Search results for: deep vibro techniques
6919 Relational Attention Shift on Images Using Bu-Td Architecture and Sequential Structure Revealing
Authors: Alona Faktor
Abstract:
In this work, we present a NN-based computational model that can perform attention shifts according to high-level instruction. The instruction specifies the type of attentional shift using explicit geometrical relation. The instruction also can be of cognitive nature, specifying more complex human-human interaction or human-object interaction, or object-object interaction. Applying this approach sequentially allows obtaining a structural description of an image. A novel data-set of interacting humans and objects is constructed using a computer graphics engine. Using this data, we perform systematic research of relational segmentation shifts.Keywords: cognitive science, attentin, deep learning, generalization
Procedia PDF Downloads 1986918 Incorporating Multiple Supervised Learning Algorithms for Effective Intrusion Detection
Authors: Umar Albalawi, Sang C. Suh, Jinoh Kim
Abstract:
As internet continues to expand its usage with an enormous number of applications, cyber-threats have significantly increased accordingly. Thus, accurate detection of malicious traffic in a timely manner is a critical concern in today’s Internet for security. One approach for intrusion detection is to use Machine Learning (ML) techniques. Several methods based on ML algorithms have been introduced over the past years, but they are largely limited in terms of detection accuracy and/or time and space complexity to run. In this work, we present a novel method for intrusion detection that incorporates a set of supervised learning algorithms. The proposed technique provides high accuracy and outperforms existing techniques that simply utilizes a single learning method. In addition, our technique relies on partial flow information (rather than full information) for detection, and thus, it is light-weight and desirable for online operations with the property of early identification. With the mid-Atlantic CCDC intrusion dataset publicly available, we show that our proposed technique yields a high degree of detection rate over 99% with a very low false alarm rate (0.4%).Keywords: intrusion detection, supervised learning, traffic classification, computer networks
Procedia PDF Downloads 3506917 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón
Abstract:
Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.Keywords: aerial thermography, data processing, drone, low-cost, point cloud
Procedia PDF Downloads 1436916 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making
Procedia PDF Downloads 756915 Microsatellite Passive Thermal Design Using Anodized Titanium
Authors: Maged Assem Soliman Mossallam
Abstract:
Microsatellites' low available power limits the usage of active thermal control techniques in these categories of satellites. Passive thermal control techniques are preferred due to their high reliability and power saving which increase the satellite's survivability in orbit. Steady-state and transient simulations are applied to the microsatellite design in order to define severe conditions in orbit. Satellite thermal orbital three-dimensional simulation is performed using thermal orbit propagator coupled with Comsol Multiphysics finite element solver. Sensitivity study shows the dependence of the satellite temperatures on the internal heat dissipation and the thermooptical properties of anodization coatings. The critical case is defined as low power orbiting mode at the eclipse zone. Using black anodized aluminum drops the internal temperatures to severe values which exceed the permissible cold limits. Replacement with anodized titanium returns the internal subsystems' temperatures back to adequate temperature fluctuations limits.Keywords: passive thermal control, thermooptical, anodized titanium, emissivity, absorbtiviy
Procedia PDF Downloads 1426914 Randomized Controlled Trial of Ultrasound Guided Bilateral Intermediate Cervical Plexus Block in Thyroid Surgery
Authors: Neerja Bharti, Drishya P.
Abstract:
Introduction: Thyroidectomies are extensive surgeries involving a significant degree of tissue handling and dissection and are associated with considerable postoperative pain. Regional anaesthesia techniques have immerged as possible inexpensive and safe alternatives to opioids in the management of pain after thyroidectomy. The front of the neck is innervated by branches from the cervical plexus, and hence, several approaches for superficial and deep cervical plexus block (CPB) have been described to provide postoperative analgesia after neck surgery. However, very few studies have explored the analgesic efficacy of intermediate CPB for thyroid surgery. In this study, we have evaluated the effects of ultrasound-guided bilateral intermediate CPB on perioperative opioid consumption in patients undergoing thyroidectomy under general anesthesia. Methods: In this prospective randomized controlled study, fifty ASA grade I-II adult patients undergoing thyroidectomy were randomly divided into two groups: the study group received ultrasound-guided bilateral intermediate CPB with 10 ml 0.5% ropivacaine on each side, while the control group received the same block with 10 ml normal saline on each side just after induction of anesthesia. Anesthesia was induced with