Search results for: water hammer
7105 Achievement of Sustainable Groundwater Exploitation through the Introduction of Water-Efficient Usage Techniques in Fish Farms
Authors: Lusine Tadevosyan, Natella Mirzoyan, Anna Yeritsyan, Narek Avetisyan
Abstract:
Due to high quality, the artesian groundwater is the main source of water supply for the fisheries in Ararat Valley, Armenia. From 1.6 billion m3 abstracted groundwater in 2016, half was used by fish farms. Yet, the inefficient water use, typical for low-intensity aquaculture systems in Ararat Valley, has become a key environmental issue in Armenia. In addition to excessive pure groundwater exploitation, which along with other sectors of groundwater use in this area resulted in the reduction of artesian zone by approximately 67% during last 20 years, the negative environmental impact of these productions is magnified by the discharge of large volumes of wastewater into receiving water bodies. In turn, unsustainable use of artesian groundwater in Ararat Valley along with increasingly strict policy measures on water use had a devastating impact on small and/or medium scale aquaculture: over the last two years approximately 100 fish farms have permanently seized their operations. The current project aims at the introduction of efficient and environmentally friendly fish farming practices (e.g., Recirculating Aquaculture Systems) in Ararat Valley fisheries in order to support current levels of fish production and simultaneously reduce the negative environmental pressure of aquaculture facilities in Armenia. Economic and environmental analysis of current small and medium scale operational systems and subsequently developed environmentally–friendly and economically sustainable system configurations will be presented.Keywords: aquaculture, groundwater, recirculation, sustainability
Procedia PDF Downloads 2707104 Joint Probability Distribution of Extreme Water Level with Rainfall and Temperature: Trend Analysis of Potential Impacts of Climate Change
Authors: Ali Razmi, Saeed Golian
Abstract:
Climate change is known to have the potential to impact adversely hydrologic patterns for variables such as rainfall, maximum and minimum temperature and sea level rise. Long-term average of these climate variables could possibly change over time due to climate change impacts. In this study, trend analysis was performed on rainfall, maximum and minimum temperature and water level data of a coastal area in Manhattan, New York City, Central Park and Battery Park stations to investigate if there is a significant change in the data mean. Partial Man-Kendall test was used for trend analysis. Frequency analysis was then performed on data using common probability distribution functions such as Generalized Extreme Value (GEV), normal, log-normal and log-Pearson. Goodness of fit tests such as Kolmogorov-Smirnov are used to determine the most appropriate distributions. In flood frequency analysis, rainfall and water level data are often separately investigated. However, in determining flood zones, simultaneous consideration of rainfall and water level in frequency analysis could have considerable effect on floodplain delineation (flood extent and depth). The present study aims to perform flood frequency analysis considering joint probability distribution for rainfall and storm surge. First, correlation between the considered variables was investigated. Joint probability distribution of extreme water level and temperature was also investigated to examine how global warming could affect sea level flooding impacts. Copula functions were fitted to data and joint probability of water level with rainfall and temperature for different recurrence intervals of 2, 5, 25, 50, 100, 200, 500, 600 and 1000 was determined and compared with the severity of individual events. Results for trend analysis showed increase in long-term average of data that could be attributed to climate change impacts. GEV distribution was found as the most appropriate function to be fitted to the extreme climate variables. The results for joint probability distribution analysis confirmed the necessity for incorporation of both rainfall and water level data in flood frequency analysis.Keywords: climate change, climate variables, copula, joint probability
Procedia PDF Downloads 3607103 An Assessment of Financial Viability and Sustainability of Hydroponics Using Reclaimed Water Using LCA and LCC
Authors: Muhammad Abdullah, Muhammad Atiq Ur Rehman Tariq, Faraz Ul Haq
Abstract:
In developed countries, sustainability measures are widely accepted and acknowledged as crucial for addressing environmental concerns. Hydroponics, a soilless cultivation technique, has emerged as a potentially sustainable solution as it can reduce water consumption, land use, and environmental impacts. However, hydroponics may not be economically viable, especially when using reclaimed water, which may entail additional costs and risks. This study aims to address the critical question of whether hydroponics using reclaimed water can achieve a balance between sustainability and financial viability. Life Cycle Assessment (LCA) and Life Cycle Cost (LCC) will be integrated to assess the potential of hydroponics whether it is environmentally sustainable and economically viable. Life cycle assessment, or LCA, is a methodology for assessing environmental impacts associated with all the stages of the life cycle of a commercial product, process, or service. While Life Cycle Cost (LCC) is an approach that assesses the total cost of an asset over its life cycle, including initial capital costs and maintenance costs. The expected benefits of this study include supporting evidence-based decision-making for policymakers, farmers, and stakeholders involved in agriculture. By quantifying environmental impacts and economic costs, this research will facilitate informed choices regarding the adoption of hydroponics with reclaimed water. It is believed that the outcomes of this research work will help to achieve a sustainable approach to agricultural production, aligning with sustainability goals while considering economic factors by adopting hydroponic technique.Keywords: hydroponic, life cycle assessment, life cycle cost, sustainability
Procedia PDF Downloads 717102 Sorption of Charged Organic Dyes from Anionic Hydrogels
Authors: Georgios Linardatos, Miltiadis Zamparas, Vlasoula Bekiari, Georgios Bokias, Georgios Hotos
Abstract:
Hydrogels are three-dimensional, hydrophilic, polymeric networks composed of homopolymers or copolymers and are insoluble in water due to the presence of chemical or physical cross-links. When hydrogels come in contact with aqueous solutions, they can effectively sorb and retain the dissolved substances, depending on the nature of the monomeric units comprising the hydrogel. For this reason, hydrogels have been proposed in several studies as water purification agents. At the present work anionic hydrogels bearing negatively charged –COO- groups were prepared and investigated. These gels are based on sodium acrylate (ANa), either homopolymerized (poly(sodiumacrylate), PANa) or copolymerized (P(DMAM-co-ANa)) with N,N Dimethylacrylamide (DMAM). The hydrogels were used to extract some model organic dyes from water. It is found that cationic dyes are strongly sorbed and retained by the hydrogels, while sorption of anionic dyes was negligible. In all cases it was found that both maximum sorption capacity and equilibrium binding constant varied from one dye to the other depending on the chemical structure of the dye, the presence of functional chemical groups and the hydrophobic-hydrophilic balance. Finally, the nonionic hydrogel of the homopolymer poly(N,N-dimethylacrylamide), PDMAM, was also used for reasons of comparison.Keywords: anionic organic hydrogels, sorption, organic dyes, water purification agents
