Search results for: precision application
7315 Analysis of Veterinary Drug Residues and Pesticide Residues in Beehive Products
Authors: Alba Luna Jimenez, Maria Dolores Hernando
Abstract:
The administration of veterinary treatments at higher doses than the recommended Varroa mite control in beehive matrices has the potential to generate residues in the honeybee colony and in the derived products for consumption. Honeybee colonies can also be indirectly exposed to residues of plant protection products when foraging in crops, wildflowers near the crops, or in urban gardens just after spraying. The study evaluates the presence of both types of residues, veterinary treatments, and pesticides in beeswax, bee bread, and honey. The study was carried out in apiaries located in agricultural zones and forest areas in Andalusia, Spain. Up to nineteen residues were identified above LOQ using gas chromatography-triple quadrupole-mass spectrometry analysis (GC-MS/MS). Samples were extracted by a modified QuEChERs method. Chlorfenvinphos was detected in beeswax and bee bread despite its use is not authorized for Varroa mite control. Residues of fluvalinate-tau, authorized as veterinary treatment, were detected in most of the samples of beeswax and bee bread, presumably due to overdose or also to its potential for accumulation associated with its marked liposolubility. Residues of plant protection products were also detected in samples of beeswax and bee bread. Pesticide residues were detected above the LOQ that was established at 5 µg.kg⁻¹, which is the minimum concentration that can be quantified with acceptable accuracy and precision, as described in the European guidelines for pesticide residue analysis SANTE/11945/2015. No residues of phytosanitary treatments used in agriculture were detected in honey.Keywords: honeybee colony, mass spectrometry analysis, pesticide residues, Varroa destructor, veterinary treatment
Procedia PDF Downloads 1667314 Performance Evaluation and Economic Analysis of Minimum Quantity Lubrication with Pressurized/Non-Pressurized Air and Nanofluid Mixture
Authors: M. Amrita, R. R. Srikant, A. V. Sita Rama Raju
Abstract:
Water miscible cutting fluids are conventionally used to lubricate and cool the machining zone. But issues related to health hazards, maintenance and disposal costs have limited their usage, leading to application of Minimum Quantity Lubrication (MQL). To increase the effectiveness of MQL, nanocutting fluids are proposed. In the present work, water miscible nanographite cutting fluids of varying concentration are applied at cutting zone by two systems A and B. System A utilizes high pressure air and supplies cutting fluid at a flow rate of 1ml/min. System B uses low pressure air and supplies cutting fluid at a flow rate of 5ml/min. Their performance in machining is evaluated by measuring cutting temperatures, tool wear, cutting forces and surface roughness and compared with dry machining and flood machining. Application of nano cutting fluid using both systems showed better performance than dry machining. Cutting temperatures and cutting forces obtained by both techniques are more than flood machining. But tool wear and surface roughness showed improvement compared to flood machining. Economic analysis has been carried out in all the cases to decide the applicability of the techniques.Keywords: economic analysis, machining, minimum quantity lubrication, nanofluid
Procedia PDF Downloads 3837313 Going beyond Stakeholder Participation
Authors: Florian Engel
Abstract:
Only with a radical change to an intrinsically motivated project team, through giving the employees the freedom for autonomy, mastery and purpose, it is then possible to develop excellent products. With these changes, combined with using a rapid application development approach, the group of users serves as an important indicator to test the market needs, rather than only as the stakeholders for requirements.Keywords: intrinsic motivation, requirements elicitation, self-directed work, stakeholder participation
Procedia PDF Downloads 3437312 An Investigation of Surface Texturing by Ultrasonic Impingement of Micro-Particles
Authors: Nagalingam Arun Prasanth, Ahmed Syed Adnan, S. H. Yeo
Abstract:
Surface topography plays a significant role in the functional performance of engineered parts. It is important to have a control on the surface geometry and understanding on the surface details to get the desired performance. Hence, in the current research contribution, a non-contact micro-texturing technique has been explored and developed. The technique involves ultrasonic excitation of a tool as a prime source of surface texturing for aluminum alloy workpieces. The specimen surface is polished first and is then immersed in a liquid bath containing 10% weight concentration of Ti6Al4V grade 5 spherical powders. A submerged slurry jet is used to recirculate the spherical powders under the ultrasonic horn which is excited at an ultrasonic frequency and amplitude of 40 kHz and 70 µm respectively. The distance between the horn and workpiece surface was remained fixed at 200 µm using a precision control stage. Texturing effects were investigated for different process timings of 1, 3 and 5 s. Thereafter, the specimens were cleaned in an ultrasonic bath for 5 mins to remove loose debris on the surface. The developed surfaces are characterized by optical and contact surface profiler. The optical microscopic images show a texture of circular spots on the workpiece surface indented by titanium spherical balls. Waviness patterns obtained from contact surface profiler supports the texturing effect produced from the proposed technique. Furthermore, water droplet tests were performed to show the efficacy of the proposed technique to develop hydrophilic surfaces and to quantify the texturing effect produced.Keywords: surface texturing, surface modification, topography, ultrasonic
Procedia PDF Downloads 2237311 Clinical Application of Mesenchymal Stem Cells for Cancer Therapy: A Review of Registered Clinical Trials
Authors: Tuong Thi Van Thuy, Dao Van Toan, Nguyen Duc Phuc
Abstract:
