Search results for: hybrid perovskite cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5340

Search results for: hybrid perovskite cell

3540 Comparison of the Effectiveness between Exosomes from Different Origins in Reversing Skin Aging

Authors: Iannello G., Coppa F., Pennisi S., Giuffrida G., Lo Faro R., Cartelli S., Ferruggia G., Brundo M. V.

Abstract:

Skin is the largest multifunctional human organ and possesses a complex, multilayered structure with the ability to regenerate and renew. The key role in skin regeneration is played by fibroblasts, which also occupy an important role in the wound healing process. Different methods, including dynamic light scattering, scanning electron microscopy, ELISA, and MTT assay, were employed to evaluate on fibroblasts the in vitro effects of plant-derived nanovesicles and cord blood stem cells‐derived exosomes. We compared the results with those of cells exposed to a technology called AMPLEX PLUS, containing a mixture of 20 different biologically active factors (GF20) and exosomes isolated and purified from bovine colostrum. AMPLEX PLUS was able to significantly enhance the cell proliferation status of cells at both 24 and 48 hours compared to untreated cells (control). The obtained results suggest how AMPLEX PLUS could be potentially effective in treating skin rejuvenation.

Keywords: AMPLEX PLUS, cell vitality, colostrum, nanovesicles

Procedia PDF Downloads 38
3539 Investigation of Alumina Membrane Coated Titanium Implants on Osseointegration

Authors: Pinar Erturk, Sevde Altuntas, Fatih Buyukserin

Abstract:

In order to obtain an effective integration between an implant and a bone, implant surfaces should have similar properties to bone tissue surfaces. Especially mimicry of the chemical, mechanical and topographic properties of the implant to the bone is crucial for fast and effective osseointegration. Titanium-based biomaterials are more preferred in clinical use, and there are studies of coating these implants with oxide layers that have chemical/nanotopographic properties stimulating cell interactions for enhanced osseointegration. There are low success rates of current implantations, especially in craniofacial implant applications, which are large and vital zones, and the oxide layer coating increases bone-implant integration providing long-lasting implants without requiring revision surgery. Our aim in this study is to examine bone-cell behavior on titanium implants with an aluminum oxide layer (AAO) on effective osseointegration potential in the deformation of large zones with difficult spontaneous healing. In our study, aluminum layer coated titanium surfaces were anodized in sulfuric, phosphoric, and oxalic acid, which are the most common used AAO anodization electrolytes. After morphologic, chemical, and mechanical tests on AAO coated Ti substrates, viability, adhesion, and mineralization of adult bone cells on these substrates were analyzed. Besides with atomic layer deposition (ALD) as a sensitive and conformal technique, these surfaces were coated with pure alumina (5 nm); thus, cell studies were performed on ALD-coated nanoporous oxide layers with suppressed ionic content too. Lastly, in order to investigate the effect of the topography on the cell behavior, flat non-porous alumina layers on silicon wafers formed by ALD were compared with the porous ones. Cell viability ratio was similar between anodized surfaces, but pure alumina coated titanium and anodized surfaces showed a higher viability ratio compared to bare titanium and bare anodized ones. Alumina coated titanium surfaces, which anodized in phosphoric acid, showed significantly different mineralization ratios after 21 days over other bare titanium and titanium surfaces which anodized in other electrolytes. Bare titanium was the second surface that had the highest mineralization ratio. Otherwise, titanium, which is anodized in oxalic acid electrolyte, demonstrated the lowest mineralization. No significant difference was shown between bare titanium and anodized surfaces except AAO titanium surface anodized in phosphoric acid. Currently, osteogenic activities of these cells on the genetic level are investigated by quantitative real-time polymerase chain reaction (qRT-PCR) analysis results of RUNX-2, VEGF, OPG, and osteopontin genes. Also, as a result of the activities of the genes mentioned before, Western Blot will be used for protein detection. Acknowledgment: The project is supported by The Scientific and Technological Research Council of Turkey.

Keywords: alumina, craniofacial implant, MG-63 cell line, osseointegration, oxalic acid, phosphoric acid, sulphuric acid, titanium

Procedia PDF Downloads 130
3538 D-Lysine Assisted 1-Ethyl-3-(3-Dimethylaminopropyl)Carbodiimide / N-Hydroxy Succinimide Initiated Crosslinked Collagen Scaffold with Controlled Structural and Surface Properties

Authors: G. Krishnamoorthy, S. Anandhakumar

Abstract:

The effect of D-Lysine (D-Lys) on collagen with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide(EDC)/N-hydroxysuccinimide(NHS) initiated cross linking using experimental and modelling tools are evaluated. The results of the Coll-D-Lys-EDC/NHS scaffold also indicate an increase in the tensile strength (TS), percentage of elongation (% E), denaturation temperature (Td), and decrease the decomposition rate compared to L-Lys-EDC/NHS. Scanning electron microscopic (SEM) and atomic force microscopic (AFM) analyses revealed a well ordered with properly oriented and well-aligned structure of scaffold. The D-Lys stabilizes the scaffold against degradation by collagenase than L-Lys. The cell assay showed more than 98% fibroblast viability (NIH3T3) and improved cell adhesions, protein adsorption after 72h of culture when compared with native scaffold. Cell attachment after 74h was robust, with cytoskeletal analysis showing that the attached cells were aligned along the fibers assuming a spindle-shape appearance, despite, gene expression analyses revealed no apparent alterations in mRNA levels, although cell proliferation was not adversely affected. D-Lysine (D-Lys) plays a pivotal role in the self-assembly and conformation of collagen fibrils. The D-Lys assisted EDC/NHS initiated cross-linking induces the formation of an carboxamide by the activation of the side chain -COOH group, followed by aminolysis of the O-iso acylurea intermediates by the -NH2 groups are directly joined via an isopeptides bond. This leads to the formation of intra- and inter-helical cross links. Modeling studies indicated that D-Lys bind with collagen-like peptide (CLP) through multiple H-bonding and hydrophobic interactions. Orientational changes in collagenase on CLP-D-Lys are observed which may decrease its accessibility to degradation and stabilize CLP against the action of the former. D-Lys has lowest binding energy and improved fibrillar-assembly and staggered alignment without the undesired structural stiffness and aggregations. The proteolytic machinery is not well equipped to deal with Coll-D-Lys than Coll-L-Lys scaffold. The information derived from the present study could help in designing collagenolytically stable heterochiral collagen based scaffold for biomedical applications.