propofol, fentanyl, and vecuronium and maintained with propofol infusion titrated to maintain the BIS between 40 and 60. During the postoperative period, rescue analgesia was provided with PCA fentanyl, and the pain scores, total fentanyl consumption, and incidence of nausea and vomiting during 24 hours were recorded, and overall patient satisfaction was assessed. Results: The groups were well-matched with respect to age, gender, BMI, and duration of surgery. The difference in intraoperative propofol and fentanyl consumption was not statistically significant between groups. However, the intraoperative haemodynamic parameters were better maintained in the study group than in the control group. The postoperative pain scores, as measured by VAS at rest and during movement, were lower, and the total fentanyl consumption during 24 hours was significantly less in the study group as compared to the control group. Patients in the study group reported better satisfaction scores than those in the control group. No adverse effects of ultrasound-guided intermediate CPB block were reported. Conclusion: We concluded that ultrasound-guided intermediate cervical plexus block is a safe and effective method for providing perioperative analgesia during thyroid surgery.Keywords: thyroidectomy, cervical plexus block, pain relief, opioid consumption
Procedia PDF Downloads 976913 Managing Physiological and Nutritional Needs of Rugby Players in Kenya
Authors: Masita Mokeira, Kimani Rita, Obonyo Brian, Kwenda Kennedy, Mugambi Purity, Kirui Joan, Chomba Eric, Orwa Daniel, Waiganjo Peter
Abstract:
Rugby is a highly intense and physical game requiring speed and strength. The need for physical fitness therefore cannot be over-emphasized. Sports are no longer about lifting weights so as to build muscle. Most professional teams are investing much more in the sport in terms of time, equipment and other resources. To play competitively, Kenyan players may therefore need to complement their ‘home-grown’ and sometimes ad-hoc training and nutrition regimes with carefully measured strength and conditioning, diet, nutrition, and supplementation. Nokia Research Center and University of Nairobi conducted an exploratory study on needs and behaviours surrounding sports in Africa. Rugby being one sport that is gaining ground in Kenya was selected as the main focus. The end goal of the research was to identify areas where mobile technology could be used to address gaps, challenges and/or unmet needs. Themes such as information gap, social culture, growth, and development, revenue flow, and technology adoption among others emerged about the sport. From the growth and development theme, it was clear that as rugby continues to grow in the country, teams, coaches, and players are employing interesting techniques both in training and playing. Though some of these techniques are indeed scientific, those employing them are sometimes not fully aware of their scientific basis. A further case study on sports science in rugby in Kenya focusing on physical fitness and nutrition revealed interesting findings. This paper discusses findings on emerging adoption of techniques in managing physiological and nutritional needs of rugby players across different levels of rugby in Kenya namely high school, club and national levels.Keywords: rugby, nutrition, physiological needs, sports science
Procedia PDF Downloads 3866912 Improving the Training for Civil Engineers by Introducing Virtual Reality Technique
Authors: Manar Al-Ateeq
Abstract:
The building construction industry plays a major role in the economy of the word and the state of Kuwait. This paper evaluates existing new civil site engineers, describes a new system for improvement and insures the importance of prequalifying and developing for new engineers. In order to have a strong base in engineering, educational institutes and workplaces should be responsible to continuously train engineers and update them with new methods and techniques in engineering. As to achieve that, school of engineering should constantly update computational resources to be used in the professions. A survey was prepared for graduated Engineers based on stated objectives to understand the status of graduate engineers in both the public and private sector. Interviews were made with different sectors in Kuwait, and several visits were made to different training centers within different workplaces in Kuwait to evaluate training process and try to improve it. Virtual Reality (VR) technology could be applied as a complement to three-dimensional (3D) modeling, leading to better communication whether in job training, in education or in professional practice. Techniques of 3D modeling and VR can be applied to develop the models related to the construction process. The 3D models can support rehabilitation design as it can be considered as a great tool for monitoring failure and defaults in structures; also it can support decisions based on the visual analyses of alternative solutions. Therefore, teaching computer-aided design (CAD) and VR techniques in school will help engineering students in order to prepare them to site work and also will assist them to consider these technologies as important supports in their later professional practice. This teaching technique will show how the construction works developed, allow the visual simulation of progression of each type of work and help them to know more about the necessary equipment needed for tasks and how it works on site.Keywords: three dimensional modeling (3DM), civil engineers (CE), professional practice (PP), virtual reality (VR)