Mesenchymal stem cells (MSCs) were discovered in the 1970s with their unique properties of differentiation, immunomodulation, multiple secreting, and homing factors to injured organs. MSC-based therapies have emerged as a promising strategy for various diseases such as cancer, tissue regeneration, or immunologic/inflammatory-related diseases. This study evaluated the clinical application of MSCs for cancer therapy in trials registered on Clinical Trial as of July 2022. The results showed 40 clinical trials used MSCs in various cancer conditions. 62% of trials used MSCs for therapeutic purposes to minimize the side effects of cancer treatment. Besides, 38% of trials were focused on using MSCs as a therapeutic agent to treat cancer directly. Most trials (38/40) are ongoing phase I/II, and 2 are entering phase III. 84% of trials used allogeneic MSCs compared with 13% using autologous sources and 3% using both. 25/40 trials showed participants received a single dose of MSCs, while the most times were 12 times in a pancreatic cancer treatment trial. Conclusion: MSC-based therapy for cancer in clinical trials should be applied to (1) minimize the side effects of oncological treatments and (2) directly affect the tumor via selectively delivering anti-cancer payloads to tumor cells. Allogeneic MSCs are a priority selected in clinical cancer therapy.Keywords: mesenchymal stem cells, MSC-based therapy, cancer condition, cancer treatment, clinical trials
Procedia PDF Downloads 947310 The Application of Sensory Integration Techniques in Science Teaching Students with Autism
Authors: Joanna Estkowska
Abstract:
The Sensory Integration Method is aimed primarily at children with learning disabilities. It can also be used as a complementary method in treatment of children with cerebral palsy, autistic, mentally handicapped, blind and deaf. Autism is holistic development disorder that manifests itself in the specific functioning of a child. The most characteristic are: disorders in communication, difficulties in social relations, rigid patterns of behavior and impairment in sensory processing. In addition to these disorders may occur abnormal intellectual development, attention deficit disorders, perceptual disorders and others. This study was focused on the application sensory integration techniques in science education of autistic students. The lack of proper sensory integration causes problems with complicated processes such as motor coordination, movement planning, visual or auditory perception, speech, writing, reading or counting. Good functioning and cooperation of proprioceptive, tactile and vestibular sense affect the child’s mastery of skills that require coordination of both sides of the body and synchronization of the cerebral hemispheres. These include, for example, all sports activities, precise manual skills such writing, as well as, reading and counting skills. All this takes place in stages. Achieving skills from the first stage determines the development of fitness from the next level. Any deficit in the scope of the first three stages can affect the development of new skills. This ultimately reflects on the achievements at school and in further professional and personal life. After careful analysis symptoms from the emotional and social spheres appear to be secondary to deficits of sensory integration. During our research, the students gained knowledge and skills in the classroom of experience by learning biology, chemistry and physics with application sensory integration techniques. Sensory integration therapy aims to teach the child an adequate response to stimuli coming to him from both the outside world and the body. Thanks to properly selected exercises, a child can improve perception and interpretation skills, motor skills, coordination of movements, attention and concentration or self-awareness, as well as social and emotional functioning.Keywords: autism spectrum disorder, science education, sensory integration, special educational needs
Procedia PDF Downloads 1867309 Stability-Indicating High-Performance Thin-Layer Chromatography Method for Estimation of Naftopidil
Authors: P. S. Jain, K. D. Bobade, S. J. Surana
Abstract:
A simple, selective, precise and Stability-indicating High-performance thin-layer chromatographic method for analysis of Naftopidil both in a bulk and in pharmaceutical formulation has been developed and validated. The method employed, HPTLC aluminium plates precoated with silica gel as the stationary phase. The solvent system consisted of hexane: ethyl acetate: glacial acetic acid (4:4:2 v/v). The system was found to give compact spot for Naftopidil (Rf value of 0.43±0.02). Densitometric analysis of Naftopidil was carried out in the absorbance mode at 253 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r2=0.999±0.0001 with respect to peak area in the concentration range 200-1200 ng per spot. The method was validated for precision, recovery and robustness. The limits of detection and quantification were 20.35 and 61.68 ng per spot, respectively. Naftopidil was subjected to acid and alkali hydrolysis, oxidation and thermal degradation. The drug undergoes degradation under acidic, basic, oxidation and thermal conditions. This indicates that the drug is susceptible to acid, base, oxidation and thermal conditions. The degraded product was well resolved from the pure drug with significantly different Rf value. Statistical analysis proves that the method is repeatable, selective and accurate for the estimation of investigated drug. The proposed developed HPTLC method can be applied for identification and quantitative determination of Naftopidil in bulk drug and pharmaceutical formulation.Keywords: naftopidil, HPTLC, validation, stability, degradation
Procedia PDF Downloads 4037308 Catalytic Applications of Metal-Organic Frameworks for Organic Pollutant Removal in Wastewater Treatment: A Review
Authors: Matthew Ndubuisi Abonyi, Christopher Chiedozie Obi, Joseph Tagbo Nwabanne
Abstract:
This review focuses on the application of Metal-Organic Frameworks (MOF)-based catalysts in the degradation of organic pollutants in wastewater. The degradation of organic pollutants in wastewater remains a critical environmental challenge, necessitating innovative solutions for effective treatment. MOFs have garnered significant attention as promising catalysts for this purpose, owing to their exceptional surface area, tunable porosity, and diverse chemical functionalities. It explores various catalytic mechanisms, including photocatalysis, Fenton-like reactions, and other advanced oxidation processes facilitated by MOFs. The review also explores the design strategies that enhance the catalytic performance of MOFs, such as structural modifications, composite formation, and post-synthetic modifications. Furthermore, real-world case studies are presented, highlighting the practical applications and environmental impact of MOF-based catalysts in wastewater treatment. Challenges associated with the scalability and stability of these materials are discussed, along with future directions for research and development. This review highlights the significant potential of MOF-based catalysts in addressing the pressing issue of water pollution and advocates for continued innovation to optimize their application in wastewater treatment.Keywords: metal-organic frameworks (MOFs), catalysis, wastewater treatment, organic pollutant degradation, photocatalysis