Keywords: collagen, collagenase, collagen like peptide, D-lysine, heterochiral collagen scaffold

Procedia PDF Downloads 388
3537 Process Performance and Nitrogen Removal Kinetics in Anammox Hybrid Reactor

Authors: Swati Tomar, Sunil Kumar Gupta

Abstract:

Anammox is a promising and cost effective alternative to conventional treatment systems that facilitates direct oxidation of ammonium nitrogen under anaerobic conditions with nitrite as an electron acceptor without addition of any external carbon sources. The present study investigates the process kinetics of laboratory scale anammox hybrid reactor (AHR) which combines the dual advantages of attached and suspended growth. The performance & behaviour of AHR was studied under varying hydraulic retention time (HRTs) and nitrogen loading rate (NLRs). The experimental unit consisted of 4 numbers of 5L capacity anammox hybrid reactor inoculated with mixed seed culture containing anoxic and activated sludge. Pseudo steady state (PSS) ammonium and nitrite removal efficiencies of 90.6% and 95.6%, respectively, were achieved during acclimation phase. After establishment of PSS, the performance of AHR was monitored at seven different HRTs of 3.0, 2.5, 2.0, 1.5, 1.0, 0.5 and 0.25 d with increasing NLR from 0.4 to 4.8 kg N/m3d. The results showed that with increase in NLR and decrease in HRT (3.0 to 0.25 d), AHR registered appreciable decline in nitrogen removal efficiency from 92.9% to 67.4 %, respectively. The HRT of 2.0 d was considered optimal to achieve substantial nitrogen removal of 89%, because on further decrease in HRT below 1.5 days, remarkable decline in the values of nitrogen removal efficiency were observed. Analysis of data indicated that attached growth system contributes an additional 15.4 % ammonium removal and reduced the sludge washout rate (additional 29% reduction). This enhanced performance may be attributed to 25% increase in sludge retention time due to the attached growth media. Three kinetic models, namely, first order, Monod and Modified Stover-Kincannon model were applied to assess the substrate removal kinetics of nitrogen removal in AHR. Validation of the models were carried out by comparing experimental set of data with the predicted values obtained from the respective models. For substrate removal kinetics, model validation revealed that Modified Stover-Kincannon is most precise (R2=0.943) and can be suitably applied to predict the kinetics of nitrogen removal in AHR. Lawrence and McCarty model described the kinetics of bacterial growth. The predicted value of yield coefficient and decay constant were in line with the experimentally observed values.

Keywords: anammox, kinetics, modelling, nitrogen removal, sludge wash out rate, AHR

Procedia PDF Downloads 312
3536 Hybrid Model of an Increasing Unique Consumer Value on Purchases that Influences the Consumer Loyalty and the Pursuit of a Sustainable Competitive Advantage from the Institutions in Jakarta

Authors: Wilhelmus Hary Susilo

Abstract:

The marketplace would have at least some resources that are unique (e.g., well communication, knowledgeable employees, consumer value, effective transaction, efficient production processes and institutional branding). The institutions should have an advantage in resources and then could lead to positions of competitive advantage. These major challenges focus on increasing unique consumer value on reliable purchases that influence of loyalty and pursuit of a sustainable competitive advantage from the Institutions in Jakarta. Furthermore, a research was conducted with a quantitative method and a confirmatory strategic research design. The research resulted in entire confirmatory factors analysis (1st CFA and 2nd CFA) among variables pertains to; χ2//Df (9.30, 4.38, 6.95, 2.76, 2.97, 2.91, 2.32 and 6.90), GFI (0.72, 0.82, 0.82, 0.81, 0.78, 0.84, 0.89 and 0.70) and CFI (0.90, 0.95, 0.93, 0.92, 0.95, 0.91, 0.96 and 0.89), which indicates a good model. Furthermore, the hybrid model is well fit with, χ2//Df=1.84, P value = 0.00, RMSEA = 0.076, GFI = 0.76, NNFI= 0.95, PNFI= 0.82, IFI= 0.96, RFI= 0.91, AGFI= 0.71 and CFI= 0.96. The result was significant hypothesis, i.e. variables of communitization marketing 3.0 and price perception influenced to unique value of consumer with tvalue =4.46 and 5.89. Furthermore, the consumers value influenced the purchasing with t value = 5.94. Additionally, the loyalty, the ‘communitization’, and the character building marketing 3.0 are affecting the pursuit of a sustainable competitive advantage from institutions with t value = 7.57, -2.12, and 2.04. Finally, the test between the most superior variable dimensions is significantly correlated between INOV and WDES, RESPON and ATT covariance matrix value= 0.72 and 0.71. Thus, ‘communitization’ and character building marketing 3.0 with dimensions of responsibility and technologies would increase a competitive advantage with the dimensions of the innovation and the job design from the institutions.

Keywords: consumer loyalty, marketing 3.0, unique consumer value, purchase, sustainable competitive advantage

Procedia PDF Downloads 284
3535 Multi-Level Air Quality Classification in China Using Information Gain and Support Vector Machine

Authors: Bingchun Liu, Pei-Chann Chang, Natasha Huang, Dun Li

Abstract:

Machine Learning and Data Mining are the two important tools for extracting useful information and knowledge from large datasets. In machine learning, classification is a wildly used technique to predict qualitative variables and is generally preferred over regression from an operational point of view. Due to the enormous increase in air pollution in various countries especially China, Air Quality Classification has become one of the most important topics in air quality research and modelling. This study aims at introducing a hybrid classification model based on information theory and Support Vector Machine (SVM) using the air quality data of four cities in China namely Beijing, Guangzhou, Shanghai and Tianjin from Jan 1, 2014 to April 30, 2016. China's Ministry of Environmental Protection has classified the daily air quality into 6 levels namely Serious Pollution, Severe Pollution, Moderate Pollution, Light Pollution, Good and Excellent based on their respective Air Quality Index (AQI) values. Using the information theory, information gain (IG) is calculated and feature selection is done for both categorical features and continuous numeric features. Then SVM Machine Learning algorithm is implemented on the selected features with cross-validation. The final evaluation reveals that the IG and SVM hybrid model performs better than SVM (alone), Artificial Neural Network (ANN) and K-Nearest Neighbours (KNN) models in terms of accuracy as well as complexity.

Keywords: machine learning, air quality classification, air quality index, information gain, support vector machine, cross-validation

Procedia PDF Downloads 234
3534 Genotyping of G/P No Typable Group a Rotavirus Strains Revealed G2 and G9 Genotype Circulations in Moroccan Children Fully Vaccinated with Rotarix™

Authors: H. Boulahyaoui, S. Alaoui Amine, C. Loutfi, H. El Annaz, N. Touil, El M. El Fahim, S. Mrani

Abstract:

Three Moroccan children fully vaccinated with Rotarix™ have been hospitalized for Rotavirus Gastroenteritis (RVGE) in the pediatric division of the Farabi Hospital, Oujda. Rotavirus G/P genotypes could not be typed because of their delayed crossing threshold (Ct) resolute with a group A rotavirus (RVA) real time RT-PCR. These strains were adapted to cell culture. All viruses replicated and caused extensive cytopathic effects after four or five passages in MA104 cell lines. Significant improvements have been obtained in the amount of viral particles. Each virus multiplied to a high titer (7.5 TCID50/ml). VP7 and VP4 partial gene sequencing revealed distinct genotypes compared to the Rotarix(®) vaccine strain. Two strains were of G2P[4] genotype whereas the third was G9P[8] genotype. Virus isolation while labor intensive, is recommended as a second test, especially when higher sensitivity for conventional RVA genotyping RT-PCR is needed. VP7 antigenic similarities between these strains and Rotarix were determined.