Procedia PDF Downloads 1766911 Delineating Subsurface Linear Features and Faults Under Sedimentary Cover in the Bahira Basin Using Integrated Gravity and Magnetic Data
Authors: M. Lghoul, N. El Goumi, M. Guernouche
Abstract:
In order to predict the structural and tectonic framework of the Bahira basin and to have a 3D geological modeling of the basin, an integrated multidisciplinary work has been conducted using gravity, magnetic and geological data. The objective of the current study is delineating the subsurfacefeatures, faults, and geological limits, using airborne magnetic and gravity data analysis of the Bahira basin. To achieve our goal, we have applied different enhanced techniques on magnetic and gravity data: power spectral analysis techniques, reduction to pole (RTP), upward continuation, analytical signal, tilt derivative, total horizontal derivative, 3D Euler deconvolutionand source parameter imagining. The major lineaments/faults trend are: NE–SW, NW-SE, ENE–WSW, and WNW–ESE. The 3D Euler deconvolution analysis highlighted a number of fault trend, mainly in the ENE-WSW, WNW-ESE directions. The depth tothe top of the basement sources in the study area ranges between 200 m, in the southern and northern part of the Bahira basin, to 5000 m located in the Eastern part of the basin.Keywords: magnetic, gravity, structural trend, depth to basement
Procedia PDF Downloads 1326910 Intertextuality as a Dialogue Between Postmodern Writer J. Fowles and Mid-English Writer J. Donne
Authors: Isahakyan Heghine
Abstract:
Intertextuality, being in the centre of attention of both linguists and literary critics, is vividly expressed in the outstanding British novelist and philosopher J. Fowles' works. 'The Magus’ is a deep psychological and philosophical novel with vivid intertextual links with the Greek mythology and authors from different epochs. The aim of the paper is to show how intertextuality might serve as a dialogue between two authors (J. Fowles and J. Donne) disguised in the dialogue of two protagonists of the novel : Conchis and Nicholas. Contrastive viewpoints concerning man's isolation, loneliness are stated in the dialogue. Due to the conceptual analysis of the text it becomes possible both to decode the conceptual information of the text and find out its intertextual links.Keywords: dialogue, conceptual analysis, isolation, intertextuality
Procedia PDF Downloads 3296909 Investigation of a Hybrid Process: Multipoint Incremental Forming
Authors: Safa Boudhaouia, Mohamed Amen Gahbiche, Eliane Giraud, Wacef Ben Salem, Philippe Dal Santo
Abstract:
Multi-point forming (MPF) and asymmetric incremental forming (ISF) are two flexible processes for sheet metal manufacturing. To take advantages of these two techniques, a hybrid process has been developed: The Multipoint Incremental Forming (MPIF). This process accumulates at once the advantages of each of these last mentioned forming techniques, which makes it a very interesting and particularly an efficient process for single, small, and medium series production. In this paper, an experimental and a numerical investigation of this technique are presented. To highlight the flexibility of this process and its capacity to manufacture standard and complex shapes, several pieces were produced by using MPIF. The forming experiments are performed on a 3-axis CNC machine. Moreover, a numerical model of the MPIF process has been implemented in ABAQUS and the analysis showed a good agreement with experimental results in terms of deformed shape. Furthermore, the use of an elastomeric interpolator allows avoiding classical local defaults like dimples, which are generally caused by the asymmetric contact and also improves the distribution of residual strain. Future works will apply this approach to other alloys used in aeronautic or automotive applications.Keywords: incremental forming, numerical simulation, MPIF, multipoint forming
Procedia PDF Downloads 3566908 Existence of Nano-Organic Carbon Particles below the Size Range of 10 nm in the Indoor Air Environment
Authors: Bireswar Paul, Amitava Datta
Abstract:
Indoor air environment is a big concern in the last few decades in the developing countries, with increased focus on monitoring the air quality. In this work, an experimental study has been conducted to establish the existence of carbon nanoparticles below the size range of 10 nm in the non-sooting zone of a LPG/air partially premixed flame. Mainly, four optical techniques, UV absorption spectroscopy, fluorescence spectroscopy, dynamic light scattering and TEM have been used to characterize and measure the size of carbon nanoparticles in the sampled materials collected from the inner surface of the flame front. The existence of the carbon nanoparticles in the sampled material has been confirmed with the typical nature of the absorption and fluorescence spectra already reported in the literature. The band gap energy shows that the particles are made up of three to six aromatic rings. The size measurement by DLS technique also shows that the particles below the size range of 10 nm. The results of DLS are also corroborated by the TEM image of the same material.
