Search results for: treated wastewater recycling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4246

Search results for: treated wastewater recycling

4096 Study of Divalent Phosphate Iron-Oxide Precursor Recycling Technology

Authors: Shinn-Dar Wu

Abstract:

This study aims to synthesize lithium iron phosphate cathode material using a recycling technology involving non-protective gas calcination. The advantages include lower cost and easier production than traditional methods that require a large amount of protective gas. The novel technology may have extensive industrial applications. Given that the traditional gas calcination has a large number of protection free Fe3+ production, this study developed a precursor iron phosphate (Fe2+) material recycling technology and conducted related tests and analyses. It focused on flow field design of calcination and new technology as well as analyzed the best conditions for powder calcination combination. The electrical properties were determined by button batteries and exhibited a capacity of 118 mAh/g (The use of new materials synthesis, capacitance is about 122 mAh/g). The cost reduced to 50% of the original.

Keywords: lithium battery, lithium iron phosphate, calcined technology, recycling technology

Procedia PDF Downloads 476
4095 Reverse Logistics in Clothing Recycling: A Case Study in Chengdu

Authors: Guo Yan

Abstract:

Clothing recycling bin is a traditional way to collect textile waste in many areas. In the clothing recycling business, the transportation cost normally takes over 50% of total costs. This case gives a good way to reduce transportation cost by reverse logistics system. In this reverse logistics system, there are offline strategic alliance partners, such as transport firms, convenience stores, laundries, and post office which are integrated onto the mobile APP. Offline strategic alliance partners provide the service of textile waste collection, and transportation by their vacant vehicles return journey from convenience stores, laundries and post offices to sorting centers. The results of the case study provide the strategic alliance with a valuable and light - asset business model by using the logistics of offline memberships. The company in this case just focuses on textile waste sorting, reuse, recycling etc. The research method of this paper is a case study of a clothing recycling company in Chengdu by field research and interview; the analysis is based on the theory of the reverse logistics system.

Keywords: closed-loop recycles system, clothing recycling, end-of-life clothing, sharing economy, strategic alliance, reverse logistics.

Procedia PDF Downloads 146
4094 Tehran Province Water and Wastewater Company Approach on Energy Efficiency by the Development of Renewable Energy to Achieving the Sustainable Development Legal Principle

Authors: Mohammad Parvaresh, Mahdi Babaee, Bahareh Arghand, Roushanak Fahimi Hanzaee, Davood Nourmohammadi

Abstract:

Today, the intelligent network of water and wastewater as one of the key steps in realizing the smart city in the world. Use of pressure relief valves in urban water networks in order to reduce the pressure is necessary in Tehran city. But use these pressure relief valves lead to waste water, more power consumption, and environmental pollution because Tehran Province Water and Wastewater Co. use a quarter of industry 's electricity. In this regard, Tehran Province Water and Wastewater Co. identified solutions to reduce direct and indirect costs in energy use in the process of production, transmission and distribution of water because this company has extensive facilities and high capacity to realize green economy and industry. The aim of this study is to analyze the new project in water and wastewater industry to reach sustainable development.

Keywords: Tehran Province Water and Wastewater Company, water network efficiency, sustainable development, International Environmental Law

Procedia PDF Downloads 290
4093 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: bio-electrochemical, nanowires, novel, wastewater

Procedia PDF Downloads 385
4092 Utilising Reuse and Recycling Strategies for Costume Design in Kuwait Theatre

Authors: Ali Dashti

Abstract:

Recycling materials within the realms of theatrical costume design and production is important. When a Kuwaiti play finishes its run, costumes are thrown away and new ones are designed when necessary. This practice indicates a lack of awareness of recycling strategies. This is a serious matter; tons of textile materials are being wasted rather than recycled. The current process of producing costumes for Kuwait theatre productions involves the conception and sketching of costumes, the purchase of new fabrics, and the employment of tailors for production. Since tailoring is outsourced, there is a shortage of designers who can make costumes autonomously. The current process does not incorporate any methods for recycling costumes. This combined with high levels of textile waste, results in significant ecological issues that demand immediate attention. However, data collected for this research paper, from a series of semi-structured interviews, have indicated that a lack of recycling facilities and increased textile waste do not present an area of concern within the Kuwaiti theatrical costume industry. This paper will review the findings of this research project and investigate the production processes used by costume designers in Kuwait. It will indicate how their behaviors, coupled with their lack of knowledge with using recycling strategies to create costumes, had increased textile waste and negatively affected Kuwait theatre costume design industry.

Keywords: costume, recycle, reuse, theatre

Procedia PDF Downloads 164
4091 Reverse Supply Chain Analysis of Lithium-Ion Batteries Considering Economic and Environmental Aspects

Authors: Aravind G., Arshinder Kaur, Pushpavanam S.

Abstract:

There is a strong emphasis on shifting to electric vehicles (EVs) throughout the globe for reducing the impact on global warming following the Paris climate accord. Lithium-ion batteries (LIBs) are predominantly used in EVs, and these can be a significant threat to the environment if not disposed of safely. Lithium is also a valuable resource not widely available. There are several research groups working on developing an efficient recycling process for LIBs. Two routes - pyrometallurgical and hydrometallurgical processes have been proposed for recycling LIBs. In this paper, we focus on life cycle assessment (LCA) as a tool to quantify the environmental impact of these recycling processes. We have defined the boundary of the LCA to include only the recycling phase of the end-of-life (EoL) of the battery life cycle. The analysis is done assuming ideal conditions for the hydrometallurgical and a combined hydrometallurgical and pyrometallurgical process in the inventory analysis. CML-IA method is used for quantifying the impact assessment across eleven indicators. Our results show that cathode, anode, and foil contribute significantly to the impact. The environmental impacts of both hydrometallurgical and combined recycling processes are similar across all the indicators. Further, the results of LCA are used in developing a multi-objective optimization model for the design of lithium-ion battery recycling network. Greenhouse gas emissions and cost are the two parameters minimized for the optimization study.