Keywords: esacpe-vaccine, Morocco, Rotarix, G2P[4], G9P[8]

Procedia PDF Downloads 332
3533 Smart Surveillance with 5G: A Performance Study in Adama City

Authors: Shenko Chura Aredo, Hailu Belay, Kevin T. Kornegay

Abstract:

In light of Adama City’s smart city development vision, this study thoroughly investigates the performance of smart security systems with Fifth Generation (5G) network capabilities. It can be logistically difficult to install a lot of cabling, particularly in big or dynamic settings. Moreover, latency issues might affect linked systems, making it difficult for them to monitor in real time. Through a focused analysis that employs Adama City as a case study, the performance has been evaluated in terms of spectrum and energy efficiency using empirical data and basic signal processing formulations at different frequency resources. The findings also demonstrate that cameras working at higher 5G frequencies have more capacity than those operating at sub-6 GHz, notwithstanding frequency-related issues. It has also been noted that when the beams of such cameras are adaptively focussed based on the distance of the last cell edge user rather than the maximum cell radius, less energy is required than with conventional fixed power ramping.

Keywords: 5G, energy efficiency, safety, smart security, spectral efficiency

Procedia PDF Downloads 17
3532 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 204
3531 Competitive Coordination Strategy Towards Reversible Hybrid Hetero-Homogeneous Oxygen-Evolving Catalyst

Authors: Peikun Zhang, Chunhua Cui

Abstract:

Photoelectrochemical (PEC) water splitting provides a promising pathway to convert solar energy into renewable fuels. However, the main and seemingly insurmountable obstacle is that the sluggish kinetics of oxygen evolution reaction (OER) severely jeopardizes the overall efficiency, thus exploring highly active, stable, and appreciable catalysts is urgently requested. Herein a competitive coordination strategy was demonstrated to form a reversible hybrid homo-heterogeneous catalyst for efficient OER in alkaline media. The dynamic process involves an in-situ anchoring of soluble nickel–bipyridine pre-catalyst to a conductive substrate under OER and a re-dissolution course under open circuit potential, induced by the competitive coordination between nickel–bipyridine and nickel-hydroxyls. This catalyst allows to elaborately self-modulate a charge-transfer layer thickness upon the catalytic on-off operation, which affords substantially increased active sites, yet remains light transparency, and sustains the stability of over 200 hours of continuous operation. The integration of this catalyst with exemplified state-of-the-art Ni-sputtered Si photoanode can facilitate a ~250 mV cathodic shift at a current density of 20 mA cm-2. This finding helps the understanding of catalyst from a “dynamic” perspective, which represents a viable alternative to address remaining hurdles toward solar-driven water oxidation.

Keywords: molecular catalyst, oxygen evolution reaction, solar energy, transition metal complex, water splitting

Procedia PDF Downloads 121
3530 Identification of Genomic Mutations in Prostate Cancer and Cancer Stem Cells By Single Cell RNAseq Analysis

Authors: Wen-Yang Hu, Ranli Lu, Mark Maienschein-Cline, Danping Hu, Larisa Nonn, Toshi Shioda, Gail S. Prins

Abstract:

Background: Genetic mutations are highly associated with increased prostate cancer risk. In addition to whole genome sequencing, somatic mutations can be identified by aligning transcriptome sequences to the human genome. Here we analyzed bulk RNAseq and single cell RNAseq data of human prostate cancer cells and their matched non-cancer cells in benign regions from 4 individual patients. Methods: Sequencing raw reads were aligned to the reference genome hg38 using STAR. Variants were annotated using Annovar with respect to overlap gene annotation information, effect on gene and protein sequence, and SIFT annotation of nonsynonymous variant effect. We determined cancer-specific novel alleles by comparing variant calls in cancer cells to matched benign cells from the same individual by selecting unique alleles that were only detected in the cancer samples. Results: In bulk RNAseq data from 3 patients, the most common variants were the noncoding mutations at UTR3/UTR5, and the major variant types were single-nucleotide polymorphisms (SNP) including frameshift mutations. C>T transversion is the most frequently presented substitution of SNP. A total of 222 genes carrying unique exonic or UTR variants were revealed in cancer cells across 3 patients but not in benign cells. Among them, transcriptome levels of 7 genes (CITED2, YOD1, MCM4, HNRNPA2B1, KIF20B, DPYSL2, NR4A1) were significantly up or down regulated in cancer stem cells. Out of the 222 commonly mutated genes in cancer, 19 have nonsynonymous variants and 11 are damaged genes with variants including SIFT, frameshifts, stop gain/loss, and insertions/deletions (indels). Two damaged genes, activating transcription factor 6 (ATF6) and histone demethylase KDM3A are of particular interest; the former is a survival factor for certain cancer cells while the later positively activates androgen receptor target genes in prostate cancer. Further, single cell RNAseq data of cancer cells and their matched non-cancer benign cells from both primary 2D and 3D tumoroid cultures were analyzed. Similar to the bulk RNAseq data, single cell RNAseq in cancer demonstrated that the exonic mutations are less common than noncoding variants, with SNPs including frameshift mutations the most frequently presented types in cancer. Compared to cancer stem cell enriched-3D tumoroids, 2D cancer cells carried 3-times higher variants, 8-times more coding mutations and 10-times more nonsynonymous SNP. Finally, in both 2D primary and 3D tumoroid cultures, cancer stem cells exhibited fewer coding mutations and noncoding SNP or insertions/deletions than non-stem cancer cells. Summary: Our study demonstrates the usefulness of bulk and single cell RNAseaq data in identifying somatic mutations in prostate cancer, providing an alternative method in screening candidate genes for prostate cancer diagnosis and potential therapeutic targets. Cancer stem cells carry fewer somatic mutations than non-stem cancer cells due to their inherited immortal stand DNA from parental stem cells that explains their long-lived characteristics.