Procedia PDF Downloads 277307 Crosslinked Porous 3-Dimensional Cellulose Nanofibers/Gelatin Based Biocomposite Aerogels for Tissue Engineering Application
Authors: Ali Mirtaghavi, Andy Baldwin, Rajendarn Muthuraj, Jack Luo
Abstract:
Recent advances in biomaterials have led to utilizing biopolymers to develop 3D scaffolds in tissue regeneration. One of the major challenges of designing biomaterials for 3D scaffolds is to mimic the building blocks similar to the extracellular matrix (ECM) of the native tissues. Biopolymer based aerogels obtained by freeze-drying have shown to provide structural similarities to the ECM owing to their 3D format and a highly porous structure with interconnected pores, similar to the ECM. Gelatin (GEL) is known to be a promising biomaterial with inherent regenerative characteristics owing to its chemical similarities to the ECM in native tissue, biocompatibility abundance, cost-effectiveness and accessible functional groups, which makes it facile for chemical modifications with other biomaterials to form biocomposites. Despite such advantages, gelatin offers poor mechanical properties, sensitive enzymatic degradation and high viscosity at room temperature which limits its application and encourages its use to develop biocomposites. Hydrophilic biomass-based cellulose nanofibrous (CNF) has been explored to use as suspension for biocomposite aerogels for the development of 3D porous structures with excellent mechanical properties, biocompatibility and slow enzymatic degradation. In this work, CNF biocomposite aerogels with various ratios of CNF:GEL) (90:10, 70:30 and 50:50) were prepared by freeze-drying technique, and their properties were investigated in terms of physicochemical, mechanical and biological characteristics. Epichlorohydrin (EPH) was used to investigate the effect of chemical crosslinking on the molecular interaction of CNF: GEL, and its effects on physicochemical, mechanical and biological properties of the biocomposite aerogels. Ultimately, chemical crosslinking helped to improve the mechanical resilience of the resulting aerogels. Amongst all the CNF-GEL composites, the crosslinked CNF: GEL (70:30) biocomposite was found to be favourable for cell attachment and viability. It possessed highly porous structure (porosity of ~93%) with pore sizes ranging from 16-110 µm, adequate mechanical properties (compression modulus of ~47 kPa) and optimal biocompatibility both in-vitro and in-vivo, as well as controlled enzymatic biodegradation, high water penetration, which could be considered a suitable option for wound healing application. In-vivo experiments showed improvement on inflammation and foreign giant body cell reaction for the crosslinked CNF: GEL (70:30) compared to the other samples. This could be due to the superior interaction of CNF with gelatin through chemical crosslinking, resulting in more optimal in-vivo improvement. In-vitro cell culture investigation on human dermal fibroblasts showed satisfactory 3D cell attachment over time. Overall, it has been observed that the developed CNF: GEL aerogel can be considered as a potential scaffold for soft tissue regeneration application.Keywords: 3D scaffolds, aerogels, Biocomposites , tissue engineering
Procedia PDF Downloads 1327306 Interactive of Calcium, Potassium, and Dynamic Unequal Salt Distribution on the Growth of Tomato in Hydroponic System
Authors: Mohammad Koushafar, Amir Hossein Khoshgoftarmanesh
Abstract:
Due to water shortage, application of saline water for irrigation is an urgent requirement in agriculture. Thus, this study, the effect of calcium and potassium application as additive in saline root media for reduce salinity adverse effects was investigated on tomato growth in a hydroponic system with unequal distribution of salts in the root media, which was divided into two equal parts containing full Johnson nutrient solution and 40 mM NaCl solution, alone or in combination with KCl (6 mM), CaCl2 (4 mM), K+Ca (3+2 mM) or half-strength Johnson nutrient solution. The root splits were exchanged every 7 days. Results showed that addition of calcium, calcium-potassium and nutrition elements equivalent to half the concentration of Johnson formula to the saline-half of culture media minimized the reduction in plant growth caused by NaCl, although the addition of potassium to culture media was not effective. The greatest concentration of sodium was observed at the shoot of treatments which had the smallest growth. According to the results of this study, in the case of dynamic and non-uniform distribution of salts in the root media, by the addition of additive to the saline solution, it would be possible to use of saline water with no significant growth reduction.Keywords: calcium, hydroponic, local salinity, potassium, salin water, tomato
Procedia PDF Downloads 4467305 Fault Analysis of Induction Machine Using Finite Element Method (FEM)
Authors: Wiem Zaabi, Yemna Bensalem, Hafedh Trabelsi
Abstract:
The paper presents a finite element (FE) based efficient analysis procedure for induction machine (IM). The FE formulation approaches are proposed to achieve this goal: the magnetostatic and the non-linear transient time stepped formulations. The study based on finite element models offers much more information on the phenomena characterizing the operation of electrical machines than the classical analytical models. This explains the increase of the interest for the finite element investigations in electrical machines. Based on finite element models, this paper studies the influence of the stator and the rotor faults on the behavior of the IM. In this work, a simple dynamic model for an IM with inter-turn winding fault and a broken bar fault is presented. This fault model is used to study the IM under various fault conditions and severity. The simulation results are conducted to validate the fault model for different levels of fault severity. The comparison of the results obtained by simulation tests allowed verifying the precision of the proposed FEM model. This paper presents a technical method based on Fast Fourier Transform (FFT) analysis of stator current and electromagnetic torque to detect the faults of broken rotor bar. The technique used and the obtained results show clearly the possibility of extracting signatures to detect and locate faults.Keywords: Finite element Method (FEM), Induction motor (IM), short-circuit fault, broken rotor bar, Fast Fourier Transform (FFT) analysis
Procedia PDF Downloads 3047304 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 1667303 The Network Relative Model Accuracy (NeRMA) Score: A Method to Quantify the Accuracy of Prediction Models in a Concurrent External Validation