Keywords: life cycle assessment, lithium-ion battery recycling, multi-objective optimization, network design, reverse supply chain

Procedia PDF Downloads 154
4090 Biodegradation of Chlorpyrifos in Real Wastewater by Acromobacter xylosoxidans SRK5 Immobilized in Calcium Alginate

Authors: Saira Khalid, Imran Hashmi

Abstract:

Agrochemical industries produce huge amount of wastewater containing pesticides and other harmful residues. Environmental regulations make it compulsory to bring pesticides to a minimum level before releasing wastewater from industrial units.The present study was designed with the objective to investigate biodegradation of CP in real wastewater using bacterial cells immobilized in calcium alginate. Bacterial strain identified as Acromobacter xylosoxidans SRK5 (KT013092) using 16S rRNA nucleotide sequence analysis was used. SRK5 was immobilized in calcium alginate to make calcium alginate microspheres (CAMs). Real wastewater from industry having 50 mg L⁻¹ of CP was inoculated with free cells or CAMs and incubated for 96 h at 37˚C. CP removal efficiency with CAMs was 98% after 72 h of incubation, and no lag phase was observed. With free cells, 12h of lag phase was observed. After 96 h of incubation 87% of CP removal was observed when inoculated with free cells. No adsorption was observed on vacant CAMs. Phytotoxicity assay demonstrated considerable loss in toxicity. Almost complete COD removal was achieved at 96 h with CAMs. Study suggests the use of immobilized cells of SRK5 for bioaugmentation of industrial wastewater for CP degradation instead of free cells.

Keywords: biodegradation, chlorpyrifos, immobilization, wastewater

Procedia PDF Downloads 175
4089 Use of Acid Mine Drainage as a Source of Iron to Initiate the Solar Photo-Fenton Treatment of Municipal Wastewater: Circular Economy Effect

Authors: Tooba Aslam, Efthalia Chatzisymeon

Abstract:

Untreated Municipal Wastewater (MWW) is renowned as the utmost harmful pollution caused to environmental water due to the high presence of nutrients and organic contaminants. Removal of Chemical Oxygen Demand (COD) from synthetic as well as municipal wastewater is investigated by using acid mine drainage as a source of iron to initiate the solar photo-Fenton treatment of municipal wastewater. In this study, Acid Mine Drainage (AMD) and different minerals enriched in iron, such as goethite, hematite, magnetite, and magnesite, have been used as the source of iron to initiate the photo-Fenton process. Co-treatment of real municipal wastewater and acid mine drainage /minerals is widely examined. The effects of different parameters such as minerals recovery from AMD, AMD as a source of iron, H₂O₂ concentration, and COD concentrations on the COD percentage removal of the process are studied. The results show that, out of all the four minerals, only hematite (1g/L) could remove 30% of the pollutants at about 100 minutes and 1000 ppm of H₂O₂. The addition of AMD as a source of iron is performed and compared with both synthetic as well as real wastewater from South Africa under the same conditions, i.e., 1000 ppm of H₂O₂, ambient temperature, 2.8 pH, and solar simulator. In the case of synthetic wastewater, the maximum removal (56%) is achieved with 50 ppm of iron (AMD source) at 160 minutes. On the other hand, in real wastewater, the removal efficiency is 99% with 30 ppm of iron at 90 minutes and 96% with 50 ppm of iron at 120 minutes. In conclusion, overall, the co-treatment of AMD and MWW by solar photo-Fenton treatment appears to be an effective and promising method to remove organic materials from Municipal wastewater.

Keywords: municipal wastewater treatment, acid mine drainage, co-treatment, COD removal, solar photo-Fenton, circular economy

Procedia PDF Downloads 86
4088 Malachite Green and Red Congo Dyes Adsorption onto Chemical Treated Sewage Sludge

Authors: Zamouche Meriem, Mehcene Ismahan, Temmine Manel, Bencheikh Lehocine Mosaab, Meniai Abdeslam Hassen

Abstract:

In this study, the adsorption of Malachite Green (MG) by chemical treated sewage sludge has been studied. The sewage sludge, collected from drying beds of the municipal wastewater treatment station of IBN ZIED, Constantine, Algeria, was treated by different acids such us HNO₃, H₂SO₄, H₃PO₄ for modifying its aptitude to removal the MG from aqueous solutions. The results obtained shows that the sewage sludge activated by sulfuric acid give the highest elimination amounts of MG (9.52 mg/L) compared by the other acids used. The effects of operation parameters have been investigated, the results obtained show that the adsorption capacity per unit of adsorbent mass decreases from 18.69 to 1.20 mg/g when the mass of the adsorbent increases from 0.25 to 4 g respectively, the optimum mass for which a maximum of elimination of the dye is equal to 0.5g. The increasing in the temperature of the solution results in a slight decrease in the adsorption capacity of the chemically treated sludge. The highest amount of dye adsorbed by CSSS (9.56 mg/g) was observed for the optimum temperature of 25°C. The chemical activated sewage sludge proved its effectiveness for the removal of the Red Congo (RC), but by comparison the adsorption of the two dyes studies, we noted that the sludge has more affinity to adsorb the (MG).