Keywords: prostate cancer, stem cell, genomic mutation, RNAseq

Procedia PDF Downloads 16
3529 A Foucauldian Analysis of Postcolonial Hybridity in a Kuwaiti Novel

Authors: Annette Louise Dupont

Abstract:

Background and Introduction: Broadly defined, hybridity is a condition of racial and cultural ‘cross-pollination’ which arises as a result of contact between colonized and colonizer. It remains a highly contested concept in postcolonial studies as it is implicitly underpinned by colonial notions of ‘racial purity.’ While some postcolonial scholars argue that individuals exercise significant agency in the construction of their hybrid subjectivities, others underscore associated experiences of exclusion, marginalization, and alienation. Kuwait and the Philippines are among the most disparate of contemporary postcolonial states. While oil resources transformed the former British Mandate of Kuwait into one of the world’s richest countries, enduring poverty in the former US colony of the Philippines drives a global diaspora which produces multiple Filipino hybridities. Although more Filipinos work in the Arabian Gulf than in any other region of the world, scholarly and literary accounts of their experiences of hybridization in this region are relatively scarce when compared to those set in North America, Australia, Asia, and Europe. Study Aims and Significance: This paper aims to address this existing lacuna by investigating hybridity and other postcolonial themes in a novel by a Kuwaiti author which vividly portrays the lives of immigrants and citizens in Kuwait and which gives a rare voice and insight into the struggles of an Arab-Filipino and European-Filipina. Specifically, this paper explores the relationships between colonial discourses of ‘black’ and ‘white’ and postcolonial discourses pertaining to ‘brown’ Filipinos and ‘brown’ Arabs, in order to assess their impacts on the protagonists’ hybrid subjectivities. Methodology: Foucault’s notions of discourse not only provide a conceptual basis for analyzing the colonial ideology of Orientalism, but his theories related to the social exclusion of the ‘mad’ also elucidate the mechanisms by which power can operate to marginalize, alienate and subjectify the Other, therefore a Foucauldian lens is applied to the analysis of postcolonial themes and hybrid subjectivities portrayed in the novel. Findings: The study finds that Kuwaiti and Filipino discursive practices mirror those of former white colonialists and colonized black laborers and that these discursive practices combine with a former British colonial system of foreign labor sponsorship to create a form of governmentality in Kuwait which is based on exclusion and control. The novel’s rich social description and the reflections of the key protagonist and narrator suggest that such fiction has a significant role to play in highlighting the historical and cultural specificities of experiences of postcolonial hybridity in under-researched geographic, economic, social, and political settings. Whereas hybridity can appear abstract in scholarly accounts, the significance of literary accounts in which the lived experiences of hybrid protagonists are anchored to specific historical periods, places and discourses, is that contextual particularities are neither obscured nor dehistoricized. Conclusions: The application of Foucauldian theorizations of discourse, disciplinary, and biopower to the analysis of this Kuwaiti literary text serves to extend an understanding of the effects of contextually-specific discourses on hybrid Filipino subjectivities, as well as a knowledge of prevailing social dynamics in a little-researched postcolonial Arabian Gulf state.

Keywords: Filipino, Foucault, hybridity, Kuwait

Procedia PDF Downloads 127
3528 Determination of the Toxicity of a Lunar Dust Simulant on Human Alveolar Epithelial Cells and Macrophages in vitro

Authors: Agatha Bebbington, Terry Tetley, Kathryn Hadler

Abstract:

Background: Astronauts will set foot on the Moon later this decade, and are at high risk of lunar dust inhalation. Freshly-fractured lunar dust produces reactive oxygen species in solution, which are known to cause cellular damage and inflammation. Cytotoxicity and inflammatory mediator release was measured in pulmonary alveolar epithelial cells (cells that line the gas-exchange zone of the lung) exposed to a lunar dust simulant, LMS-1. It was hypothesised that freshly-fractured LMS-1 would result in increased cytotoxicity and inflammatory mediator release, owing to the angular morphology and high reactivity of fractured particles. Methods: A human alveolar epithelial type 1-like cell line (TT1) and a human macrophage-like cell line (THP-1) were exposed to 0-200μg/ml of unground, aged-ground, and freshly-ground LMS-1 (screened at <22μm). Cell viability, cytotoxicity, and inflammatory mediator release (IL-6, IL-8) were assessed using MMT, LDH, and ELISA assays, respectively. LMS-1 particles were characterised for their size, surface area, and morphology before and after grinding. Results: Exposure to LMS-1 particles did not result in overt cytotoxicity in either TT1 epithelial cells or THP-1 macrophage-like cells. A dose-dependent increase in IL-8 release was observed in TT1 cells, whereas THP-1 cell exposure, even at low particle concentrations, resulted in increased IL-8 release. Both cytotoxic and pro-inflammatory responses were most marked and significantly greater in TT1 and THP-1 cells exposed to freshly-fractured LMS-1. Discussion: LMS-1 is a novel lunar dust simulant; this is the first study to determine its toxicological effects on respiratory cells in vitro. An increased inflammatory response in TT1 and THP-1 cells exposed to ground LMS-1 suggests that low particle size, increased surface area, and angularity likely contribute to toxicity. Conclusions: Evenlow levels of exposure to LMS-1 could result in alveolar inflammation. This may have pathological consequences for astronauts exposed to lunar dust on future long-duration missions. Future research should test the effect of low-dose, intermittent lunar dust exposure on the respiratory system.

Keywords: lunar dust, LMS-1, lunar dust simulant, long-duration space travel, lunar dust toxicity

Procedia PDF Downloads 212
3527 Hepatic Regenerative Capacity after Acetaminophen-Induced Liver Injury in Mouse Model

Authors: N. F. Hamid, A. Kipar, J. Stewart, D. J. Antoine, B. K. Park, D. P. Williams

Abstract:

Acetaminophen (APAP) is a widely used analgesic that is safe at therapeutic doses. The mouse model of APAP has been extensively used for studies on pathogenesis and intervention of drug induced liver injury based on the CytP450 mediated formation of N-acetyl-p-benzo-quinoneimine and, more recently, as model for mechanism based biomarkers. Delay of the fasted CD1 mice to rebound to the basal level of hepatic GSH compare to fed mice is reported in this study. Histologically, 15 hours fasted mice prior to APAP treatment leading to overall more intense cell loss with no evidence of apoptosis as compared to non-fasted mice, where the apoptotic cells were clearly seen on cleaved caspase-3 immunostaining. After 15 hours post APAP administration, hepatocytes underwent stage of recovery with evidence of mitotic figures in fed mice and return to completely no histological difference to control at 24 hours. On the contrary, the evidence of ongoing cells damage and inflammatory cells infiltration are still present on fasted mice until the end of the study. To further measure the regenerative capacity of the hepatocytes, the inflammatory mediators of cytokines that involved in the progression or regression of the toxicity like TNF-α and IL-6 in liver and spleen using RT-qPCR were also included. Yet, quantification of proliferating cell nuclear antigen (PCNA) has demonstrated the time for hepatic regenerative in fasted is longer than that to fed mice. Together, these data would probably confirm that fasting prior to APAP treatment does not only modulate liver injury, but could have further effects to delay subsequent regeneration of the hepatocytes.