Authors: Carl van Walraven, Meltem Tuna
Abstract:
Background: Network meta-analysis (NMA) quantifies the relative efficacy of 3 or more interventions from studies containing a subgroup of interventions. This study applied the analytical approach of NMA to quantify the relative accuracy of prediction models with distinct inclusion criteria that are evaluated on a common population (‘concurrent external validation’). Methods: We simulated binary events in 5000 patients using a known risk function. We biased the risk function and modified its precision by pre-specified amounts to create 15 prediction models with varying accuracy and distinct patient applicability. Prediction model accuracy was measured using the Scaled Brier Score (SBS). Overall prediction model accuracy was measured using fixed-effects methods that accounted for model applicability patterns. Prediction model accuracy was summarized as the Network Relative Model Accuracy (NeRMA) Score which ranges from -∞ through 0 (accuracy of random guessing) to 1 (accuracy of most accurate model in concurrent external validation). Results: The unbiased prediction model had the highest SBS. The NeRMA score correctly ranked all simulated prediction models by the extent of bias from the known risk function. A SAS macro and R-function was created to implement the NeRMA Score. Conclusions: The NeRMA Score makes it possible to quantify the accuracy of binomial prediction models having distinct inclusion criteria in a concurrent external validation.Keywords: prediction model accuracy, scaled brier score, fixed effects methods, concurrent external validation
Procedia PDF Downloads 2397302 Clinical Pharmacology Throughout the World: A View from Global Health
Authors: Ragy Raafat Gaber Attaalla
Abstract:
Despite having the greatest rates of mortality and morbidity in the world, low- and middle-income (LMIC) nations trail high-income nations in terms of the number of clinical trials, the number of qualified researchers, and the amount of research information specific to their people. Health inequities and the use of precision medicine may be hampered by a lack of local genomic data, clinical pharmacology and pharmacometrics competence, and training opportunities. These issues can be solved by carrying out health care infrastructure development, which includes data gathering and well-designed clinical pharmacology training in LMICs. It will be advantageous if there is international cooperation focused at enhancing education and infrastructure and promoting locally motivated clinical trials and research. This paper outlines various instances where clinical pharmacology knowledge could be put to use, including pharmacogenomic opportunities that could lead to better clinical guideline recommendations. Examples of how clinical pharmacology training can be successfully implemented in LMICs are also provided, including clinical pharmacology and pharmacometrics training programmes in Africa and a Tanzanian researcher's personal experience while on a training sabbatical in the United States. These training initiatives will profit from advocacy for clinical pharmacologists' employment prospects and career development pathways, which are gradually becoming acknowledged and established in LMICs. The advancement of training and research infrastructure to increase clinical pharmacologists' knowledge in LMICs would be extremely beneficial because they have a significant role to play in global health.Keywords: low- and middle-income, clinical pharmacology, pharmacometrics, career development pathways
Procedia PDF Downloads 757301 A Fundamental Study on the Anchor Performance of Non-Surface Treated Multi CFRP Tendons
Authors: Woo-tai Jung, Jong-sup Park, Jae-yoon Kang, Moon-seoung Keum
Abstract:
CFRP (Carbon Fiber Reinforced Polymer) is mainly used as reinforcing material for degraded structures owing to its advantages including its non-corrodibility, high strength, and lightweight properties. Recently, dedicated studies focused not only on its simple bonding but also on its tensioning. The tension necessary for prestressing requires the anchoring of multi-CFRP tendons with high capacity and the surface treatment of the CFRP tendons may also constitute an important issue according to the type of anchor. The wedge type, swage type or bonded type anchor can be used to anchor the CFRP tendon. The bonded type anchor presents the disadvantage to lengthen the length of the anchor due to the low bond strength of the CFRP tendon without surface treatment. This study intends to overcome this drawback through the application of a method enlarging the bond area at the end of the CFRP tendon. This method enlarges the bond area by splitting the end of the CFRP tendon along its length and can be applied when CFRP is produced by pultrusion. The application of this method shows that the mono-CFRP tendon and 3-multi CFRP tendon secured the anchor performance corresponding to the tensile performance of the CFRP tendon and that the 7-multi tendon secured anchor performance corresponding to 90% of the tensile strength due to the occurrence of buckling in the steel tube anchorage.Keywords: carbon fiber reinforced polymer (CFRP), tendon, anchor, tensile property, bond strength
Procedia PDF Downloads 2487300 Participation in IAEA Proficiency Test to Analyse Cobalt, Strontium and Caesium in Seawater Using Direct Counting and Radiochemical Techniques
Authors: S. Visetpotjanakit, C. Khrautongkieo
Abstract:
Radiation monitoring in the environment and foodstuffs is one of the main responsibilities of Office of Atoms for Peace (OAP) as the nuclear regulatory body of Thailand. The main goal of the OAP is to assure the safety of the Thai people and environment from any radiological incidents. Various radioanalytical methods have been developed to monitor radiation and radionuclides in the environmental and foodstuff samples. To validate our analytical performance, several proficiency test exercises from the International Atomic Energy Agency (IAEA) have been performed. Here, the results of a proficiency test exercise referred to as the Proficiency Test for Tritium, Cobalt, Strontium and Caesium Isotopes in Seawater 2017 (IAEA-RML-2017-01) are presented. All radionuclides excepting ³H were analysed using various radioanalytical methods, i.e. direct gamma-ray counting for determining ⁶⁰Co, ¹³⁴Cs and ¹³⁷Cs and developed radiochemical techniques for analysing ¹³⁴Cs, ¹³⁷Cs using AMP pre-concentration technique and 90Sr using di-(2-ethylhexyl) phosphoric acid (HDEHP) liquid extraction technique. The analysis results were submitted to IAEA. All results passed IAEA criteria, i.e. accuracy, precision and trueness and obtained ‘Accepted’ statuses. These confirm the data quality from the OAP environmental radiation laboratory to monitor radiation in the environment.Keywords: international atomic energy agency, proficiency test, radiation monitoring, seawater