Keywords: adsorption, chemical activation, malachite green, sewage sludge

Procedia PDF Downloads 187
4087 Nutrient Removal and Microalgal Biomass Growth of Chlorella Vulgaris in Response to Centrate Wastewater Loadings

Authors: Lingfeng Wang, Zhipeng Chen, Shuang Qiu, Shijian Ge

Abstract:

The effects of wastewater, with four different nutrient loadings, from synthetic centrate on biomass production of Chlorella vulgaris, nutrient removal, microalgal settling, and lipid production were investigated in photobioreactors under both batches and, subsequently, semi-continuous operations. At higher centrate concentration factors (17.2% and 36.2%), hydraulic retention time and pH adjustments could be employed to sustain acceptable microalgal growth rates and wastewater treatment. Similar nutrient removals efficiencies (>95%) and biomass production (0.42-0.51 g/L) were observed for the four centrate concentrations. Both the lipid productivity and lipid content decreased with increasing nutrient loading in the wastewater. The results also demonstrated that the mass ratio of carbohydrate to protein could provide a good indication of microalgal settling performance, rather than sole component composition or total extracellular polymeric substances.

Keywords: lipid production, microalgae, nutrient removal, wastewater

Procedia PDF Downloads 238
4086 Automated Multisensory Data Collection System for Continuous Monitoring of Refrigerating Appliances Recycling Plants

Authors: Georgii Emelianov, Mikhail Polikarpov, Fabian Hübner, Jochen Deuse, Jochen Schiemann

Abstract:

Recycling refrigerating appliances plays a major role in protecting the Earth's atmosphere from ozone depletion and emissions of greenhouse gases. The performance of refrigerator recycling plants in terms of material retention is the subject of strict environmental certifications and is reviewed periodically through specialized audits. The continuous collection of Refrigerator data required for the input-output analysis is still mostly manual, error-prone, and not digitalized. In this paper, we propose an automated data collection system for recycling plants in order to deduce expected material contents in individual end-of-life refrigerating appliances. The system utilizes laser scanner measurements and optical data to extract attributes of individual refrigerators by applying transfer learning with pre-trained vision models and optical character recognition. Based on Recognized features, the system automatically provides material categories and target values of contained material masses, especially foaming and cooling agents. The presented data collection system paves the way for continuous performance monitoring and efficient control of refrigerator recycling plants.

Keywords: automation, data collection, performance monitoring, recycling, refrigerators

Procedia PDF Downloads 162
4085 Application of Moringa Oleifer Seed in Removing Colloids from Turbid Wastewater

Authors: Zemmouri Hassiba, Lounici Hakim, Mameri Nabil

Abstract:

Dried crushed seeds of Moringa oleifera contain an effective soluble protein; a natural cationic polyelectrolyte which causes coagulation. The present study aims to investigate the performance of Moringa oleifera seed extract as natural coagulant in clarification of secondary wastewater treatment highly charged in colloidal. A series of Jar tests was undertaken using raw wastewater providing from secondary decanter of Reghaia municipal wastewater treatment plant (MWWTP) located in East of Algiers, Algeria. Coagulation flocculation performance of Moringa oleifera was evaluated through supernatant residual turbidity. Various influence parameters namely Moringa oleifera dosage and pH have been considered. Tests on Reghaia wastewater, having 129 NTU of initial turbidity, showed a removal of 69.45% of residual turbidity with only 1.5 mg/l of Moringa oleifera. This sufficient removal capability encourages the use of this bioflocculant for treatment of turbid waters. Based on this result, the coagulant seed extract of Moringa oleifera is better suited to clarify municipal wastewater by removing turbidity. Indeed, Moringa oleifera which is a natural resource available locally (South of Algeria) coupled to the non-toxicity, biocompatibility and biodegradability, may be a very interesting alternative to the conventional coagulants used so far.

Keywords: coagulation flocculation, colloids, moringa oleifera, secondary wastewater

Procedia PDF Downloads 308
4084 Revolutionary Wastewater Treatment Technology: An Affordable, Low-Maintenance Solution for Wastewater Recovery and Energy-Saving

Authors: Hady Hamidyan

Abstract:

As the global population continues to grow, the demand for clean water and effective wastewater treatment becomes increasingly critical. By 2030, global water demand is projected to exceed supply by 40%, driven by population growth, increased water usage, and climate change. Currently, about 4.2 billion people lack access to safely managed sanitation services. The wastewater treatment sector faces numerous challenges, including the need for energy-efficient solutions, cost-effectiveness, ease of use, and low maintenance requirements. This abstract presents a groundbreaking wastewater treatment technology that addresses these challenges by offering an energy-saving approach, wastewater recovery capabilities, and a ready-made, affordable, and user-friendly package with minimal maintenance costs. The unique design of this ready-made package made it possible to eliminate the need for pumps, filters, airlift, and other common equipment. Consequently, it enables sustainable wastewater treatment management with exceptionally low energy and cost requirements, minimizing investment and maintenance expenses. The operation of these packages is based on continuous aeration, which involves injecting oxygen gas or air into the aeration chamber through a tubular diffuser with very small openings. This process supplies the necessary oxygen for aerobic bacteria. The recovered water, which amounts to almost 95% of the input, can be treated to meet specific quality standards, allowing safe reuse for irrigation, industrial processes, or even potable purposes. This not only reduces the strain on freshwater resources but also provides economic benefits by offsetting the costs associated with freshwater acquisition and wastewater discharge. The ready-made, affordable, and user-friendly nature of this technology makes it accessible to a wide range of users, including small communities, industries, and decentralized wastewater treatment systems. The system incorporates user-friendly interfaces, simplified operational procedures, and integrated automation, facilitating easy implementation and operation. Additionally, the use of durable materials, efficient equipment, and advanced monitoring systems significantly reduces maintenance requirements, resulting in low overall life-cycle costs and alleviating the burden on operators and maintenance personnel. In conclusion, the presented wastewater treatment technology offers a comprehensive solution to the challenges faced by the industry. Its energy-saving approach, combined with wastewater recovery capabilities, ensures sustainable resource management and enhances environmental stewardship. This affordable, ready-made, and low-maintenance package promotes broad adoption across various sectors and communities, contributing to a more sustainable future for water and wastewater management.