Keywords: acetaminophen, liver, proliferating cell nuclear antigen, regeneration, apoptosis

Procedia PDF Downloads 428
3526 Core-Shell Nanofibers for Prevention of Postsurgical Adhesion

Authors: Jyh-Ping Chen, Chia-Lin Sheu

Abstract:

In this study, we propose to use electrospinning to fabricate porous nanofibrous membranes as postsurgical anti-adhesion barriers and to improve the properties of current post-surgical anti-adhesion products. We propose to combine FDA-approved biomaterials with anti-adhesion properties, polycaprolactone (PCL), polyethylene glycol (PEG), hyaluronic acid (HA) with silver nanoparticles (Ag) and ibuprofen (IBU), to produce anti-adhesion barrier nanofibrous membranes. For this purpose, PEG/PCL/Ag/HA/IBU core-shell nanofibers were prepared. The shell layer contains PEG + PCL to provide mechanical supports and Ag was added to the outer PEG-PCL shell layer during electrospinning to endow the nanofibrous membrane with anti-bacterial properties. The core contains HA to exert anti-adhesion and IBU to exert anti-inflammation effects, respectively. The nanofibrous structure of the membranes can reduce cell penetration while allowing nutrient and waste transports to prevent postsurgical adhesion. Nanofibers with different core/shell thickness ratio were prepared. The nanofibrous membranes were first characterized for their physico-chemical properties in detail, followed by in vitro cell culture studies for cell attachment and proliferation. The HA released from the core region showed extended release up to 21 days for prolonged anti-adhesion effects. The attachment of adhesion-forming fibroblasts is reduced using the nanofibrous membrane from DNA assays and confocal microscopic observation of adhesion protein vinculin expression. The Ag released from the shell showed burst release to prevent E Coli and S. aureus infection immediately and prevent bacterial resistance to Ag. Minimum cytotoxicity was observed from Ag and IBU when fibroblasts were culture with the extraction medium of the nanofibrous membranes. The peritendinous anti-adhesion model in rabbits and the peritoneal anti-adhesion model in rats were used to test the efficacy of the anti-adhesion barriers as determined by gross observation, histology, and biomechanical tests. Within all membranes, the PEG/PCL/Ag/HA/IBU core-shell nanofibers showed the best reduction in cell attachment and proliferation when tested with fibroblasts in vitro. The PEG/PCL/Ag/HA/IBU nanofibrous membranes also showed significant improvement in preventing both peritendinous and peritoneal adhesions when compared with other groups and a commercial adhesion barrier film.

Keywords: anti-adhesion, electrospinning, hyaluronic acid, ibuprofen, nanofibers

Procedia PDF Downloads 180
3525 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM

Procedia PDF Downloads 385
3524 Psychological Aspects of Quality of Life in Patients with Primary and Metastatic Bone Tumors

Authors: O. Yu Shchelkova, E. B. Usmanova

Abstract:

Introduction: Last decades scientific research of quality of life (QoL) is developing fast worldwide. QoL concept pays attention to emotional experience of disease in patients, particularly to personal sense of possibility to satisfy actual needs and possibility of full social functioning in spite of disease limitations. QoL in oncological patients is studied intensively. Nevertheless, the issue of QoL in patients with bone tumors focused on psychological factors of QoL and relation to disease impact on QoL is not discussed. The aim of the study was to reveal the basic aspects and personality factors of QoL in patients with bone tumor. Results: Study participants were 139 patients with bone tumors. The diagnoses were osteosarcoma (n=42), giant cell tumor (n=32), chondrosarcoma (n=32), Ewing sarcoma (n=10) and bone metastases (n=23). The study revealed that patients with bone metastases assess their health significantly worse than other patients. Besides patients with osteosarcoma evaluate their general health higher than patients with giant cell tumors. Social functioning in patients with chondrosarcoma is higher than in patients with bone metastases and patients with giant cell tumor. Patients with chondrosarcoma have higher physical functioning and less restricted in daily activities than patients with bone metastases. Patients with bone metastases characterize their pain as more widespread than patients with primary bone tumors and have more functional restrictions due to bone incision. Moreover, the study revealed personality significant influence on QoL related to bone tumors. Such characteristics in structure of personality as high degree of self-consciousness, personal resources, cooperation and disposition to positive reappraisal in difficult situation correspond to higher QoL. Otherwise low personal resources and slight problem solving behaviour, low degree of self-consciousness and high social dependence correspond to decrease of QoL in patients with bone tumors. Conclusion: Patients with bone metastasis have lower QoL compared to patients with primary bone tumors. Patients with giant cell tumor have the worth quality of life among patients with primary bone tumors. Furthermore, the results revealed differences in QoL parameters associated with personality characteristics in patients with bone tumors. Such psychological factors as future goals, interest in life and emotional saturation, besides high degree of personal resources and cooperation influence on increasing QoL in patients with bone tumors.

Keywords: quality of life, psychological factors, bone tumor, personality

Procedia PDF Downloads 139
3523 Solar and Wind Energy Potential Study of Sindh Province, Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Sidra A. Shaikh, Maliha A. Siddiqui, Adeel Tahir

Abstract:

Global and diffuse solar radiation on horizontal surface of southern sindh namely Karachi, Hyderabad, Nawabshah were carried out using sunshine hour data of the area to asses the feasibility of solar Energy utilization at Sindh province for power generation. From the observation, result is derived which shows a drastic variation in the diffuse and direct component of solar radiation for summer and winter for Southern Sindh that is both contributes 50% for Karachi and Hyderabad. In Nawabshah area, the contribution of diffuse solar radiation is low in monsoon months, July and August. The Kᴛ value of Nawabshah indicates a clear sky almost throughout the year. The percentage of diffuse radiation does not exceed more than 20%. In Nawabshah, the appearance of cloud is rare even in monsoon months. The estimated values indicate that Nawabshah has high solar potential whereas Karachi and Hyderabad has low solar potential. During the monsoon months, the southern part of Sind can utilize the hybrid system with wind power. Near Karachi and Hyderabad, the wind speed ranges between 6.2 to 6.9 m/sec. There exist a wind corridor near Karachi, Hyderabad, Gharo, Keti Bander and Shah Bander. The short fall of solar can be compensated by wind because in monsoon months July and August the wind speed are higher in the southern region of Sindh.

Keywords: hybrid power system, power generation, solar and wind energy potential, southern Sindh

Procedia PDF Downloads 231
3522 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang

Abstract:

Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.

Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing

Procedia PDF Downloads 70
3521 Determination of the Vaccine Induced Immunodominant Regions of Nucleoprotein Crimean-Congo Hemorrhagic Fever Virus

Authors: Engin Berber, Nurettin Canakoglu, Ibrahim Sozdutmaz, Merve Caliskan, Shaikh Terkis Islam Pavel, Hazel Yetiskin, Aykut Ozdarendeli

Abstract:

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus in the family Bunyaviridae, genus Nairovirus. The CCHFV genome consists of three molecules of negative-sense single-stranded RNA, each encapsulated separately. The virion particle contains viral RNA polymerase (L segment), surface glycoproteins Gn and Gc (Msegment), and a nucleocapsid protein NP (S segment). CCHF is characterized by high case mortality, occurring in Asia, Africa, the Middle East and Eastern Europe. Clinical CCHF was first recognized in Turkey in 2002. The numbers of CCHF cases have gradually increased in Turkey making the virus a public health concern. Between 2002 and 2014, more than 8000 the CCHF cases have been reported in Turkey and mortality rate is around 5%. So, Turkey is one of the countries where the epidemy has become spread to the wider geography and the biggest outbreaks of CCHF have occurred in the world. We have recently developed an inactivated cell-culture based vaccine against CCHF. We have showed that the Balb/c mice immunized with the CCHF vaccine induced the high level of neutralizing antibodies. In this study, we aimed to determine the immunodominant regions of nucleoprotein (NP) CCHFV Kelkit06 strain which stimulate T cells. For this purpose, pools of overlapping NP were used for an IFN- γ ELISPOT assay. Balb/c mice were divided into two groups for the experiment. Two groups (n = 10 each) were immunized via the intraperitoneal route with 5, or 10μg of the cell culture-based vaccine. The control group (n = 6) was mock immunized with PBS. Booster injections with the same formulation were given on days 21 and 42 after the first immunization. The higher reactivity against the CCHFV NP pools 31-40 and 80-90 was determined in the two dose groups. In order to analyze the vaccine-induced T cell responses in Balb/c mice immunized with varying doses of the vaccine, we have been also currently working on CD4+, CD8+ and CD3 + T cells by flow cytometry.