Procedia PDF Downloads 1737299 A Pattern Recognition Neural Network Model for Detection and Classification of SQL Injection Attacks
Authors: Naghmeh Moradpoor Sheykhkanloo
Abstract:
Structured Query Language Injection (SQLI) attack is a code injection technique in which malicious SQL statements are inserted into a given SQL database by simply using a web browser. Losing data, disclosing confidential information or even changing the value of data are the severe damages that SQLI attack can cause on a given database. SQLI attack has also been rated as the number-one attack among top ten web application threats on Open Web Application Security Project (OWASP). OWASP is an open community dedicated to enabling organisations to consider, develop, obtain, function, and preserve applications that can be trusted. In this paper, we propose an effective pattern recognition neural network model for detection and classification of SQLI attacks. The proposed model is built from three main elements of: a Uniform Resource Locator (URL) generator in order to generate thousands of malicious and benign URLs, a URL classifier in order to: 1) classify each generated URL to either a benign URL or a malicious URL and 2) classify the malicious URLs into different SQLI attack categories, and an NN model in order to: 1) detect either a given URL is a malicious URL or a benign URL and 2) identify the type of SQLI attack for each malicious URL. The model is first trained and then evaluated by employing thousands of benign and malicious URLs. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed approach.Keywords: neural networks, pattern recognition, SQL injection attacks, SQL injection attack classification, SQL injection attack detection
Procedia PDF Downloads 4707298 Optimizing Microwave Assisted Extraction of Anti-Diabetic Plant Tinospora cordifolia Used in Ayush System for Estimation of Berberine Using Taguchi L-9 Orthogonal Design
Authors: Saurabh Satija, Munish Garg
Abstract:
Present work reports an efficient extraction method using microwaves based solvent–sample duo-heating mechanism, for the extraction of an important anti-diabetic plant Tinospora cordifolia from AYUSH system for estimation of berberine content. The process is based on simultaneous heating of sample matrix and extracting solvent under microwave energy. Methanol was used as the extracting solvent, which has excellent berberine solubilizing power and warms up under microwave attributable to its great dispersal factor. Extraction conditions like time of irradition, microwave power, solute-solvent ratio and temperature were optimized using Taguchi design and berberine was quantified using high performance thin layer chromatography. The ranked optimized parameters were microwave power (rank 1), irradiation time (rank 2) and temperature (rank 3). This kind of extraction mechanism under dual heating provided choice of extraction parameters for better precision and higher yield with significant reduction in extraction time under optimum extraction conditions. This developed extraction protocol will lead to extract higher amounts of berberine which is a major anti-diabetic moiety in Tinospora cordifolia which can lead to development of cheaper formulations of the plant Tinospora cordifolia and can help in rapid prevention of diabetes in the world.Keywords: berberine, microwave, optimization, Taguchi
Procedia PDF Downloads 3497297 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 797296 Power Ultrasound Application on Convective Drying of Banana (Musa paradisiaca), Mango (Mangifera indica L.) and Guava (Psidium guajava L.)
Authors: Erika K. Méndez, Carlos E. Orrego, Diana L. Manrique, Juan D. Gonzalez, Doménica Vallejo
Abstract:
High moisture content in fruits generates post-harvest problems such as mechanical, biochemical, microbial and physical losses. Dehydration, which is based on the reduction of water activity of the fruit, is a common option for overcoming such losses. However, regular hot air drying could affect negatively the quality properties of the fruit due to the long residence time at high temperature. Power ultrasound (US) application during the convective drying has been used as a novel method able to enhance drying rate and, consequently, to decrease drying time. In the present study, a new approach was tested to evaluate the effect of US on the drying time, the final antioxidant activity (AA) and the total polyphenol content (TPC) of banana slices (BS), mango slices (MS) and guava slices (GS). There were also studied the drying kinetics with nine different models from which water effective diffusivities (Deff) (with or without shrinkage corrections) were calculated. Compared with the corresponding control tests, US assisted drying for fruit slices showed reductions in drying time between 16.23 and 30.19%, 11.34 and 32.73%, and 19.25 and 47.51% for the MS, BS and GS respectively. Considering shrinkage effects, Deff calculated values ranged from 1.67*10-10 to 3.18*10-10 m2/s, 3.96*10-10 and 5.57*10-10 m2/s and 4.61*10-10 to 8.16*10-10 m2/s for the BS, MS and GS samples respectively. Reductions of TPC and AA (as DPPH) were observed compared with the original content in fresh fruit data in all kinds of drying assays.Keywords: banana, drying, effective diffusivity, guava, mango, ultrasound
Procedia PDF Downloads 5377295 Importance of Developing a Decision Support System for Diagnosis of Glaucoma
Authors: Murat Durucu
Abstract:
Glaucoma is a condition of irreversible blindness, early diagnosis and appropriate interventions to make the patients able to see longer time. In this study, it addressed that the importance of developing a decision support system for glaucoma diagnosis. Glaucoma occurs when pressure happens around the eyes it causes some damage to the optic nerves and deterioration of vision. There are different levels ranging blindness of glaucoma disease. The diagnosis at an early stage allows a chance for therapies that slows the progression of the disease. In recent years, imaging technology from Heidelberg Retinal Tomography (HRT), Stereoscopic Disc Photo (SDP) and Optical Coherence Tomography (OCT) have been used for the diagnosis of glaucoma. This better accuracy and faster imaging techniques in response technique of OCT have become the most common method used by experts. Although OCT images or HRT precision and quickness, especially in the early stages, there are still difficulties and mistakes are occurred in diagnosis of glaucoma. It is difficult to obtain objective results on diagnosis and placement process of the doctor's. It seems very important to develop an objective decision support system for diagnosis and level the glaucoma disease for patients. By using OCT images and pattern recognition systems, it is possible to develop a support system for doctors to make their decisions on glaucoma. Thus, in this recent study, we develop an evaluation and support system to the usage of doctors. Pattern recognition system based computer software would help the doctors to make an objective evaluation for their patients. It is intended that after development and evaluation processes of the software, the system is planning to be serve for the usage of doctors in different hospitals.Keywords: decision support system, glaucoma, image processing, pattern recognition