Keywords: wastewater treatment, energy saving, wastewater recovery, affordable package, low maintenance costs, sustainable resource management, environmental stewardship

Procedia PDF Downloads 90
4083 Treatment of High Concentration Cutting Fluid Wastewater by Ceramic Membrane Bioreactor

Authors: Kai-Shiang Chang, Shiao-Shing Chen, Saikat Sinha Ray, Hung-Te Hsu

Abstract:

In recent years, membrane bioreactors (MBR) have been widely utilized as it can effectively replace conventional activated sludge process (CAS). Membrane bioreactor (MBR) is found to be more effective technology compared to other conventional activated sludge process and advanced membrane separation technique. Additionally, as far as the MBR is concerned, it is having excellent control of sludge retention time (SRT) and hydraulic retention time (HRT) and conducive to the retention of high concentration of sludge biomass. The membrane bioreactor (MBR) can effectively reduce footprint in terms of area and omit the secondary processing procedures in the conventional activated sludge process (CAS). Currently, as per the membrane technology, the ceramic membrane is found to have highly strong anti-acid-base properties, and it is more suitable than polymeric membrane while using for backwash and chemical cleaning. This study is based upon the treatment of Cutting Fluid wastewater, as the Cutting Fluid is widely used in the cutting equipment. However, the Cutting Fluid wastewater is very difficult to treat. In this study, the ceramic membrane was used and combine with of MBR system to treat the Cutting Fluid wastewater. In this present study, different kind of chemical coagulants have been utilized for pretreatment purpose in order to get the supernatant and simultaneously this wastewater (supernatant) was treated by MBR process. Nevertheless, ceramic membrane has three advantages such as high mechanical strength, drug resistance and reuse. During the experiment, the backwash technique was used for every interval of 10 minutes in order to avoid fouling of the membrane. In this study, during pretreatment the Chemical Oxygen Demand (COD) removal efficiency was found to be 71-86% and oil removal efficiency was analyzed to be 83-92%. This pretreatment study suggests that it is quiet effective methodology to reduce COD and oil concentration. Finally, In the MBR system when the HRT is more than 7.5 hour, the COD removal efficiency was found to be 87-93% and could achieve 100% oil removal efficiency. Coagulation test series were seen in Refs coagulants for the treatment of wastewater containing cutting oil with better oil and COD removal efficiency. The results also showed that the oil removal efficiency in the MBR system could reduce the oil content to less than 1 mg / L when the oil quality was 126 mg / L. Therefore, in this paper, the performance of membrane bioreactor by utilizing ceramic membrane has been demonstrated for treatment of Cutting Fluid wastewater.

Keywords: membrane bioreactor, cutting fluid, oil, chemical oxygen demand

Procedia PDF Downloads 313
4082 Occurrence of Illicit Drugs in Aqueous Environment and Removal Efficiency of Wastewater Treatment Plants

Authors: Meena K. Yadav, Rupak Aryal, Michael D. Short, Ben Van Den Akker, Christopher P. Saint, Cobus Gerber

Abstract:

Illicit drugs are considered as emerging contaminants of concern that have become an interesting issue for the scientific community from last few years due to their existence in the water environment. A number of the literature has revealed their occurrence in the environment. This is mainly due to the fact that some drugs are partially removed during wastewater treatment processes, and remaining being able to enter the environment and contaminate surface and groundwater and subsequently, drinking water. Therefore, this paper evaluates the occurrence of key illicit drugs in wastewater (influent and effluent) samples in 4 wastewater treatment plants across Adelaide, South Australia over a 1 year period. This paper also compares the efficiency of wastewater treatment plants adopting different technologies in the removal of selected illicit drugs, especially in the context of which technology has higher removal rates. The influent and effluent samples were analysed using Liquid Chromatography tandem Mass Spectrometry (LC-MS/MS). The levels of drugs detected were in the range of mg/L – ng/L in effluent samples; thus emphasising the influence on water quality of receiving water bodies and the significance of removal efficiency of WWTPs(Wastewater Treatment Plants). The results show that the drugs responded differently in the removal depending on the treatment processes used by the WWTPs.