Keywords: Crimean-Congo hemorrhagic fever virus, immunodominant regions of NP, T cell response, vaccine

Procedia PDF Downloads 345
3520 Poster for Sickle Cell Disease and Barriers to Care in South Yorkshire from 2017 to 2023

Authors: Amardass Dhami, Clare Samuelson

Abstract:

Background: Sickle cell disease (SCD) is a complex, multisystem condition that significantly impacts patients' quality of life, characterized by acute illness episodes, progressive organ damage, and reduced life expectancy. In the UK, over 13,000 individuals are affected, with South Yorkshire having the fifth highest prevalence, including approximately 800 patients. Retinal complications in SCD can manifest as either proliferative or non-proliferative disease, with proliferative changes being more prevalent. These retinal issues can cause significant morbidity, including visual loss and increased care requirements, underscoring the need for regular monitoring. An integrated approach was applied to ensure timely interventions, ultimately enhancing patient outcomes and reduce ‘did not attend’ rates. Aim: To assess the factors which may influence attendance to Haematology and Ophthalmology Clinics with attention towards levels of deprivation towards non-attendance. Method : A retrospective study on 84 eligible patients, from the regional tertiary Centre for Sickle Cell Care (Sheffield Teaching Hospital) from 2017 to 2023. The study focused on the incidence of sickle cell eye disease, specifically examining the outcomes of patients who attended the combined haematology and ophthalmology clinics. Patients who did not attend either clinic were excluded from the analysis to ensure a clear understanding of the combined clinic's impact. This data was then compared with the United Kingdom’s Index of Multiple Deprivation (IMD) datasets to assess if inequalities of care affected this population. Results: The study concluded that the effectiveness of combining haematology and ophthalmology clinics was reduced following the intervention. The DNA rates increased to 40% for the haematology clinic. Additionally, a significant proportion of the cohort was classified as residing in areas of deprivation, suggesting a possible link between socioeconomic factors and non-attendance rates Conclusion: These findings underscore the challenges of integrating care for SCD patients, particularly in relation to socioeconomic barriers. Despite the intent to streamline care and improve patient outcomes, the increase in DNA rates points to the need for further investigation into the underlying causes of non-attendance. Addressing these issues, especially in deprived areas, could enhance the effectiveness of combined clinics and ensure that patients receive the necessary monitoring and interventions for their eye health and overall well-being. Future strategies may need to focus on improving accessibility, outreach, and support for patients to mitigate the impact of socioeconomic factors on healthcare attendance.

Keywords: south yorkshire, sickle cell anemia, deprivation, factors, haematology

Procedia PDF Downloads 11
3519 Development of Programmed Cell Death Protein 1 Pathway-Associated Prognostic Biomarkers for Bladder Cancer Using Transcriptomic Databases

Authors: Shu-Pin Huang, Pai-Chi Teng, Hao-Han Chang, Chia-Hsin Liu, Yung-Lun Lin, Shu-Chi Wang, Hsin-Chih Yeh, Chih-Pin Chuu, Jiun-Hung Geng, Li-Hsin Chang, Wei-Chung Cheng, Chia-Yang Li

Abstract:

The emergence of immune checkpoint inhibitors (ICIs) targeting proteins like PD-1 and PD-L1 has changed the treatment paradigm of bladder cancer. However, not all patients benefit from ICIs, with some experiencing early death. There's a significant need for biomarkers associated with the PD-1 pathway in bladder cancer. Current biomarkers focus on tumor PD-L1 expression, but a more comprehensive understanding of PD-1-related biology is needed. Our study has developed a seven-gene risk score panel, employing a comprehensive bioinformatics strategy, which could serve as a potential prognostic and predictive biomarker for bladder cancer. This panel incorporates the FYN, GRAP2, TRIB3, MAP3K8, AKT3, CD274, and CD80 genes. Additionally, we examined the relationship between this panel and immune cell function, utilizing validated tools such as ESTIMATE, TIDE, and CIBERSORT. Our seven-genes panel has been found to be significantly associated with bladder cancer survival in two independent cohorts. The panel was also significantly correlated with tumor infiltration lymphocytes, immune scores, and tumor purity. These factors have been previously reported to have clinical implications on ICIs. The findings suggest the potential of a PD-1 pathway-based transcriptomic panel as a prognostic and predictive biomarker in bladder cancer, which could help optimize treatment strategies and improve patient outcomes.

Keywords: bladder cancer, programmed cell death protein 1, prognostic biomarker, immune checkpoint inhibitors, predictive biomarker

Procedia PDF Downloads 76
3518 Carbon Electrode Materials for Supercapacitors

Authors: Yu. Mateyshina, A. Ulihin, N. Uvarov

Abstract:

Supercapacitors are one of the most promising devices for energy storage applications as they can provide higher power density than batteries and higher energy density than conventional dielectric capacitors. Carbon materials with various microtextures are considered as main candidates for supercapacitors in terms of high surface area, interconnected pore structure, controlled pore size, high electrical conductivity and environmental friendliness. The specific capacitance (C) of the electrode material of the Electrochemical Double Layer Capacitors (EDLC) is known to depend on the specific surface area (Ss) and the pore structure. Activated carbons are most commonly used in supercapacitors because of their high surface area (Ss ≥ 1000 m2/g), good adhesion to electrolytes and low cost. In this work, electrochemical properties of new microporous and mesoporous carbon electrode materials were studied. The aim of the work was to investigate the relationship between the specific capacitance and specific surface area in a series of materials prepared from different organic precursors.. As supporting matrixes different carbon samples with Ss = 100-2000 m2/g were used. The materials were modified by treatment in acids (H2SO4, HNO3, acetic acid) in order to enable surface hydrophilicity. Then nanoparticles of transition metal oxides (for example NiO) were deposited on the carbon surfaces using methods of salts impregnation, mechanical treatment in ball mills and the precursors decomposition. The electrochemical characteristics of electrode hybrid materials were investigated in a symmetrical two-electrode cell using an impedance spectroscopy, voltammetry in both potentiodynamic and galvanostatic modes. It was shown that the value of C for the materials under study strongly depended on the preparation method of the electrode and the type of electrolyte (1 M H2SO4, 6 M KOH, 1 M LiClO4 in acetonitryl). Specific capacity may be increased by the introduction of nanoparticles from 50-100 F/g for initial carbon materials to 150-300 F/g for nanocomposites which may be used in supercapacitors. The work is supported by the по SC-14.604.21.0013.