Procedia PDF Downloads 3047294 Determining of the Performance of Data Mining Algorithm Determining the Influential Factors and Prediction of Ischemic Stroke: A Comparative Study in the Southeast of Iran
Authors: Y. Mehdipour, S. Ebrahimi, A. Jahanpour, F. Seyedzaei, B. Sabayan, A. Karimi, H. Amirifard
Abstract:
Ischemic stroke is one of the common reasons for disability and mortality. The fourth leading cause of death in the world and the third in some other sources. Only 1/3 of the patients with ischemic stroke fully recover, 1/3 of them end in permanent disability and 1/3 face death. Thus, the use of predictive models to predict stroke has a vital role in reducing the complications and costs related to this disease. Thus, the aim of this study was to specify the effective factors and predict ischemic stroke with the help of DM methods. The present study was a descriptive-analytic study. The population was 213 cases from among patients referring to Ali ibn Abi Talib (AS) Hospital in Zahedan. Data collection tool was a checklist with the validity and reliability confirmed. This study used DM algorithms of decision tree for modeling. Data analysis was performed using SPSS-19 and SPSS Modeler 14.2. The results of the comparison of algorithms showed that CHAID algorithm with 95.7% accuracy has the best performance. Moreover, based on the model created, factors such as anemia, diabetes mellitus, hyperlipidemia, transient ischemic attacks, coronary artery disease, and atherosclerosis are the most effective factors in stroke. Decision tree algorithms, especially CHAID algorithm, have acceptable precision and predictive ability to determine the factors affecting ischemic stroke. Thus, by creating predictive models through this algorithm, will play a significant role in decreasing the mortality and disability caused by ischemic stroke.Keywords: data mining, ischemic stroke, decision tree, Bayesian network
Procedia PDF Downloads 1777293 Combined Aplication of Indigenous Pseudomonas fluorescens and the AM Fungi as the Potential Biocontrol Agents of Banana Fusarium wilt
Authors: Eri Sulyanti, Trimurti Habazar, Eti Farda Husen, Abdi Dharma, Nasril Nasir
Abstract:
In this study, combination of some biocontrol agents with different mechanisms was an alternative to improve the effectiveness of the biological control agents. Single and combined applications of indigenous Pseudomonas fluorescens and Arbuscular Mychorrhizae Fungi (AM Fungi) isolates were tested to induce the resistance on susceptible Cavendish banana against F.oxysporum f. sp. cubense race 4 under greenhouse conditions. These isolates originally isolated from healthy banana rhizosphere at endemic Fusarium wilt areas in the centre of production banana in West Sumatra. These researches were conducted with Randomized Block Design with 16 treatments and 10 replications. The treatments were three indigenous isolates of Pseudomonas fluorescens (Par1-Cv, Par4-Rj1, Par2-Jt1) and 3 isolates of AM Fungi (Gl1BuA4, Gl2BuA6, and Gl1KeP3. The biocontrol agents were applied as single agents and combination two of them. This study demonstrated that the application of combination biocontrol organisms Pseudomonas fluorescens and AM Fungi provided were more effective than single application. The combination of Par1-Cv and Gl1BuA4 isolates was the most effective to control Fusarium wilt and followed by the combination of Par1-Cv and Gl2BuA6 and Par2-Jt1 and Gl1P3.Keywords: pseudomonad fluorescens (Pf), arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates, fusarium oxysporum f. sp. cubense, soil rhizosphere
Procedia PDF Downloads 3107292 Identifying the Challenges and Opportunities of Using Lesson Study in English Language Teaching Through the Lenses of In-Service Ecuadorian EFL Teachers
Authors: Cherres Sara, Cajas Diego
Abstract:
This paper explores how EFL teachers understand the process of Lesson Study in Ecuadorian schools and the challenges and opportunities that it brings to the improvement of their teaching practice. Using a narrative research methodology, this study presents the results of the application of the four steps of Lesson Study carried out by seven teachers in four different schools located in the Southern part of Ecuador during four months. Before starting the implementation of the lesson study, 30 teachers were trained on this model. This training was opened to EFL teachers working in public and private schools without any charge. The criteria to select these teachers were first, to be minimum a one-year in-service teacher, second, to have a b2 level of English, and third, to be able to commit to follow the course guidelines. After the course, seven teachers decided to continue with the implementation of the Lesson Study in their respective institutions. During the implementation of the Lesson Study, data was collected through observations, in-depth interviews and teachers’ planning meetings; and analyzed using a thematic analysis. The results of this study are presented using the lenses of seven EFL teachers that explained the challenges and opportunities that the implementation of Lesson Study conveyed. The challenges identified were the limited capacity of reflection and recognition of the activities that required improvement after the class, limited capacity to provide truthful peer feedback, teachers wrong notions about their performance in their classes, difficulties to follow a collaborative lesson plan; and, the disconnection between class activities and the class content. The opportunities identified were teachers’ predisposition to collaborate, teachers’ disposition to attend professional development courses, their commitment to work extra hours in planning meetings, their openness and their desired to be observed in their classes; and, their willingness to share class materials and knowledge. On the other hand, the results show that there is a disconnection between teachers’ knowledge of ELT and its proper application in class (from theory to practice). There are also, rigid institutional conceptions of teaching that do not allow teaching innovations. The authors concluded that there is a disconnection between teachers’ knowledge of ELT and its proper application in class (from theory to practice). There are also, rigid institutional conceptions of teaching that do not allow teaching innovations for example: excessive institutional paperwork and activities that are not connected to the development of students’ competences.Keywords: ELT, lesson study, teachers’ professional development, teachers’ collaboration