Keywords: illicit drugs, removal efficiency, treatment technology, wastewater

Procedia PDF Downloads 261
4081 Treatment of Simulated Textile Wastewater Containing Reactive Azo Dyes Using Laboratory Scale Trickling Filter

Authors: Ayesha Irum, Sadia Mumtaz, Abdul Rehman, Iffat Naz, Safia Ahmed

Abstract:

The present study was conducted to evaluate the potential applicability of biological trickling filter system for the treatment of simulated textile wastewater containing reactive azo dyes with bacterial consortium under non-sterile conditions. The percentage decolorization for the treatment of wastewater containing structurally different dyes was found to be higher than 95% in all trials. The stable bacterial count of the biofilm on stone media of the trickling filter during the treatment confirmed the presence, proliferation, dominance and involvement of the added microbial consortium in the treatment of textile wastewater. Results of physicochemical parameters revealed the reduction in chemical oxygen demand (58.5-75.1%), sulphates (18.9-36.5%), and phosphates (63.6-73.0%). UV-Visible and FTIR spectroscopy confirmed decolorization of dye containing wastewater was the ultimate consequence of biodegradation. Toxicological studies revealed the nontoxic nature of degradative metabolites.

Keywords: biodegradation, textile dyes, waste water, trickling filters

Procedia PDF Downloads 431
4080 Treatment of Healthcare Wastewater Using The Peroxi-Photoelectrocoagulation Process: Predictive Models for Chemical Oxygen Demand, Color Removal, and Electrical Energy Consumption

Authors: Samuel Fekadu A., Esayas Alemayehu B., Bultum Oljira D., Seid Tiku D., Dessalegn Dadi D., Bart Van Der Bruggen A.

Abstract:

The peroxi-photoelectrocoagulation process was evaluated for the removal of chemical oxygen demand (COD) and color from healthcare wastewater. A 2-level full factorial design with center points was created to investigate the effect of the process parameters, i.e., initial COD, H₂O₂, pH, reaction time and current density. Furthermore, the total energy consumption and average current efficiency in the system were evaluated. Predictive models for % COD, % color removal and energy consumption were obtained. The initial COD and pH were found to be the most significant variables in the reduction of COD and color in peroxi-photoelectrocoagulation process. Hydrogen peroxide only has a significant effect on the treated wastewater when combined with other input variables in the process like pH, reaction time and current density. In the peroxi-photoelectrocoagulation process, current density appears not as a single effect but rather as an interaction effect with H₂O₂ in reducing COD and color. Lower energy expenditure was observed at higher initial COD, shorter reaction time and lower current density. The average current efficiency was found as low as 13 % and as high as 777 %. Overall, the study showed that hybrid electrochemical oxidation can be applied effectively and efficiently for the removal of pollutants from healthcare wastewater.

Keywords: electrochemical oxidation, UV, healthcare pollutants removals, factorial design

Procedia PDF Downloads 77
4079 Evaluation of Paper Effluent with Two Bacterial Strain and Their Consortia

Authors: Priya Tomar, Pallavi Mittal

Abstract:

As industrialization is inevitable and progress with rapid acceleration, the need for innovative ways to get rid of waste has increased. Recent advancement in bioresource technology paves novel ideas for recycling of factory waste that has been polluting the agro-industry, soil and water bodies. Paper industries in India are in a considerable number, where molasses and impure alcohol are still being used as raw materials for manufacturing of paper. Paper mills based on nonconventional agro residues are being encouraged due to increased demand of paper and acute shortage of forest-based raw materials. The colouring body present in the wastewater from pulp and paper mill is organic in nature and is comprised of wood extractives, tannin, resins, synthetic dyes, lignin and its degradation products formed by the action of chlorine on lignin which imparts an offensive colour to the water. These mills use different chemical process for paper manufacturing due to which lignified chemicals are released into the environment. Therefore, the chemical oxygen demand (COD) of the emanating stream is quite high. This paper presents some new techniques that were developed for the efficiency of bioremediation on paper industry. A short introduction to paper industry and a variety of presently available methods of bioremediation on paper industry and different strategies are also discussed here. For solving the above problem, two bacterial strains (Pseudomonas aeruginosa and Bacillus subtilis) and their consortia (Pseudomonas aeruginosa and Bacillus subtilis) were utilized for the pulp and paper mill effluent. Pseudomonas aeruginosa and Bacillus subtilis named as T–1, T–2, T–3, T–4, T–5, T–6, for the decolourisation of paper industry effluent. The results indicated that a maximum colour reduction is (60.5%) achieved by Pseudomonas aeruginosa and COD reduction is (88.8%) achieved by Bacillus subtilis, maximum pH changes is (4.23) achieved by Pseudomonas aeruginosa, TSS reduction is (2.09 %) achieved by Bacillus subtilis, and TDS reduction is (0.95 %) achieved by Bacillus subtilis. When the wastewater was supplemented with carbon (glucose) and nitrogen (yeast extract) source and data revealed the efficiency of Bacillus subtilis, having more with glucose than Pseudomonas aeruginosa.

Keywords: bioremediation, paper and pulp mill effluent, treated effluent, lignin

Procedia PDF Downloads 247
4078 Bioflocculation Using the Purified Wild Strain of P. aeruginosa Culture in Wastewater Treatment

Authors: Mohammad Hajjartabar, Tahereh Kermani Ranjbar

Abstract:

P. aeruginosa EF2 was isolated and identified from human infection sources before in our previous study. The present study was performed to determine the characteristics and activity role of bioflocculant produced by the bacterium in flocculation of the wastewater active sludge treatment. The bacterium was inoculated and then was grown in an orbital shaker at 250 rpm for 5 days at 35 °C under TSB and peptone water media. After incubation period, culture broths of the bacterial strain was collected and washed. The concentration of the bacteria was adjusted. For the extraction of the bacterial bioflocculant, culture was centrifuged at 6000 rpm for 20 min at 4 °C to remove bacterial cells. Supernatant was decanted and pellet containing bioflocculant was dried at 105 °C to a constant weight according to APHA, 2005. The chemical composition of the extracted bioflocculant from the bacterial sample was then analyzed. Wastewater active sludge sample obtained from aeration tank from one of wastewater treatment plants in Tehran, was first mixed thoroughly. After addition of bioflocculant, improvements in floc density were observed with an increase in bioflocculant. The results of this study strongly suggested that the extracted bioflucculant played a significant role in flocculation of the wastewater sample. The use of wild bacteria and nutrient regulation techniques instead of genetic manipulation opens wide investigation area in the future to improve wastewater treatment processes. Also this may put a new path in front of us to attain and improve the more effective bioflocculant using the purified microbial culture in wastewater treatment.