Keywords: supercapacitors, carbon electrode, mesoporous carbon, electrochemistry

Procedia PDF Downloads 303
3517 Performance Improvement of Electric Vehicle Using K - Map Constructed Rule Based Energy Management Strategy for Battery/Ultracapacitor Hybrid Energy Storage System

Authors: Jyothi P. Phatak, L. Venkatesha, C. S. Raviprasad

Abstract:

The performance improvement of Hybrid Energy Storage System (HESS) in Electric Vehicle (EV) has been in discussion over the last decade. The important issues in terms of performance parameters addressed are, range of vehicle and battery (BA) peak current. Published literature has either addressed battery peak current reduction or range improvement in EV. Both the issues have not been specifically discussed and analyzed. This paper deals with both range improvement in EV and battery peak current reduction by applying a new Karnaugh Map (K-Map) constructed rule based energy management strategy to proposed HESS. The strategy allows Ultracapacitor (UC) to assist battery when the vehicle accelerates there by reducing the burden on battery. Simulation is carried out for various operating modes of EV considering both urban and highway driving conditions. Simulation is done for different values of UC by keeping battery rating constant for each driving cycle and results are presented. Feasible value of UC is selected based on simulation results. The results of proposed HESS show an improvement in performance parameters compared to Battery only Energy Storage System (BESS). Battery life is improved to considerable extent and there is an overall development in the performance of electric vehicle.

Keywords: electric vehicle, PID controller, energy management strategy, range, battery current, ultracapacitor

Procedia PDF Downloads 115
3516 Hybrid Collaborative-Context Based Recommendations for Civil Affairs Operations

Authors: Patrick Cummings, Laura Cassani, Deirdre Kelliher

Abstract:

In this paper we present findings from a research effort to apply a hybrid collaborative-context approach for a system focused on Marine Corps civil affairs data collection, aggregation, and analysis called the Marine Civil Information Management System (MARCIMS). The goal of this effort is to provide operators with information to make sense of the interconnectedness of entities and relationships in their area of operation and discover existing data to support civil military operations. Our approach to build a recommendation engine was designed to overcome several technical challenges, including 1) ensuring models were robust to the relatively small amount of data collected by the Marine Corps civil affairs community; 2) finding methods to recommend novel data for which there are no interactions captured; and 3) overcoming confirmation bias by ensuring content was recommended that was relevant for the mission despite being obscure or less well known. We solve this by implementing a combination of collective matrix factorization (CMF) and graph-based random walks to provide recommendations to civil military operations users. We also present a method to resolve the challenge of computation complexity inherent from highly connected nodes through a precomputed process.

Keywords: Recommendation engine, collaborative filtering, context based recommendation, graph analysis, coverage, civil affairs operations, Marine Corps

Procedia PDF Downloads 124
3515 Synthesis and Characterization of Chiral Dopant Based on Schiff's Base Structure

Authors: Hong-Min Kim, Da-Som Han, Myong-Hoon Lee

Abstract:

CLCs (Cholesteric liquid crystals) draw tremendous interest due to their potential in various applications such as cholesteric color filters in LCD devices. CLC possesses helical molecular orientation which is induced by a chiral dopant molecules mixed with nematic liquid crystals. The efficiency of a chiral dopant is quantified by the HTP (helical twisting power). In this work, we designed and synthesized a series of new chiral dopants having a Schiff’s base imine structure with different alkyl chain lengths (butyl, hexyl and octyl) from chiral naphthyl amine by two-step reaction. The structures of new chiral dopants were confirmed by 1H-NMR and IR spectroscopy. The properties were investigated by DSC (differential scanning calorimetry calorimetry), POM (polarized optical microscopy) and UV-Vis spectrophotometer. These solid state chiral dopants showed excellent solubility in nematic LC (MLC-6845-000) higher than 17wt%. We prepared the CLC(Cholesteric Liquid Crystal) cell by mixing nematic LC (MLC-6845-000) with different concentrations of chiral dopants and injecting into the sandwich cell of 5μm cell gap with antiparallel alignment. The cholesteric liquid crystal phase was confirmed from POM, in which all the samples showed planar phase, a typical phase of the cholesteric liquid crystals. The HTP (helical twisting power) is one of the most important properties of CLC. We measured the HTP values from the UV-Vis transmittance spectra of CLC cells with varies chiral dopant concentration. The HTP values with different alkyl chains are as follows: butyl chiral dopant=29.8μm-1; hexyl chiral dopant= 31.8μm-1; octyl chiral dopant=27.7μm-1. We obtained the red, green and blue reflection color from CLC cells, which can be used as color filters in LCDs applications.

Keywords: cholesteric liquid crystal, color filter, display, HTP

Procedia PDF Downloads 266
3514 Anti-proliferative Activity and HER2 Receptor Expression Analysis of MCF-7 (Breast Cancer Cell) Cells by Plant Extract Coleus Barbatus (Andrew)

Authors: Anupalli Roja Rani, Pavithra Dasari

Abstract:

Background: Among several, breast cancer has emerged as the most common female cancer in developing countries. It is the most common cause of cancer-related deaths worldwide among women. It is a molecularly and clinically heterogeneous disease. Moreover, it is a hormone–dependent tumor in which estrogens can regulate the growth of breast cells by binding with estrogen receptors (ERs). Moreover, the use of natural products in cancer therapeutics is due to their properties of biocompatibility and less toxicity. Plants are the vast reservoirs for various bioactive compounds. Coleus barbatus (Lamiaceae) contains anticancer properties against several cancer cell lines. Method: In the present study, an attempt is being made to enrich the knowledge of the anticancer activity of pure compounds extracted from Coleus barbatus (Andrew). On human breast cancer cell lines MCF-7. Here in, we are assessing the antiproliferative activity of Coleus barbatus (Andrew) plant extracts against MCF 7 and also evaluating their toxicity in normal human mammary cell lines such as Human Mammary Epithelial Cells (HMEC). The active fraction of plant extract was further purified with the help of Flash chromatography, Medium Pressure Liquid Chromatography (MPLC) and preparative High-Performance Liquid Chromatography (HPLC). The structure of pure compounds will be elucidated by using modern spectroscopic methods like Nuclear magnetic resonance (NMR), Electrospray Ionisation Mass Spectrometry (ESI-MS) methods. Later, the growth inhibition morphological assessment of cancer cells and cell cycle analysis of purified compounds were assessed using FACS. The growth and progression of signaling molecules HER2, GRP78 was studied by secretion assay using ELISA and expression analysis by flow cytometry. Result: Cytotoxic effect against MCF-7 with IC50 values were derived from dose response curves, using six concentrations of twofold serially diluted samples, by SOFTMax Pro software (Molecular device) and respectively Ellipticine and 0.5% DMSO were used as a positive and negative control. Conclusion: The present study shows the significance of various bioactive compounds extracted from Coleus barbatus (Andrew) root material. It acts as an anti-proliferative and shows cytotoxic effects on human breast cancer cell lines MCF7. The plant extracts play an important role pharmacologically. The whole plant has been used in traditional medicine for decades and the studies done have authenticated the practice. Earlier, as described, the plant has been used in the ayurveda and homeopathy medicine. However, more clinical and pathological studies must be conducted to investigate the unexploited potential of the plant. These studies will be very useful for drug designing in the future.