Procedia PDF Downloads 727291 Performance Analysis and Multi-Objective Optimization of a Kalina Cycle for Low-Temperature Applications
Authors: Sadegh Sadeghi, Negar Shabani
Abstract:
From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature thermodynamic cycles due to their suitable boiling characteristics. In this study, performance of a low-temperature Kalina cycle with R717/water working fluid used in different existing power plants is mathematically investigated. To analyze the behavior of the cycle, mass conservation, energy conservation, and exergy balance equations are presented. With regard to the similarity in molar mass of R717 (17.03 gr/mol) and water (18.01 gr/mol), there is no need to alter the size of Kalina system components such as turbine and pump. To optimize the cycle energy and exergy efficiencies simultaneously, a constrained multi-objective optimization is carried out applying an Artificial Bee Colony algorithm. The main motivation behind using this algorithm lies on its robustness, reliability, remarkable precision and high–speed convergence rate in dealing with complicated constrained multi-objective problems. Convergence rates of the algorithm for calculating the optimal energy and exergy efficiencies are presented. Subsequently, due to the importance of exergy concept in Kalina cycles, exergy destructions occurring in the components are computed. Finally, the impacts of pressure, temperature, mass fraction and mass flow rate on the energy and exergy efficiencies are elaborately studied.Keywords: artificial bee colony algorithm, binary zeotropic mixture, constrained multi-objective optimization, energy efficiency, exergy efficiency, Kalina cycle
Procedia PDF Downloads 1557290 The Road Ahead: Merging Human Cyber Security Expertise with Generative AI
Authors: Brennan Lodge
Abstract:
Amidst a complex regulatory landscape, Retrieval Augmented Generation (RAG) emerges as a transformative tool for Governance Risk and Compliance (GRC) officers. This paper details the application of RAG in synthesizing Large Language Models (LLMs) with external knowledge bases, offering GRC professionals an advanced means to adapt to rapid changes in compliance requirements. While the development for standalone LLM’s (Large Language Models) is exciting, such models do have their downsides. LLM’s cannot easily expand or revise their memory, and they can’t straightforwardly provide insight into their predictions, and may produce “hallucinations.” Leveraging a pre-trained seq2seq transformer and a dense vector index of domain-specific data, this approach integrates real-time data retrieval into the generative process, enabling gap analysis and the dynamic generation of compliance and risk management content. We delve into the mechanics of RAG, focusing on its dual structure that pairs parametric knowledge contained within the transformer model with non-parametric data extracted from an updatable corpus. This hybrid model enhances decision-making through context-rich insights, drawing from the most current and relevant information, thereby enabling GRC officers to maintain a proactive compliance stance. Our methodology aligns with the latest advances in neural network fine-tuning, providing a granular, token-level application of retrieved information to inform and generate compliance narratives. By employing RAG, we exhibit a scalable solution that can adapt to novel regulatory challenges and cybersecurity threats, offering GRC officers a robust, predictive tool that augments their expertise. The granular application of RAG’s dual structure not only improves compliance and risk management protocols but also informs the development of compliance narratives with pinpoint accuracy. It underscores AI’s emerging role in strategic risk mitigation and proactive policy formation, positioning GRC officers to anticipate and navigate the complexities of regulatory evolution confidently.Keywords: cybersecurity, gen AI, retrieval augmented generation, cybersecurity defense strategies
Procedia PDF Downloads 997289 Moderate Electric Field and Ultrasound as Alternative Technologies to Raspberry Juice Pasteurization Process
Authors: Cibele F. Oliveira, Debora P. Jaeschke, Rodrigo R. Laurino, Amanda R. Andrade, Ligia D. F. Marczak
Abstract:
Raspberry is well-known as a good source of phenolic compounds, mainly anthocyanin. Some studies pointed out the importance of these bioactive compounds consumption, which is related to the decrease of the risk of cancer and cardiovascular diseases. The most consumed raspberry products are juices, yogurts, ice creams and jellies and, to ensure the safety of these products, raspberry is commonly pasteurized, for enzyme and microorganisms inactivation. Despite being efficient, the pasteurization process can lead to degradation reactions of the bioactive compounds, decreasing the products healthy benefits. Therefore, the aim of the present work was to evaluate moderate electric field (MEF) and ultrasound (US) technologies application on the pasteurization process of raspberry juice and compare the results with conventional pasteurization process. For this, phenolic compounds, anthocyanin content and physical-chemical parameters (pH, color changes, titratable acidity) of the juice were evaluated before and after the treatments. Moreover, microbiological analyses of aerobic mesophiles microorganisms, molds and yeast were performed in the samples before and after the treatments, to verify the potential of these technologies to inactivate microorganisms. All the pasteurization processes were performed in triplicate for 10 min, using a cylindrical Pyrex® vessel with a water jacket. The conventional pasteurization was performed at 90 °C using a hot water bath connected to the extraction cell. The US assisted pasteurization was performed using 423 and 508 W cm-2 (75 and 90 % of ultrasound intensity). It is important to mention that during US application the temperature was kept below 35 °C; for this, the water jacket of the extraction cell was connected to a water bath