Keywords: wastewater treatment, P. aeruginosa, sludge treatment

Procedia PDF Downloads 154
4077 Potential of Macroalgae Ulva lactuca for Municipal Wastewater Treatment and Fruitfly Food

Authors: Shuang Qiu, Lingfeng Wang, Zhipeng Chen, Shijian Ge

Abstract:

Macroalgae are considered a promising approach for wastewater treatment as well as an alternative animal feed in addition to a biofuel feedstock. Their large size and/or tendency to grow as dense floating mats or substrate-attached turfs lead to lower separation and drying costs than microalgae. In this study, the macroalgae species Ulva lactuca (U. lactuca) were used to investigate their capacity for treating municipal wastewaters, and the feasibility of using the harvested biomass as an alternative food source for the fruitfly Drosophila melanogaster, an animal model for biological research. Results suggested that U. lactuca could successfully grow on three types of wastewaters studied with biomass productivities of 8.12-64.3 g DW (dry weight)/(m²∙d). The secondary wastewater (SW) was demonstrated as the most effective wastewater medium for U. lactuca growth. However, both high nitrogen (92.5-98.9%) and phosphorus (64.5-88.6%) removal efficiencies were observed in all wastewaters, particularly in primary wastewater (PW) and SW, however, in central wastewater (CW), the highest removal rates were obtained (N 24.7 ± 0.97 and P 0.69 ± 0.01 mg/(g DW·d)). Additionally, the inclusion of 20% washed U. lactuca with 80% standard fruitfly food (w/w) resulted in a longer lifespan and more stable body weights in flies. On the other hand, similar results were not obtained for the food treatment with the addition of 20 % unwashed U. lactuca. This study suggests a promising method for the macroalgae-based treatment of municipal wastewater and the biomass for animal feed.

Keywords: animal feed, flies, macroalgae, nutrient recovery, Ulva lactuca, wastewater

Procedia PDF Downloads 122
4076 Optimization and Retrofitting for an Egyptian Refinery Water Network

Authors: Mohamed Mousa

Abstract:

Sacristies in the supply of freshwater, strict regulations on discharging wastewater and the support to encourage sustainable development by water minimization techniques leads to raise the interest of water reusing, regeneration, and recycling. Water is considered a vital element in chemical industries. In this study, an optimization model will be developed to determine the optimal design of refinery’s water network system via source interceptor sink that involves several network alternatives, then a Mixed-Integer Non-Linear programming (MINLP) was used to obtain the optimal network superstructure based on flowrates, the concentration of contaminants, etc. The main objective of the model is to reduce the fixed cost of piping installation interconnections, reducing the operating cots of all streams within the refiner’s water network, and minimize the concentration of pollutants to comply with the environmental regulations. A real case study for one of the Egyptian refineries was studied by GAMS / BARON global optimization platform, and the water network had been retrofitted and optimized, leading to saving around 195 m³/ hr. of freshwater with a total reduction reaches to 26 %.

Keywords: freshwater minimization, modelling, GAMS, BARON, water network design, wastewater reudction

Procedia PDF Downloads 231
4075 Investigating the Effect of Industrial Wastewater Application on the Concentration of Nitrate and Phosphate in the Soil of the Land Space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company

Authors: Seyed Alireza Farrokhzad, Seyed Amin Alavi, Ebrahim Panahpour

Abstract:

The use of industrial wastewater affects the properties of soil, including its chemical properties. This research was conducted randomly in order to investigate the effect of industrial wastewater application on the concentration of nitrate and phosphate in loamy soil in the land space of Chaharmahal and Bakhtiari Sefid Dasht Steel Company. Industrial wastewater was added in ten irrigation periods in the three months of summer 2022 and was used in a part of the land space of the factory. After finishing the irrigation process with wastewater, the soil nitrate and phosphate values were measured at the depths of 0-25, 25-50 and 50-100 cm. The results showed that adding sewage to the soil increased nitrate and phosphate. The increase of these ions in the soil became loamy. Also, the results showed that the amount of phosphate in the soil decreases with increasing depth, while the amount of nitrate in the soil increases with increasing depth, which is due to the high mobility of nitrate along the soil profile. Also, with the increase in the level of use of wastewater, the amount of nitrate accumulation in the lower layers of the soil increased.

Keywords: industrial wastewater, soil chemical properties, loamy texture, land space

Procedia PDF Downloads 82
4074 High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR

Authors: Md. Nurul Islam Siddique, A. W. Zularisam

Abstract:

The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment.

