of this study is to perform the fermentation of Stevia extract in a shorter period, and to produce the fermentation liquid in stable quality. From the natural fermentation liquid of Stevia extract, the four strains of useful (good taste) microorganisms were isolated using dilution plate count method and some properties were determined. The base sequences of 16S rDNA and 28S rDNA revealed three bacteria (two Lactobacillus sp. and Microbacterium sp.) and one yeast (Issatchenkia sp.). This result has corresponded that several kinds of lactic bacterium such as Lactobacillus pentosus and Lactobacillus buchneri were isolated from Stevia leaves. Liquid chromatography/mass spectrometory (LC/MS/MS) and High-Performance Liquid Chromatography (HPLC) were used to determine the contents of steviol glycosides and neutral sugars. When these strains were cultured in the sterile Stevia extract, the steviol and stevioside were increased in the fermented Stevia extract. So, it was suggested that the rebaudioside A and the mixture of steviol glycosides in the Stevia extract were decomposed into stevioside and steviol by microbial metabolism.

Keywords: fermentation, lactobacillus, Stevia, steviol glycosides, yeast

Procedia PDF Downloads 563