Procedia PDF Downloads 2597101 Occurrence of Illicit Drugs in Aqueous Environment and Removal Efficiency of Wastewater Treatment Plants
Authors: Meena K. Yadav, Rupak Aryal, Michael D. Short, Ben Van Den Akker, Christopher P. Saint, Cobus Gerber
Abstract:
Illicit drugs are considered as emerging contaminants of concern that have become an interesting issue for the scientific community from last few years due to their existence in the water environment. A number of the literature has revealed their occurrence in the environment. This is mainly due to the fact that some drugs are partially removed during wastewater treatment processes, and remaining being able to enter the environment and contaminate surface and groundwater and subsequently, drinking water. Therefore, this paper evaluates the occurrence of key illicit drugs in wastewater (influent and effluent) samples in 4 wastewater treatment plants across Adelaide, South Australia over a 1 year period. This paper also compares the efficiency of wastewater treatment plants adopting different technologies in the removal of selected illicit drugs, especially in the context of which technology has higher removal rates. The influent and effluent samples were analysed using Liquid Chromatography tandem Mass Spectrometry (LC-MS/MS). The levels of drugs detected were in the range of mg/L – ng/L in effluent samples; thus emphasising the influence on water quality of receiving water bodies and the significance of removal efficiency of WWTPs(Wastewater Treatment Plants). The results show that the drugs responded differently in the removal depending on the treatment processes used by the WWTPs.Keywords: illicit drugs, removal efficiency, treatment technology, wastewater
Procedia PDF Downloads 2627100 Hydrogeological Study of the Different Aquifers in the Area of Biskra
Authors: A. Sengouga, Y. Imessaoudene, A. Semar, B. Mouhouche, M. Kadir
Abstract:
Biskra or Zibans, is located in a structural transition zone between the chain of the Saharan Atlas Mountains and the Sahara. It is an arid region where the superficial water resource is the mild, hence the importance of the lithological description and the evaluation of aquifers rock’s volumes, which are highly dependent on the mobilized water contained in the various reservoirs (Quaternary, Mio-Pliocene, Eocene and Continental intercalary). Through a data synthesis which is particularly based on stratigraphic logs of drilling, the description of aquifers heterogeneity and the determining of the spatial variability of aquifer appearance became possible, by using geostatistical analysis, which allowed the representation of the aquifer thicknesses mapping and their space variation. The different thematic maps realized focus on drilling position, the substratum shape and finally the aquifers thicknesses of the region. It is found that the high density of water points especially these of drilling points are superposed on the hydrologic reservoirs with significant thicknesses.Keywords: log stratigraphic ArcGIS 10, geometry of aquifers, rocks reservoir volume, Biskra
Procedia PDF Downloads 4607099 Experimental and Graphical Investigation on Oil Recovery by Buckley-Leveret Theory
Authors: Khwaja Naweed Seddiqi, Zabihullah Mahdi, Shigeo Honma
Abstract:
Recently increasing oil production from petroleum reservoirs is one of the most important issues in the global energy sector. So, in this paper, the recovery of oil by the waterflooding technique from petroleum reservoir are considered. To investigate the aforementioned phenomena, the relative permeability of two immiscible fluids in sand is measured in the laboratory based on the steady-state method. Two sorts of oils, kerosene and heavy oil, and water are pumped simultaneously into a vertical sand column with different pumping ratio. From the change in fractional discharge measured at the outlet, a method for determining the relative permeability is developed focusing on the displacement mechanism in sand. Then, displacement mechanism of two immiscible fluids in the sand is investigated under the Buckley-Leveret frontal displacement theory and laboratory experiment. Two sorts of experiments, one is the displacement of pore water by oil, the other is the displacement of pore oil by water, are carried out. It is revealed that the relative permeability curves display tolerably different shape owing to the properties of oils, and produce different amount of residual oils and irreducible water saturation.Keywords: petroleum reservoir engineering, relative permeability, two-phase flow, immiscible displacement in porous media, steady-state method, waterflooding
Procedia PDF Downloads 2477098 Climatic and Human Impact on Karst Aquifer in Semi Arid Zone
Authors: Benhammadi Hocine, Fehdi Chemseddine, Chaffai Hicham
Abstract:
The study site is the plateau Cheria, a city in south eastern Algeria (Tebessa) thanks to its structure perched syncline is the region of Tebessa a real water tower. Special rates provided by some boreholes and wells around the city Cheria have long been led to believe that the reserves were virtually limitless. The investigations carried out in this region have located karstified limestone areas at depth of 100 meters of the carbonate formation. During the last two decades a rainfall deficit has increased the effect of drought has caused an increase in flow from this aquifer. The effect on water resources is a significant and progressive reduction of the static level of the karst aquifer. The qualitative aspect has also been marked by degradation. This climate variability marked by the decade of drought (1990/2000) has had the effect on the local population, a forced change of their activity primarily agricultural. Abandoning agro pastoral mode due to prolonged drought, populations chose agriculture maraichère consumer a lot of water, this increasing the depletion of water resources. This change in activity was accompanied by a rural exodus to urban areas. The result has led to an increase in population in the urban areas, this has resulted in an increase in water demand and an increase in emissions (waste water). Uncontrolled discharges contribute to pollute a little more groundwater. The second consequence is type Geotechnical, it is the appearance of sinkholes, results of the alternating periods of drought and violent floods. Sinkholes are a real concern for the management and urban development. An interdisciplinary contribution (geology, hydrology, climatology and management) is essential to reduce or avoid impacts in different sectors.Keywords: aquifer, carbonate formation, drought, exodus, resources, chéria, Algéria
Procedia PDF Downloads 4517097 Numerical Modelling of Immiscible Fluids Flow in Oil Reservoir Rocks during Enhanced Oil Recovery Processes
Authors: Zahreddine Hafsi, Manoranjan Mishra , Sami Elaoud
Abstract:
Ensuring the maximum recovery rate of oil from reservoir rocks is a challenging task that requires preliminary numerical analysis of different techniques used to enhance the recovery process. After conventional oil recovery processes and in order to retrieve oil left behind after the primary recovery phase, water flooding in one of several techniques used for enhanced oil recovery (EOR). In this research work, EOR via water flooding is numerically modeled, and hydrodynamic instabilities resulted from immiscible oil-water flow in reservoir rocks are investigated. An oil reservoir is a porous medium consisted of many fractures of tiny dimensions. For modeling purposes, the oil reservoir is considered as a collection of capillary tubes which provides useful insights into how fluids behave in the reservoir pore spaces. Equations governing oil-water flow in oil reservoir rocks are developed and numerically solved following a finite element scheme. Numerical results are obtained using Comsol Multiphysics software. The two phase Darcy module of COMSOL Multiphysics allows modelling the imbibition process by the injection of water (as wetting phase) into an oil reservoir. Van Genuchten, Brooks Corey and Levrett models were considered as retention models and obtained flow configurations are compared, and the governing parameters are discussed. For the considered retention models it was found that onset of instabilities viz. fingering phenomenon is highly dependent on the capillary pressure as well as the boundary conditions, i.e., the inlet pressure and the injection velocity.Keywords: capillary pressure, EOR process, immiscible flow, numerical modelling