Keywords: anaerobic digestion, petrochemical wastewater, CSTR, methane

Procedia PDF Downloads 353
4073 Management of Urban Wastewater in the City of Maradi (Niger): The Case of Domestic Wastewater

Authors: Saidou Hassidou, Laminou Ary Mahaman Moustapha

Abstract:

Uncontrolled urbanization of African cities, plus the lack of municipal waste management services in these cities, generate landscapes become places of multiple and varied interactions between health and environment. In this sense, under strong urban growth in a context of sub-equipment sanitation, the city of Maradi doesn’t escape to this situation which results in the spread of pollution (release of unpleasant odors, proliferation of mosquitoes) and many diseases posing multiple health problems. Our study focuses only on liquid waste especially domestic wastewater. To study the different domestic wastewater management options in the town of Maradi, a survey was conducted among 340 households in 17 districts. We note in most cases a crucial of waste management infrastructure (drainage and wastewater treatment) at the city. Thus, only the individual sanitation facilities are used. In the town of Maradi, in addition to the storm drains, there are, in old districts, ditches that discharge wastewater and unfortunately end up in rivers without treatment. Domestic wastewater total production is estimated at 86,761.28 m3 per day. This water is mostly from laundry activities, bathing, dishes, and is discharged in large part through the streets, by more than 60% of households. Also, pit emptying is performed at 39.11% by the vehicle Peugeot tank. The quality of service rendered by an actor is very important to encourage households to join. Existing autonomous sanitation facilities are poorly designed and poorly maintained. Fecal sludge is dumped in a hole near saturated latrines; this work is mainly done by manual scavengers or dumped in fields or on nearby vacant land concessions.

Keywords: management, urban wastewater, domestic wastewater, Maradi, Niger

Procedia PDF Downloads 267
4072 Examining Pre-Consumer Textile Waste Recycling, Barriers to Implementation, and Participant Demographics: A Review of Literature

Authors: Madeline W. Miller

Abstract:

The global textile industry produces pollutants in the form of liquid discharge, solid waste, and emissions into the natural environment. Textile waste resulting from garment production and other manufacturing processes makes a significant contribution to the amount of waste landfilled globally. While the majority of curbside and other convenient recycling methods cater to post-consumer paper and plastics, pre-consumer textile waste is often discarded with trash and is commonly classified as ‘other’ in municipal solid waste breakdowns. On a larger scale, many clothing manufacturers and other companies utilizing textiles have not yet identified or began using the most sustainable methods for discarding their post-industrial, pre-consumer waste. To lessen the amount of waste sent to landfills, there are post-industrial, pre-consumer textile waste recycling methods that can be used to give textiles a new life. This process requires that textile and garment manufacturers redirect their waste to companies that use industrial machinery to shred or fiberize these materials in preparation for their second life. The goal of this literature review is to identify the recycling and reuse challenges faced by producers within the clothing and textile industry that prevent these companies from utilizing the described recycling methods, causing them to opt for landfill. The literature analyzed in this review reflects manufacturer sentiments toward waste disposal and recycling. The results of this review indicate that the cost of logistics is the determining factor when it comes to companies recycling their pre-consumer textile waste and that the most applicable and successful textile waste recycling methods require a company separate from the manufacturer to account for waste production, provide receptacles for waste, arrange waste transport, and identify a secondary use for the material at a price-point below that of traditional waste disposal service.

Keywords: leadership demographics, post-industrial textile waste, pre-consumer textile waste, industrial shoddy

Procedia PDF Downloads 148
4071 Prevalence of Antibiotic Resistant Enterococci in Treated Wastewater Effluent in Durban, South Africa and Characterization of Vancomycin and High-Level Gentamicin-Resistant Strains

Authors: S. H. Gasa, L. Singh, B. Pillay, A. O. Olaniran

Abstract:

Wastewater treatment plants (WWTPs) have been implicated as the leading reservoir for antibiotic resistant bacteria (ARB), including Enterococci spp. and antibiotic resistance genes (ARGs), worldwide. Enterococci are a group of clinically significant bacteria that have gained much attention as a result of their antibiotic resistance. They play a significant role as the principal cause of nosocomial infections and dissemination of antimicrobial resistance genes in the environment. The main objective of this study was to ascertain the role of WWTPs in Durban, South Africa as potential reservoirs for antibiotic resistant Enterococci (ARE) and their related ARGs. Furthermore, the antibiogram and resistance gene profile of Enterococci species recovered from treated wastewater effluent and receiving surface water in Durban were also investigated. Using membrane filtration technique, Enterococcus selective agar and selected antibiotics, ARE were enumerated in samples (influent, activated sludge, before chlorination and final effluent) collected from two WWTPs, as well as from upstream and downstream of the receiving surface water. Two hundred Enterococcus isolates recovered from the treated effluent and receiving surface water were identified by biochemical and PCR-based methods, and their antibiotic resistance profiles determined by the Kirby-Bauer disc diffusion assay, while PCR-based assays were used to detect the presence of resistance and virulence genes. High prevalence of ARE was obtained at both WWTPs, with values reaching a maximum of 40%. The influent and activated sludge samples contained the greatest prevalence of ARE with lower values observed in the before and after chlorination samples. Of the 44 vancomycin and high-level gentamicin-resistant isolates, 11 were identified as E. faecium, 18 as E. faecalis, 4 as E. hirae while 11 are classified as “other” Enterococci species. High-level aminoglycoside resistance for gentamicin (39%) and vancomycin (61%) was recorded in species tested. The most commonly detected virulence gene was the gelE (44%), followed by asa1 (40%), while cylA and esp were detected in only 2% of the isolates. The most prevalent aminoglycoside resistance genes were aac(6')-Ie-aph(2''), aph(3')-IIIa, and ant(6')-Ia detected in 43%, 45% and 41% of the isolates, respectively. Positive correlation was observed between resistant phenotypes to high levels of aminoglycosides and presence of all aminoglycoside resistance genes. Resistance genes for glycopeptide: vanB (37%) and vanC-1 (25%), and macrolide: ermB (11%) and ermC (54%) were detected in the isolates. These results show the need for more efficient wastewater treatment and disposal in order to prevent the release of virulent and antibiotic resistant Enterococci species and safeguard public health.