with cold water. MEF assisted pasteurization experiments were performed similarly to US experiments, using 25 and 50 V. Control experiments were performed at the maximum temperature of US and MEF experiments (35 °C) to evaluate only the effect of the aforementioned technologies on the pasteurization. The results showed that phenolic compounds concentration in the juice was not affected by US and MEF application. However, it was observed that the US assisted pasteurization, performed at the highest intensity, decreased anthocyanin content in 33 % (compared to in natura juice). This result was possibly due to the cavitation phenomena, which can lead to free radicals formation and accumulation on the medium; these radicals can react with anthocyanin decreasing the content of these antioxidant compounds in the juice. Physical-chemical parameters did not present statistical differences for samples before and after the treatments. Microbiological analyses results showed that all the pasteurization treatments decreased the microorganism content in two logarithmic cycles. However, as values were lower than 1000 CFU mL-1 it was not possible to verify the efficacy of each treatment. Thus, MEF and US were considered as potential alternative technologies for pasteurization process, once in the right conditions the application of the technologies decreased microorganism content in the juice and did not affected phenolic and anthocyanin content, as well as physical-chemical parameters. However, more studies are needed regarding the influence of MEF and US processes on microorganisms’ inactivation.Keywords: MEF, microorganism inactivation, anthocyanin, phenolic compounds
Procedia PDF Downloads 2437288 Automatic Tuning for a Systemic Model of Banking Originated Losses (SYMBOL) Tool on Multicore
Authors: Ronal Muresano, Andrea Pagano
Abstract:
Nowadays, the mathematical/statistical applications are developed with more complexity and accuracy. However, these precisions and complexities have brought as result that applications need more computational power in order to be executed faster. In this sense, the multicore environments are playing an important role to improve and to optimize the execution time of these applications. These environments allow us the inclusion of more parallelism inside the node. However, to take advantage of this parallelism is not an easy task, because we have to deal with some problems such as: cores communications, data locality, memory sizes (cache and RAM), synchronizations, data dependencies on the model, etc. These issues are becoming more important when we wish to improve the application’s performance and scalability. Hence, this paper describes an optimization method developed for Systemic Model of Banking Originated Losses (SYMBOL) tool developed by the European Commission, which is based on analyzing the application's weakness in order to exploit the advantages of the multicore. All these improvements are done in an automatic and transparent manner with the aim of improving the performance metrics of our tool. Finally, experimental evaluations show the effectiveness of our new optimized version, in which we have achieved a considerable improvement on the execution time. The time has been reduced around 96% for the best case tested, between the original serial version and the automatic parallel version.Keywords: algorithm optimization, bank failures, OpenMP, parallel techniques, statistical tool
Procedia PDF Downloads 3717287 Influence of Agroforestry Trees Leafy Biomass and Nitrogen Fertilizer on Crop Growth Rate and Relative Growth Rate of Maize
Authors: A. B. Alarape, O. D. Aba
Abstract:
The use of legume tree pruning as mulch in agroforestry system is a common practice to maintain soil organic matter and improve soil fertility in the tropics. The study was conducted to determine the influence of agroforestry trees leafy biomass and nitrogen fertilizer on crop growth rate and relative growth rate of maize. The experiments were laid out as 3 x 4 x 2 factorial in a split-split plot design with three replicates. Control, biomass species (Parkia biglobosa and Albizia lebbeck) as main plots were considered, rates of nitrogen considered include (0, 40, 80, 120 kg N ha⁻¹) as sub-plots, and maize varieties (DMR-ESR-7 and 2009 EVAT) were used as sub-sub plots. Data were analyzed using descriptive and inferential statistics (ANOVA) at α = 0.05. Incorporation of leafy biomass was significant in 2015 on Relative Growth Rate (RGR), while nitrogen application was significant on Crop Growth Rate (CGR). 2009 EVAT had higher CGR in 2015 at 4-6 and 6-8 WAP. Incorporation of Albizia leaves enhanced the growth of maize than Parkia leaves. Farmers are, therefore, encouraged to use Albizia leaves as mulch to enrich their soil for maize production and most especially, in case of availability of inorganic fertilizers. Though, production of maize with biomass and application of 120 kg N ha⁻¹ will bring better growth of maize.Keywords: agroforestry trees, fertilizer, growth, incorporation, leafy biomass
Procedia PDF Downloads 1947286 Predictive Analysis of Chest X-rays Using NLP and Large Language Models with the Indiana University Dataset and Random Forest Classifier
Authors: Azita Ramezani, Ghazal Mashhadiagha, Bahareh Sanabakhsh
Abstract:
This study researches the combination of Random. Forest classifiers with large language models (LLMs) and natural language processing (NLP) to improve diagnostic accuracy in chest X-ray analysis using the Indiana University dataset. Utilizing advanced NLP techniques, the research preprocesses textual data from radiological reports to extract key features, which are then merged with image-derived data. This improved dataset is analyzed with Random Forest classifiers to predict specific clinical results, focusing on the identification of health issues and the estimation of case urgency. The findings reveal that the combination of NLP, LLMs, and machine learning not only increases diagnostic precision but also reliability, especially in quickly identifying critical conditions. Achieving an accuracy of 99.35%, the model shows significant advancements over conventional diagnostic techniques. The results emphasize the large potential of machine learning in medical imaging, suggesting that these technologies could greatly enhance clinician judgment and patient outcomes by offering quicker and more precise diagnostic approximations.Keywords: natural language processing (NLP), large language models (LLMs), random forest classifier, chest x-ray analysis, medical imaging, diagnostic accuracy, indiana university dataset, machine learning in healthcare, predictive modeling, clinical decision support systems
Procedia PDF Downloads 48