Procedia PDF Downloads 1327096 Hydro Solidarity and Turkey’s Role as a Waterpower in the Middle East: The Peace Water Pipeline Project
Authors: Filippo Verre
Abstract:
This paper explores Turkey’s role as an influential waterpower in the Middle East, emphasizing the Peace Water Pipeline Project (PWPP) as a paradigm of hydro solidarity rather than conventional water diplomacy. Hydro solidarity transcends the strategic and often competitive nature of water diplomacy, highlighting cooperative, inclusive, and mutually beneficial approaches to water resource management. The PWPP, which aimed to transport freshwater from Turkey’s Manavgat River to several water-scarce nations in the Middle East, exemplifies this ethos. By providing a reliable water supply to address the chronic shortages in the region, the project underscored Turkey’s commitment to fostering regional cooperation, stability, and collective well-being through shared water resources. This paper provides an in-depth analysis of the Peace Water Pipeline Project, examining its technical specifications, environmental impact, and political implications. It discusses how the project’s foundation on principles of hydro solidarity could facilitate stronger regional ties, mitigate water-related conflicts, and promote sustainable development. By prioritizing collective benefits over unilateral gains, Turkey’s approach exemplified a transformative model of resource sharing that could inspire similar initiatives globally. This paper argues that the Peace Water Pipeline Project serves as a crucial case study in demonstrating how shared natural resources can be leveraged to build trust, enhance cooperation, and achieve common goals in a geopolitically volatile region. The findings emphasize the importance of adopting hydro solidarity as a guiding principle for future transboundary water projects, showcasing how collaborative water management can play a pivotal role in fostering peace, security, and sustainable development in the Middle East and beyond. This research is based on a mixed methodological approach combining qualitative and quantitative methods. The most relevant qualitative methods will involve Case Studies and Content Analysis. Concretely, the Friendship Dam Project (FDP) between Turkey and Syria will be mentioned to underline the importance of hydro solidarity approaches as opposed to water diplomacy. Analyzing this case aims to identify factors that contribute to successful hydro solidarity agreements, such as effective communication channels, trust-building measures, and adaptive management practices. Concerning Content Analysis, reviewing and analyzing policy documents, treaties, media reports, and public statements will help identify the official narratives and discourses surrounding the PWPP. This method fully comprehends how different stakeholders frame the issues and what solutions they propose. The quantitative methodology used in this research, which complements the qualitative approaches, involves economic valuation, which quantifies the PWPP’s economic impacts on Turkey and the Middle Eastern region. This includes assessing the cost of construction and maintenance and the financial benefits derived from improved water access and reduced conflict. Hydrological modelling will also be used as a quantitative research method. Using hydrological models to simulate the water flow and distribution scenarios helps quantify the pipeline’s potential impacts on water resources. By assessing the sustainability of water extraction and predicting how changes in water availability might affect different regions, these models play a crucial role in this research, shedding light on the impact of transboundary infrastructures on water management.Keywords: hydro-solidarity, Middle East, transboundary water management, peace water pipeline project, water scarcity
Procedia PDF Downloads 407095 The Integrated Water Management of the Northern Saharan Aquifer System in a Climatic Changes Context
Authors: Mohamed Redha Menani
Abstract:
The Northern Saharan aquifer system “SASS” shared by Algeria, Libya, and Tunisia, covers a surface of about 1 100 000 km². It is composed of superposed aquifers; the upper one is the “Continental terminal – CT” (Eocene calcareous formation) situated at 400 m depth in average, while the” Continental Intercalaire – CI”(clay sands from Albian to Lower Cretaceous) is generally at 1500 m depth. This aquifer system is situated in a dry zone with a very weak current recharge but with a non-renewable big volume stored, estimated between 20 000 and 31 000 km³. From 1970 to nowadays, the exploitation of the SASS has increased from 0.6 to more than 2.5 km³/year. This situation provoked risks of water salinisation, reduction of the artesianisme, an increase of drawdowns, etc. which seriously threaten the sustainable socioeconomic development engaged in the SASS zone. Face the water shortage induced by the alarming dryness noted these last years, particularly in the MENA region, the joint management of this system by the three concerned countries, engaged for many years, needs a long-term strategy of integrated water resources management to meet the expected socio-economic goals projected not only in the SASS zone but also in other places, by water transfers. The sustainable management of this extensive aquifer system, aiming to satisfy various needs not only in the areas covered by the SASS but also in other areas through hydraulic transfers, can only be considered if this management is genuinely coordinated, incorporating schemes that primarily address the major constraint of climate change, which has been observed worldwide over the past two decades and is intensifying. In this particular climate context, management schemes must necessarily target several aspects, including (i) Updating the state of water resource exploitation in the SASS. (ii) Guiding agricultural usage as the primary consumer to ensure significant water savings. (iii) Constant monitoring through a network of piezometers to control the physicochemical parameters of the exploited aquifers. (iv) Other aspects related to governance within the framework of integrated management must also be taken into consideration, particularly environmental aspects and conflict resolution. However, problems, especially political ones as currently seen in Libya, may limit or at least disrupt the prospects of coordinated and sustainable management of this aquifer system, which is vital for the three countries.Keywords: transboundary water resources, SASS, governance, climatic changes
Procedia PDF Downloads 827094 Polycaprolactone/Thermally Exfoliated Graphene Oxide Biocomposite Films: A Promising Moisture Absorption Behavior
Authors: Neetu Malik, Sharad Shrivastava, Subrata Bandhu Ghosh
Abstract:
Biocomposite materials were fabricated using mixing biodegradable polymer polycaprolactone (PCL) and Thermally Exfoliated Graphene Oxide (TEGO) through solution casting. Various samples of biocomposite films were prepared by varying the TEGO wt% composition by 0.1%, 0.5%, 1% and 1.5%. Thereafter, the density and water absorption of the composites were investigated with respect to immersion time in water. The moisture absorption results show that with an increase in weight percentage (from 0.1 to wt 1.5%) of TEGO within the biopolymer films, the absorption value of bio-nanocomposite films reduced rapidly from 27.4% to 14.3%. The density of hybrid composites also increased with increase in weight percentage of TEGO. These results indicate that the optimized composition of constituents in composite membrane could effectively reduce the anhydrous conditions of bio-composite film.Keywords: thermally exfoliated graphene oxide, PCL, water absorption, density
Procedia PDF Downloads 3137093 Assessing the Impact of Renewable Energy on Regional Sustainability: A Comparative Study of Suwon and Seoul
Authors: Jongsoo Jurng
Abstract:
The drive to expand renewable energies is often in direct conflict with sustainable development goals. Thus, it is important that energy policies account for potential trade-offs. We assess the interlinkages between energy, food, water, and land, for two case studies, Suwon and Seoul. We apply a range of assessment methods and study their usefulness as tools to identify trade-offs and to compare the sustainability performance. We calculate cross-sectoral footprints, self-sufficiency ratios and perform a simplified Energy-Water-Food nexus analysis. We use the latter for assessing scenarios to increase energy and food self-sufficiency in Suwon, while we use ecosystem service (ESS) accounting for Seoul. For Suwon, we find that constraints on the energy, food and water sectors urgently call for integrated approaches to energy policy; for Seoul, the further expansion of renewables comes at the expense of cultural and supporting ESS, which could outweigh gains from increased energy exports. We recommend a general upgrade to indicators and visualization methods that look beyond averages and a fostering of infrastructure for data on sustainable development based on harmonized international protocols. We warn against rankings of countries or regions based on benchmarks that are neither theory-driven nor location-specific.Keywords: ESS, renewable energy, energy-water-food nexus, assessment
Procedia PDF Downloads 1347092 Standardization of Solar Water Pumping System for Remote Areas in Indonesia
Authors: Danar Agus Susanto, Hermawan Febriansyah, Meilinda Ayundyahrini
Abstract:
The availability of spring water to meet people demand is often a problem, especially in tropical areas with very limited surface water sources, or very deep underground water. Although the technology and equipment of pumping system are available and easy to obtain, but in remote areas, the availability of pumping system is difficult, due to the unavailability of fuel or the lack of electricity. Solar Water Pumping System (SWPS) became one of the alternatives that can overcome these obstacles. In the tropical country, sunlight can be obtained throughout the year, even in remote areas. SWPS were already widely built in Indonesia, but many encounter problems during operations, such as decreased of efficiency; pump damaged, damaged of controllers or inverters, and inappropriate photovoltaic performance. In 2011, International Electrotechnical Commission (IEC) issued the IEC standard 62253:2011 titled Photovoltaic pumping systems - Design qualification and performance measurements. This standard establishes design qualifications and performance measurements related to the product of a solar water pumping system. National Standardization Agency of Indonesia (BSN) as the national standardization body in Indonesia, has not set the standard related to solar water pumping system. This research to study operational procedures of SWPS by adopting of IEC Standard 62253:2011 to be Indonesia Standard (SNI). This research used literature study and field observation for installed SWPS in Indonesia. Based on the results of research on SWPS already installed in Indonesia, IEC 62253: 2011 standard can improve efficiency and reduce operational failure of SWPS. SWPS installed in Indonesia still has GAP of 51% against parameters in IEC standard 62253: 2011. The biggest factor not being met is related to operating and maintenance handbooks for personnel that included operation and repair procedures. This may result in operator ignorance in installing, operating and maintaining the system. The Photovoltaic (PV) was also the most non-compliance factor of 71%, although there are 22 Indonesia Standard (SNI) for PV (modules, installation, testing, and construction). These research samples (installers, manufacturers/distributors, and experts) agreed on the parameter in the IEC standard 62253: 2011 able to improve the quality of SWPS in Indonesia. Recommendations of this study, that is required the adoption of IEC standard 62253:2011 into SNI to support the development of SWPS for remote areas in Indonesia.Keywords: efficiency, inappropriate installation, remote areas, solar water pumping system, standard
Procedia PDF Downloads 1987091 Maximizing the Aerodynamic Performance of Wind and Water Turbines by Utilizing Advanced Flow Control Techniques
Authors: Edwin Javier Cortes, Surupa Shaw
Abstract:
In recent years, there has been a growing emphasis on enhancing the efficiency and performance of wind and water turbines to meet the increasing demand for sustainable energy sources. One promising approach is the utilization of advanced flow control techniques to optimize aerodynamic performance. This paper explores the application of advanced flow control techniques in both wind and water turbines, aiming to maximize their efficiency and output. By manipulating the flow of air or water around the turbine blades, these techniques offer the potential to improve energy capture, reduce drag, and minimize turbulence-induced losses. The paper will review various flow control strategies, including passive and active techniques such as vortex generators, boundary layer suction, and plasma actuators. It will examine their effectiveness in optimizing turbine performance under different operating conditions and environmental factors. Furthermore, the paper will discuss the challenges and opportunities associated with implementing these techniques in practical turbine designs. It will consider factors such as cost-effectiveness, reliability, and scalability, as well as the potential impact on overall turbine efficiency and lifecycle. Through a comprehensive analysis of existing research and case studies, this paper aims to provide insights into the potential benefits and limitations of advanced flow control techniques for wind and water turbines. It will also highlight areas for future research and development, with the ultimate goal of advancing the state-of-the-art in turbine technology and accelerating the transition towards a more sustainable energy future.Keywords: flow control, efficiency, passive control, active control
Procedia PDF Downloads 707090 Water Monitoring Sentinel Cloud Platform: Water Monitoring Platform Based on Satellite Imagery and Modeling Data
Authors: Alberto Azevedo, Ricardo Martins, André B. Fortunato, Anabela Oliveira
Abstract:
Water is under severe threat today because of the rising population, increased agricultural and industrial needs, and the intensifying effects of climate change. Due to sea-level rise, erosion, and demographic pressure, the coastal regions are of significant concern to the scientific community. The Water Monitoring Sentinel Cloud platform (WORSICA) service is focused on providing new tools for monitoring water in coastal and inland areas, taking advantage of remote sensing, in situ and tidal modeling data. WORSICA is a service that can be used to determine the coastline, coastal inundation areas, and the limits of inland water bodies using remote sensing (satellite and Unmanned Aerial Vehicles - UAVs) and in situ data (from field surveys). It applies to various purposes, from determining flooded areas (from rainfall, storms, hurricanes, or tsunamis) to detecting large water leaks in major water distribution networks. This service was built on components developed in national and European projects, integrated to provide a one-stop-shop service for remote sensing information, integrating data from the Copernicus satellite and drone/unmanned aerial vehicles, validated by existing online in-situ data. Since WORSICA is operational using the European Open Science Cloud (EOSC) computational infrastructures, the service can be accessed via a web browser and is freely available to all European public research groups without additional costs. In addition, the private sector will be able to use the service, but some usage costs may be applied, depending on the type of computational resources needed by each application/user. Although the service has three main sub-services i) coastline detection; ii) inland water detection; iii) water leak detection in irrigation networks, in the present study, an application of the service to Óbidos lagoon in Portugal is shown, where the user can monitor the evolution of the lagoon inlet and estimate the topography of the intertidal areas without any additional costs. The service has several distinct methodologies implemented based on the computations of the water indexes (e.g., NDWI, MNDWI, AWEI, and AWEIsh) retrieved from the satellite image processing. In conjunction with the tidal data obtained from the FES model, the system can estimate a coastline with the corresponding level or even topography of the inter-tidal areas based on the Flood2Topo methodology. The outcomes of the WORSICA service can be helpful for several intervention areas such as i) emergency by providing fast access to inundated areas to support emergency rescue operations; ii) support of management decisions on hydraulic infrastructures operation to minimize damage downstream; iii) climate change mitigation by minimizing water losses and reduce water mains operation costs; iv) early detection of water leakages in difficult-to-access water irrigation networks, promoting their fast repair.Keywords: remote sensing, coastline detection, water detection, satellite data, sentinel, Copernicus, EOSC
Procedia PDF Downloads 1267089 Effect of Non-Newtonian Behavior of Oil Phase on Oil-Water Stratified Flow in a Horizontal Channel
Authors: Satish Kumar Dewangan, Santosh Kumar Senapati
Abstract:
The present work focuses on the investigation of the effect of non-Newtonian behavior on the oil-water stratified flow in a horizontal channel using ANSYS Fluent. Coupled level set and volume of fluid (CLSVOF) has been used to capture the evolving interface assuming unsteady, coaxial flow with constant fluid properties. The diametric variation of oil volume fraction, mixture velocity, total pressure and pressure gradient has been studied. Non-Newtonian behavior of oil has been represented by the power law model in order to investigate the effect of flow behavior index. Stratified flow pattern tends to assume dispersed flow pattern with the change in the behavior of oil to non-Newtonian. The pressure gradient is found to be very much sensitive to the flow behavior index. The findings could be useful in designing the transportation pipe line in petroleum industries.Keywords: oil-water stratified flow, horizontal channel, CLSVOF, non–Newtonian behaviour.
Procedia PDF Downloads 4927088 Hydration Evaluation In A Working Population in Greece
Authors: Aikaterini-Melpomeni Papadopoulou, Kyriaki Apergi, Margarita-Vasiliki Panagopoulou, Olga Malisova
Abstract:
Introduction: Adequate hydration is a vital factor that enhances concentration, memory, and decision-making abilities throughout the workday. Various factors may affect hydration status in workplace settings, and many variables, such as age, gender and activity level affect hydration needs. Employees frequently overlook their hydration needs amid busy schedules and demanding tasks, leading to dehydration that can negatively affect cognitive function, productivity, and overall well-being In addition, dietary habits, including fluid intake and food choices, can either support or hinder optimal hydration. However, factors that affect hydration balance among workers in Greece have not been adequately studied. Objective: This study aims to evaluate the hydration status of the working population in Greece and investigate the various factors that impact hydration status in workplace settings, considering demographic, dietary, and occupational influences in a Greek sample of employees from diverse working environments Materials & Methods: The study included 212 participants (46.2% women) from the working population in Greece. Water intake from both solid and liquid foods was recorded using a semi-quantified drinking frequency questionnaire the validated Water Balance Questionnaire was used to evaluate hydration status. The calculation of water from solid and liquid foods was based on data from the USDA National Nutrient Database. Water balance was calculated subtracting the total fluid loss from the total fluid intake in the body. Furthermore, the questionnaire including additional questions on drinking habits and work-related factors.volunteers answered questions of different categories such as a) demographic socio-economic b) work style characteristics c) health, d) physical activity, e) food and fluid intake, f) fluid excretion and g) trends on fluid and water intake. Individual and multivariate regression analyses were performed to assess the relationships between demographic, work-related factors, and hydration balance. Results: Analysis showed that demographic factors like gender, age, and BMI, as well as certain work-related factors, had a weak and statistically non-significant effect on hydration balance. However, the use of a bottle or water container during work hours (b = 944.93, p < 0.001) and engaging in intense physical activity outside of work (b = -226.28, p < 0.001) were found to have a significant impact. Additionally, the consumption of beverages other than water (b = -416.14, p = 0.059) could negatively impact hydration balance. On average, the total consumption of the sample is 3410 ml of water daily, with men consuming approximately 440 ml / day more water (3470 ml / day) compared to women (3030 ml / day) with this difference also being statistically significant. Finally, the water balance, defined as the difference between water intake and water excretion, was found to be negative on average for the entire sample. Conclusions: This study is among the first to explore hydration status within the Greek working population. Findings indicate that awareness of adequate hydration and individual actions, such as using a water bottle during work, may influence hydration balance.Keywords: hydration, working population, water balance, workplace behavior
Procedia PDF Downloads 117087 CFD Analysis of Solar Floor Radiant Heating System with PCM
Authors: Mohammad Nazififard, Reihane Faghihi
Abstract:
This paper is aimed at understanding convective heat transfer of enclosed phase change material (PCM) in the solar and low-temperature hot water radiant floor heating geometry. In order to obtain the best performance of PCM, a radiant heating structure of the energy storage floor is designed which places heat pipes in the enclosed phase change material (PCM) layer, without concrete in it. The governing equations are numerically solved. The PCM thermal storage time is considered in relation to the floor surface temperature under different hot water temperatures. Moreover the PCM thermal storage time is numerically estimated under different supply water temperatures and flow rate. Results show the PCM floor heating system has a potential of making use of the daytime solar energy for heating at night efficiently.Keywords: solar floor, heating system, phase change material, computational fluid dynamics