Keywords: antibiogram, enterococci, gentamicin, vancomycin, virulence signatures

Procedia PDF Downloads 218
4070 The Potential for Recycling Household Wastes Generated from the Residential Areas of Obafemi Awolowo University, Ile-Ife

Authors: Asaolu Olugbenga Stephen, Afolabi Olusegun Temitope

Abstract:

Lack of proper solid waste management is one of the main causes of environmental pollution and degradation in many cities, especially in developing countries. The aim of this study was to estimate the quantity of waste generated per capita per day, determine the composition and identify the potentials for recycling of waste generated. Characterization of wastes from selected households in the residential areas was done for over a 7 day period. The weight of each sorted category of waste was recorded in a structured database that calculated the proportion of each waste component. The results indicated that 85.4% of the sampled waste characterized was found to be recyclable; with an estimated average waste generated of 1.82kg/capita/day. The various solid waste fractions were organic (64.6%), plastics (15.6%), metals (9.2%), glass materials (1.6%) and unclassified (8.9%). It was concluded from this study that a large proportion of the waste generated from OAU campus residential area was recyclable and that there is a need to enact policy on waste recycling within the university campus.

Keywords: recycling, household wastes, residential, solid waste management

Procedia PDF Downloads 398
4069 The Effect of Fly Ash in Dewatering of Marble Processing Wastewaters

Authors: H. A. Taner, V. Önen

Abstract:

In the thermal power plants established to meet the energy need, lignite with low calorie and high ash content is used. Burning of these coals results in wastes such as fly ash, slag and flue gas. This constitutes a significant economic and environmental problems. However, fly ash can find evaluation opportunities in various sectors. In this study, the effectiveness of fly ash on suspended solid removal from marble processing wastewater containing high concentration of suspended solids was examined. Experiments were carried out for two different suspensions, marble and travertine. In the experiments, FeCl3, Al2(SO4)3 and anionic polymer A130 were used also to compare with fly ash. Coagulant/flocculant type/dosage, mixing time/speed and pH were the experimental parameters. The performances in the experimental studies were assessed with the change in the interface height during sedimentation resultant and turbidity values of treated water. The highest sedimentation efficiency was achieved with anionic flocculant. However, it was determined that fly ash can be used instead of FeCl3 and Al2(SO4)3 in the travertine plant as a coagulant.

Keywords: dewatering, flocculant, fly ash, marble plant wastewater

Procedia PDF Downloads 151
4068 A Concept of Rational Water Management at Local Utilities: The Use of RO for Water Supply and Wastewater Treatment/Reuse

Authors: N. Matveev, A. Pervov

Abstract:

Local utilities often face problems of local industrial wastes, storm water disposal due to existing strict regulations. For many local industries, the problem of wastewater treatment and discharge into surface reservoirs can’t be solved through the use of conventional biological treatment techniques. Current discharge standards require very strict removal of a number of impurities such as ammonia, nitrates, phosphate, etc. To reach this level of removal, expensive reagents and sorbents are used. The modern concept of rational water resources management requires the development of new efficient techniques that provide wastewater treatment and reuse. As RO membranes simultaneously reject all dissolved impurities such as BOD, TDS, ammonia, phosphates etc., they become very attractive for the direct treatment of wastewater without biological stage. To treat wastewater, specially designed membrane "open channel" modules are used that do not possess "dead areas" that cause fouling or require pretreatment. A solution to RO concentrate disposal problem is presented that consists of reducing of initial wastewater volume by 100 times. Concentrate is withdrawn from membrane unit as sludge moisture. The efficient use of membrane RO techniques is connected with a salt balance in water system. Thus, to provide high ecological efficiency of developed techniques, all components of water supply and wastewater discharge systems should be accounted for.

Keywords: reverse osmosis, stormwater treatment, open-channel module, wastewater reuse

Procedia PDF Downloads 318
4067 Comparative Analysis of Ranunculus muricatus and Typha latifolia as Wetland Plants Applied for Domestic Wastewater Treatment in a Mesocosm Scale Study

Authors: Sadia Aziz, Mahwish Ali, Safia Ahmed

Abstract:

Comparing other methods of waste water treatment, constructed wetlands are one of the most fascinating practices because being a natural process they are eco-friendly have low construction and maintenance cost and have considerable capability of wastewater treatment. The current research was focused mainly on comparison of Ranunculus muricatus and Typha latifolia as wetland plants for domestic wastewater treatment by designing and constructing efficient pilot scale HSSF mesocosms. Parameters like COD, BOD5, PO4, SO4, NO3, NO2, and pathogenic indicator microbes were studied continuously with successive treatments. Treatment efficiency of the system increases with passage of time and with increase in temperature. Efficiency of T. latifolia planted setups in open environment was fairly good for parameters like COD and BOD5 which was showing up to 82.5% for COD and 82.6% for BOD5 while DO was increased up to 125%. Efficiency of R. muricatus vegetated setup was also good but lowers than that of T. latifolia planted showing 80.95% removal of COD and BOD5. Ranunculus muricatus was found effective in reducing bacterial count in wastewater. Both macrophytes were found promising in wastewater treatment.

Keywords: wastewater treatment, wetland, mesocosms study, wetland plants

Procedia PDF Downloads 309