Keywords: coleus barbatus, HPLC, MPLC, NMR, MCF7, flash chromatograph, ESI-MS, FACS, ELISA.

Procedia PDF Downloads 110
3513 Mesenchymal Stem Cells on Fibrin Assemblies with Growth Factors

Authors: Elena Filova, Ondrej Kaplan, Marie Markova, Helena Dragounova, Roman Matejka, Eduard Brynda, Lucie Bacakova

Abstract:

Decellularized vessels have been evaluated as small-diameter vascular prostheses. Reseeding autologous cells onto decellularized tissue prior implantation should prolong prostheses function and make them living tissues. Suitable cell types for reseeding are both endothelial cells and bone marrow-derived stem cells, with a capacity for differentiation into smooth muscle cells upon mechanical loading. Endothelial cells assure antithrombogenicity of the vessels and MSCs produce growth factors and, after their differentiation into smooth muscle cells, they are contractile and produce extracellular matrix proteins as well. Fibrin is a natural scaffold, which allows direct cell adhesion based on integrin receptors. It can be prepared autologous. Fibrin can be modified with bound growth factors, such as basic fibroblast growth factor (FGF-2) and vascular endothelial growth factor (VEGF). These modifications in turn make the scaffold more attractive for cells ingrowth into the biological scaffold. The aim of the study was to prepare thin surface-attached fibrin assemblies with bound FGF-2 and VEGF, and to evaluate growth and differentiation of bone marrow-derived mesenchymal stem cells on the fibrin (Fb) assemblies. Following thin surface-attached fibrin assemblies were prepared: Fb, Fb+VEGF, Fb+FGF2, Fb+heparin, Fb+heparin+VEGF, Fb+heparin+FGF2, Fb+heparin+FGF2+VEGF. Cell culture poly-styrene and glass coverslips were used as controls. Human MSCs (passage 3) were seeded at the density of 8800 cells/1.5 mL alpha-MEM medium with 2.5% FS and 200 U/mL aprotinin per well of a 24-well cell culture. The cells have been cultured on the samples for 6 days. Cell densities on day 1, 3, and 6 were analyzed after staining with LIVE/DEAD cytotoxicity/viability assay kit. The differentiation of MSCs is being analyzed using qPCR. On day 1, the highest density of MSCs was observed on Fb+VEGF and Fb+FGF2. On days 3 and 6, there were similar densities on all samples. On day 1, cell morphology was polygonal and spread on all sample. On day 3 and 6, MSCs growing on Fb assemblies with FGF2 became apparently elongated. The evaluation of expression of genes for von Willebrand factor and CD31 (endothelial cells), for alpha-actin (smooth muscle cells), and for alkaline phosphatase (osteoblasts) is in progress. We prepared fibrin assemblies with bound VEGF and FGF-2 that supported attachment and growth of mesenchymal stem cells. The layers are promising for improving the ingrowth of MSCs into the biological scaffold. Supported by the Technology Agency of the Czech Republic TA04011345, and Ministry of Health NT11270-4/2010, and BIOCEV – Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University” project (CZ.1.05/1.1.00/02.0109), funded by the European Regional Development Fund for their financial supports.

Keywords: fibrin assemblies, FGF-2, mesenchymal stem cells, VEGF

Procedia PDF Downloads 324
3512 Effect of Capsule Storage on Viability of Lactobacillus bulgaricus and Streptococcus thermophilus in Yogurt Powder

Authors: Kanchana Sitlaothaworn

Abstract:

Yogurt capsule was made by mixing 14% w/v of reconstitution of skim milk with 2% FOS. The mixture was fermented by commercial yogurt starter comprising Lactobacillus bulgaricus and Streptococcus thermophilus. These yogurts were made as yogurt powder by freeze-dried. Yogurt powder was put into capsule then stored for 28 days at 4oc. 8ml of commercial yogurt was found to be the most suitable inoculum size in yogurt production. After freeze-dried, the viability of L. bulgaricus and S. thermophilus reduced from 109 to 107 cfu/g. The precence of sucrose cannot help to protect cell from ice crystal formation in freeze-dried process, high (20%) sucrose reduced L. bulgaricus and S. thermophilus growth during fermentation of yogurt. The addition of FOS had reduced slowly the viability of both L. bulgaricus and S. thermophilus similar to control (without FOS) during 28 days of capsule storage. The viable cell exhibited satisfactory viability level in capsule storage (6.7x106cfu/g) during 21 days at 4oC.

Keywords: yogurt capsule, Lactobacillus bulgaricus, Streptococcus thermophilus, freeze-drying, sucrose

Procedia PDF Downloads 326
3511 Smart Coating for Enhanced Corneal Healing via Delivering Progranulin

Authors: Dan Yan, Yunuo Zhang, Yuhan Huang, Weijie Ouyang

Abstract:

The cornea serves as a vital protective barrier for the eye; however, it is prone to injury and damage that can disrupt corneal epithelium and nerves, triggering inflammation. Therefore, understanding the biological effects and molecular mechanisms involved in corneal wound healing and identifying drugs targeting these pathways is crucial for researchers in this field. This study aimed to investigate the therapeutic potential of progranulin (PGRN) in treating corneal injuries. Our findings demonstrated that PGRN significantly enhanced corneal wound repair by accelerating corneal re-epithelialization and re-innervation. In vitro experiments with cultured epithelial cells and trigeminal ganglion cells further revealed that PGRN stimulated corneal epithelial cell proliferation and promoted axon growth in trigeminal ganglion cells. Through RNA-sequencing (RNA-seq) analysis and other experimental techniques, we discovered that PGRN exerted its healing effects by modulating the Wnt signaling pathway, which played a critical role in repairing epithelial cells and promoting axon regeneration in trigeminal neurons. Importantly, our study highlighted the anti-inflammatory properties of PGRN by inhibiting the NF-κB signaling pathway, leading to decreased infiltration of macrophages. In conclusion, our findings underscored the potential of PGRN in facilitating corneal wound healing by promoting corneal epithelial cell proliferation, trigeminal ganglion cell axon regeneration, and suppressing ocular inflammation. These results suggest that PGRN could potentially expedite the healing process and improve visual outcomes in patients with corneal injuries.

Keywords: cornea, wound healing, progranulin, corneal epithelial cells, trigeminal ganglion cells

Procedia PDF Downloads 55