Procedia PDF Downloads 2457086 Impact of Collieries on Groundwater in Damodar River Basin
Authors: Rajkumar Ghosh
Abstract:
The industrialization of coal mining and related activities has a significant impact on groundwater in the surrounding areas of the Damodar River. The Damodar River basin, located in eastern India, is known as the "Ruhr of India" due to its abundant coal reserves and extensive coal mining and industrial operations. One of the major consequences of collieries on groundwater is the contamination of water sources. Coal mining activities often involve the excavation and extraction of coal through underground or open-pit mining methods. These processes can release various pollutants and chemicals into the groundwater, including heavy metals, acid mine drainage, and other toxic substances. As a result, the quality of groundwater in the Damodar River region has deteriorated, making it unsuitable for drinking, irrigation, and other purposes. The high concentration of heavy metals, such as arsenic, lead, and mercury, in the groundwater has posed severe health risks to the local population. Prolonged exposure to contaminated water can lead to various health problems, including skin diseases, respiratory issues, and even long-term ailments like cancer. The contamination has also affected the aquatic ecosystem, harming fish populations and other organisms dependent on the river's water. Moreover, the excessive extraction of groundwater for industrial processes, including coal washing and cooling systems, has resulted in a decline in the water table and depletion of aquifers. This has led to water scarcity and reduced availability of water for agricultural activities, impacting the livelihoods of farmers in the region. Efforts have been made to mitigate these issues through the implementation of regulations and improved industrial practices. However, the historical legacy of coal industrialization continues to impact the groundwater in the Damodar River area. Remediation measures, such as the installation of water treatment plants and the promotion of sustainable mining practices, are essential to restore the quality of groundwater and ensure the well-being of the affected communities. In conclusion, the coal industrialization in the Damodar River surrounding has had a detrimental impact on groundwater. This research focuses on soil subsidence induced by the over-exploitation of ground water for dewatering open pit coal mines. Soil degradation happens in arid and semi-arid regions as a result of land subsidence in coal mining region, which reduces soil fertility. Depletion of aquifers, contamination, and water scarcity are some of the key challenges resulting from these activities. It is crucial to prioritize sustainable mining practices, environmental conservation, and the provision of clean drinking water to mitigate the long-lasting effects of collieries on the groundwater resources in the region.Keywords: coal mining, groundwater, soil subsidence, water table, damodar river
Procedia PDF Downloads 807085 Strength of Fine Concrete Used in Textile Reinforced Concrete by Changing Water-Binder Ratio
Authors: Taekyun Kim, Jongho Park, Jinwoong Choi, Sun-Kyu Park
Abstract:
Recently, the abnormal climate phenomenon has enlarged due to the global warming. As a result, temperature variation is increasing and the term is being prolonged, frequency of high and low temperature is increasing by heat wave and severe cold. Especially for reinforced concrete structure, the corrosion of reinforcement has occurred by concrete crack due to temperature change and the durability of the structure that has decreased by concrete crack. Accordingly, the textile reinforced concrete (TRC) which does not corrode due to using textile is getting the interest and the investigation of TRC is proceeding. The study of TRC structure behavior has proceeded, but the characteristic study of the concrete used in TRC is insufficient. Therefore, characteristic of the concrete by changing mixing ratio is studied in this paper. As a result, mixing ratio with different water-binder ratio has influenced to the strength of concrete. Also, as the water-binder ratio has decreased, strength of concrete has increased.Keywords: concrete, mixing ratio, textile, TRC
Procedia PDF Downloads 4067084 Comparative Assessment of Microplastic Pollution in Surface Water and Sediment of the Gomati and Saryu Rivers, India
Authors: Amit K. Mishra, Jaswant Singh
Abstract:
The menace of plastic, which significantly pollutes the aquatic environment, has emerged as a global problem. There is an emerging concern about microplastics (MPs) accumulation in aquatic ecosystems. It is familiar to everyone that the ultimate end for most of the plastic debris is the ocean. Rivers are the efficient carriers for transferring MPs from terrestrial to aquatic, further from upstream to downstream areas, and ultimately to oceans. The root cause study can provide an effective solution to a problem; hence, tracing of MPs in the riverine system can illustrate the long-term microplastic pollution. This study aimed to investigate the occurrence and distribution of microplastic contamination in surface water and sediment of the two major river systems of Uttar Pradesh, India. One is the Gomti River, Lucknow, a tributary of the Ganga, and the second is the Saryu River, the lower part of the Ghagra River, which flows through the city of Ayodhya. In this study, the distribution and abundance of MPs in surface water and sediments of two rivers were compared. Samples of water and sediment were collected from different (four from each river) sampling stations in the river catchment of two rivers. Plastic particles were classified according to type, shape, and color. In this study, 1523 (average abundance 254) and 143 (average abundance 26) microplastics were identified in all studied sites in the Gomati River and Saryu River, respectively. Observations on samples of water showed that the average MPs concentration was 392 (±69.6) and 63 ((±18.9) particles per 50l of water, whereas the sediment sample showed that the average MPs concentration was 116 (±42.9) and 46 (±12.5) particles per 250gm of dry sediment in the Gomati River and Saryu River, respectively. The high concentration of microplastics in the Lucknow area can be attributed to human activities, population density, and the entry of various effluents into the river. Microplastics with fibrous shapes were dominated, followed by fragment shapes in all the samples. The present study is a pioneering effort to count MPs in the Gomati and Saryu River systems.Keywords: freshwater, Gomati, microplastics, Saryu, sediment
Procedia PDF Downloads 837083 Ship Roll Reduction Using Water-Flow Induced Coriolis Effect
Authors: Mario P. Walker, Masaaki Okuma
Abstract:
Ships are subjected to motions which can disrupt on-board operations and damage equipment. Roll motion, in particular, is of great interest due to low damping conditions which may lead to capsizing. Therefore finding ways to reduce this motion is important in ship designs. Several techniques have been investigated to reduce rolling. These include the commonly used anti-roll tanks, fin stabilizers and bilge keels. However, these systems are not without their challenges. For example, water-flow in anti-roll tanks creates complications, and for fin stabilizers and bilge keels, an extremely large size is required to produce any significant damping creating operational challenges. Additionally, among these measures presented above only anti-roll tanks are effective in zero forward motion of the vessels. This paper proposes and investigates a method to reduce rolling by inducing Coriolis effect using water-flow in the radial direction. Motion in the radial direction of a rolling structure will induce Coriolis force and, depending on the direction of flow will either amplify or attenuate the structure. The system is modelled with two degrees of freedom, having rotational motion for parametric rolling and radial motion of the water-flow. Equations of motion are derived and investigated. Numerical examples are analyzed in detail. To demonstrate applicability parameters from a Ro-Ro vessel are used as extensive research have been conducted on these over the years. The vessel is investigated under free and forced roll conditions. Several models are created using various masses, heights, and velocities of water-flow at a given time. The proposed system was found to produce substantial roll reduction which increases with increase in any of the parameters varied as stated above, with velocity having the most significant effect. The proposed system provides a simple approach to reduce ship rolling. Water-flow control is very simple as the water flows in only one direction with constant velocity. Only needing to control the time at which the system should be turned on or off. Furthermore, the proposed system is effective in both forward and zero forward motion of the ship, and provides no hydrodynamic drag. This is a starting point for designing an effective and practical system. For this to be a viable approach further investigations are needed to address challenges that present themselves.Keywords: Coriolis effect, damping, rolling, water-flow
Procedia PDF Downloads 4507082 Study on the Expression of Drought Tolerant Genes in Water-Stressed Basella Alba and Basella Rubra
Authors: T. O. Ajewole, K. S. Olorunmiaye, D. A. Animasaun, M. Okpeku
Abstract:
Drought impact on the production of food crops for the benefit of mankind cannot be overemphasized. This study shows the different kind of genes expressed at various level of drought regimes on Basella alba and rubra using a real-time PCR machine. The planting was done in the screen house while the gene expression study was carried out in the laboratory. Sandy-loamy soil was collected and four levels of drought regime was used as treatment and a control experiment was set up for the two vegetables. Drought interval of 5, 10, 15 and 20 days were used as treatments while a control experiment which was not starved of water at any point was also set up, five replicates were set up for each treatment. Stress was introduced at 12 Weeks after planting (WAP). From the result of this study, Basella alba shows the highest amplicon size of 34.6 and 52.32 for GmPCS5 and HVA1 respectively which by implication means these genes were expressed the more as the stress period interval increases.Keywords: water stress, basella alba, basella rubra, HVA1
Procedia PDF Downloads 457081 Forecasting Residential Water Consumption in Hamilton, New Zealand
Authors: Farnaz Farhangi
Abstract:
Many people in New Zealand believe that the access to water is inexhaustible, and it comes from a history of virtually unrestricted access to it. For the region like Hamilton which is one of New Zealand’s fastest growing cities, it is crucial for policy makers to know about the future water consumption and implementation of rules and regulation such as universal water metering. Hamilton residents use water freely and they do not have any idea about how much water they use. Hence, one of proposed objectives of this research is focusing on forecasting water consumption using different methods. Residential water consumption time series exhibits seasonal and trend variations. Seasonality is the pattern caused by repeating events such as weather conditions in summer and winter, public holidays, etc. The problem with this seasonal fluctuation is that, it dominates other time series components and makes difficulties in determining other variations (such as educational campaign’s effect, regulation, etc.) in time series. Apart from seasonality, a stochastic trend is also combined with seasonality and makes different effects on results of forecasting. According to the forecasting literature, preprocessing (de-trending and de-seasonalization) is essential to have more performed forecasting results, while some other researchers mention that seasonally non-adjusted data should be used. Hence, I answer the question that is pre-processing essential? A wide range of forecasting methods exists with different pros and cons. In this research, I apply double seasonal ARIMA and Artificial Neural Network (ANN), considering diverse elements such as seasonality and calendar effects (public and school holidays) and combine their results to find the best predicted values. My hypothesis is the examination the results of combined method (hybrid model) and individual methods and comparing the accuracy and robustness. In order to use ARIMA, the data should be stationary. Also, ANN has successful forecasting applications in terms of forecasting seasonal and trend time series. Using a hybrid model is a way to improve the accuracy of the methods. Due to the fact that water demand is dominated by different seasonality, in order to find their sensitivity to weather conditions or calendar effects or other seasonal patterns, I combine different methods. The advantage of this combination is reduction of errors by averaging of each individual model. It is also useful when we are not sure about the accuracy of each forecasting model and it can ease the problem of model selection. Using daily residential water consumption data from January 2000 to July 2015 in Hamilton, I indicate how prediction by different methods varies. ANN has more accurate forecasting results than other method and preprocessing is essential when we use seasonal time series. Using hybrid model reduces forecasting average errors and increases the performance.Keywords: artificial neural network (ANN), double seasonal ARIMA, forecasting, hybrid model
Procedia PDF Downloads 3377080 Agriculture Yield Prediction Using Predictive Analytic Techniques
Authors: Nagini Sabbineni, Rajini T. V. Kanth, B. V. Kiranmayee
Abstract:
India’s economy primarily depends on agriculture yield growth and their allied agro industry products. The agriculture yield prediction is the toughest task for agricultural departments across the globe. The agriculture yield depends on various factors. Particularly countries like India, majority of agriculture growth depends on rain water, which is highly unpredictable. Agriculture growth depends on different parameters, namely Water, Nitrogen, Weather, Soil characteristics, Crop rotation, Soil moisture, Surface temperature and Rain water etc. In our paper, lot of Explorative Data Analysis is done and various predictive models were designed. Further various regression models like Linear, Multiple Linear, Non-linear models are tested for the effective prediction or the forecast of the agriculture yield for various crops in Andhra Pradesh and Telangana states.Keywords: agriculture yield growth, agriculture yield prediction, explorative data analysis, predictive models, regression models
Procedia PDF Downloads 3147079 Evaluation of Produced Water Treatment Using Advanced Oxidation Processes and Sodium Ferrate(VI)
Authors: Erica T. R. Mendonça, Caroline M. B. de Araujo, Filho, Osvaldo Chiavone, Sobrinho, Maurício A. da Motta
Abstract:
Oil and gas exploration is an essential activity for modern society, although the supply of its global demand has caused enough damage to the environment, mainly due to produced water generation, which is an effluent associated with the oil and gas produced during oil extraction. It is the aim of this study to evaluate the treatment of produced water, in order to reduce its oils and greases content (OG), by using flotation as a pre-treatment, combined with oxidation for the remaining organic load degradation. Thus, there has been tested Advanced Oxidation Process (AOP) using both Fenton and photo-Fenton reactions, as well as a chemical oxidation treatment using sodium ferrate(VI), Na2[FeO4], as a strong oxidant. All the studies were carried out using real samples of produced water from petroleum industry. The oxidation process using ferrate(VI) ion was studied based on factorial experimental designs. The factorial design was used in order to study how the variables pH, temperature and concentration of Na2[FeO4] influences the O&G levels. For the treatment using ferrate(VI) ion, the results showed that the best operating point is obtained when the temperature is 28 °C, pH 3, and a 2000 mg.L-1 solution of Na2[FeO4] is used. This experiment has achieved a final O&G level of 4.7 mg.L-1, which means 94% percentage removal efficiency of oils and greases. Comparing Fenton and photo-Fenton processes, it was observed that the Fenton reaction did not provide good reduction of O&G (around 20% only). On the other hand, a degradation of approximately 80.5% of oil and grease was obtained after a period of seven hours of treatment using photo-Fenton process, which indicates that the best process combination has occurred between the flotation and the photo-Fenton reaction using solar radiation, with an overall removal efficiency of O&G of approximately 89%.Keywords: advanced oxidation process, ferrate (VI) ion, oils and greases removal, produced water treatment
Procedia PDF Downloads 3197078 Carbon-Based Electrochemical Detection of Pharmaceuticals from Water
Authors: M. Ardelean, F. Manea, A. Pop, J. Schoonman
Abstract:
The presence of pharmaceuticals in the environment and especially in water has gained increasing attention. They are included in emerging class of pollutants, and for most of them, legal limits have not been set-up due to their impact on human health and ecosystem was not determined and/or there is not the advanced analytical method for their quantification. In this context, the development of various advanced analytical methods for the quantification of pharmaceuticals in water is required. The electrochemical methods are known to exhibit the great potential for high-performance analytical methods but their performance is in direct relation to the electrode material and the operating techniques. In this study, two types of carbon-based electrodes materials, i.e., boron-doped diamond (BDD) and carbon nanofiber (CNF)-epoxy composite electrodes have been investigated through voltammetric techniques for the detection of naproxen in water. The comparative electrochemical behavior of naproxen (NPX) on both BDD and CNF electrodes was studied by cyclic voltammetry, and the well-defined peak corresponding to NPX oxidation was found for each electrode. NPX oxidation occurred on BDD electrode at the potential value of about +1.4 V/SCE (saturated calomel electrode) and at about +1.2 V/SCE for CNF electrode. The sensitivities for NPX detection were similar for both carbon-based electrode and thus, CNF electrode exhibited superiority in relation to the detection potential. Differential-pulsed voltammetry (DPV) and square-wave voltammetry (SWV) techniques were exploited to improve the electroanalytical performance for the NPX detection, and the best results related to the sensitivity of 9.959 µA·µM-1 were achieved using DPV. In addition, the simultaneous detection of NPX and fluoxetine -a very common antidepressive drug, also present in water, was studied using CNF electrode and very good results were obtained. The detection potential values that allowed a good separation of the detection signals together with the good sensitivities were appropriate for the simultaneous detection of both tested pharmaceuticals. These results reclaim CNF electrode as a valuable tool for the individual/simultaneous detection of pharmaceuticals in water.Keywords: boron-doped diamond electrode, carbon nanofiber-epoxy composite electrode, emerging pollutans, pharmaceuticals
Procedia PDF Downloads 2817077 Maximizing Nitrate Absorption of Agricultural Waste Water in a Tubular Microalgae Reactor by Adapting the Illumination Spectrum
Authors: J. Martin, A. Dannenberg, G. Detrell, R. Ewald, S. Fasoulas
Abstract:
Microalgae-based photobioreactors (PBR) for Life Support Systems (LSS) are currently being investigated for future space missions such as a crewed base on planets or moons. Biological components may help reducing resupply masses by closing material mass flows with the help of regenerative components. Via photosynthesis, the microalgae use CO2, water, light and nutrients to provide oxygen and biomass for the astronauts. These capabilities could have synergies with Earth applications that tackle current problems and the developed technologies can be transferred. For example, a current worldwide discussed issue is the increased nitrate and phosphate pollution of ground water from agricultural waste waters. To investigate the potential use of a biological system based on the ability of the microalgae to extract and use nitrate and phosphate for the treatment of polluted ground water from agricultural applications, a scalable test stand is being developed. This test stand investigates the maximization of intake rates of nitrate and quantifies the produced biomass and oxygen. To minimize the required energy, for the uptake of nitrate from artificial waste water (AWW) the Flashing Light Effect (FLE) and the adaption of the illumination spectrum were realized. This paper describes the composition of the AWW, the development of the illumination unit and the possibility of non-invasive process optimization and control via the adaption of the illumination spectrum and illumination cycles. The findings were a doubling of the energy related growth rate by adapting the illumination setting.Keywords: microalgae, illumination, nitrate uptake, flashing light effect
Procedia PDF Downloads 1137076 Potential Use of Spore-Forming Biosurfactant Producing Bacteria in Oil-Pollution Bioremediation
Authors: S. N. Al-Bahry, Y. M. Al-Wahaibi, S. J. Joshi, E. A. Elshafie, A. S. Al-Bimani
Abstract:
Oman is one of the oil producing countries in the Arabian Peninsula and the Gulf region. About 30-40 % of oil produced from the Gulf is transported globally along the seacoast of Oman. Oil pollution from normal tanker operations, ballast water, illegal discharges and accidental spills are always serious threats to terrestrial and marine habitats. Due to Oman’s geographical location at arid region where the temperature ranges between high 40s and low 50s Celsius in summers with low annual rainfall, the main source of fresh water is desalinated sea and brackish water. Oil pollution, therefore, pose a major threat to drinking water. Biosurfactants are secondary metabolites produced by microorganisms in hydrophobic environments to release nutrients from solid surfaces, such as oil. In this study, indigenous oil degrading thermophilic spore forming bacteria were isolated from oil fields contaminated soil. The isolates were identified using MALDI-TOF biotyper and 16s RNA. Their growth conditions were optimized for the production of biosurfactant. Surface tension, interfacial tensions and microbial oil biodegradation capabilities were tested. Some thermophilic bacteria degraded either completely or partially heavy crude oil (API 10-15) within 48h suggesting their high potential in oil spill bioremediation and avoiding the commonly used physical and chemical methods which usually lead to other environmental pollution.Keywords: bacteria, bioremediation, biosurfactant, crude-oil-pollution
Procedia PDF Downloads 429