Keywords: indoor air, carbon nanoparticle, lpg, partially premixed flame, optical techniques
Procedia PDF Downloads 2776907 Metabolic Profiling in Breast Cancer Applying Micro-Sampling of Biological Fluids and Analysis by Gas Chromatography – Mass Spectrometry
Authors: Mónica P. Cala, Juan S. Carreño, Roland J.W. Meesters
Abstract:
Recently, collection of biological fluids on special filter papers has become a popular micro-sampling technique. Especially, the dried blood spot (DBS) micro-sampling technique has gained much attention and is momently applied in various life sciences reserach areas. As a result of this popularity, DBS are not only intensively competing with the venous blood sampling method but are at this moment widely applied in numerous bioanalytical assays. In particular, in the screening of inherited metabolic diseases, pharmacokinetic modeling and in therapeutic drug monitoring. Recently, microsampling techniques were also introduced in “omics” areas, whereunder metabolomics. For a metabolic profiling study we applied micro-sampling of biological fluids (blood and plasma) from healthy controls and from women with breast cancer. From blood samples, dried blood and plasma samples were prepared by spotting 8uL sample onto pre-cutted 5-mm paper disks followed by drying of the disks for 100 minutes. Dried disks were then extracted by 100 uL of methanol. From liquid blood and plasma samples 40 uL were deproteinized with methanol followed by centrifugation and collection of supernatants. Supernatants and extracts were evaporated until dryness by nitrogen gas and residues derivated by O-methyxyamine and MSTFA. As internal standard C17:0-methylester in heptane (10 ppm) was used. Deconvolution and alignment of and full scan (m/z 50-500) MS data were done by AMDIS and SpectConnect (http://spectconnect.mit.edu) software, respectively. Statistical Data analysis was done by Principal Component Analysis (PCA) using R software. The results obtained from our preliminary study indicate that the use of dried blood/plasma on paper disks could be a powerful new tool in metabolic profiling. Many of the metabolites observed in plasma (liquid/dried) were also positively identified in whole blood samples (liquid/dried). Whole blood could be a potential substitute matrix for plasma in Metabolomic profiling studies as well also micro-sampling techniques for the collection of samples in clinical studies. It was concluded that the separation of the different sample methodologies (liquid vs. dried) as observed by PCA was due to different sample treatment protocols applied. More experiments need to be done to confirm obtained observations as well also a more rigorous validation .of these micro-sampling techniques is needed. The novelty of our approach can be found in the application of different biological fluid micro-sampling techniques for metabolic profiling.Keywords: biofluids, breast cancer, metabolic profiling, micro-sampling
Procedia PDF Downloads 4116906 An Abbattoir-Based Study on Relative Prevalence of Histopathologic Patterns of Hepatic Lesions in One-Humped Camels (Camelus deromedarius), Semnan, Iran
Authors: Keivan Jamshidi, Afshin Zahedi
Abstract:
An abattoir based study was carried out during spring 2011 to investigate pathological conditions of the liver in camels (Camelus deromedarius) slaughtered in the Semnan slaughter house, Northern East of Iran. In this study, 40 carcasses out of 150 randomly selected carcasses inspected at postmortem, found with liver lesions. Proper tissue samples obtained from the livers with macroscopic lesions, fixed in 10% neutral buffer formaldehyde, processed for routine histopathological techniques, and finally embedded in paraffin blocks. Sections of 5µm thickness then cut and stained by H&E staining techniques. In histopathological examination of hepatic tissues, following changes were observed: Hydatid cysts; 65%, Cirrhosis; 10%, Hepatic lipidosis (Mild to Severe fatty changes); 12.5%, Glycogen deposition; 2.5%, Cholangitis; 2.8%, Cholangiohepatitis; 5%, Calcified hydatid cyst; 2.5%, Hepatic abscess; 2.5%, lipofuscin pigments; 17.5%. It is concluded that the highest and lowest prevalent patterns of hepatic lesions were hydatid cysts and Hepatic abscess respectively.Keywords: camel, liver, lesion, pathology, slaughterhouse
Procedia PDF Downloads 4786905 Effect of Yb and Sm doping on Thermoluminescence and Optical Properties of LiF Nanophosphor
Authors: Rakesh Dogra, Arun Kumar, Arvind Kumar Sharma
Abstract:
This paper reports the thermoluminescence as well as optical properties of rare earth doped lithium fluoride (LiF) nanophosphor, synthesized via chemical route. The rare earth impurities (Yb and Sm) have been observed to increase the deep trap center capacity, which, in turn, enhance the radiation resistance of the LiF. This suggests the viability of these materials to be used as high dose thermoluminescent detectors at high temperature. Further, optical absorption measurements revealed the formation of radiation induced stable color centers in LiF at room temperature, which are independent of the rare earth dopant.Keywords: lithium flouride, thermoluminescence, UV-VIS spectroscopy, Gamma radiations
Procedia PDF Downloads 1496904 Concurrent Engineering Challenges and Resolution Mechanisms from Quality Perspectives
Authors: Grmanesh Gidey Kahsay
Abstract:
In modern technical engineering applications, quality is defined in two ways. The first one is that quality is the parameter that measures a product or service’s characteristics to meet and satisfy the pre-stated or fundamental needs (reliability, durability, serviceability). The second one is the quality of a product or service free of any defect or deficiencies. The American Society for Quality (ASQ) describes quality as a pursuit of optimal solutions to confirm successes and fulfillment to be accountable for the product or service's requirements and expectations. This article focuses on quality engineering tools in modern industrial applications. Quality engineering is a field of engineering that deals with the principles, techniques, models, and applications of the product or service to guarantee quality. Including the entire activities to analyze the product’s design and development, quality engineering emphasizes how to make sure that products and services are designed and developed to meet consumers’ requirements. This episode acquaints with quality tools such as quality systems, auditing, product design, and process control. The finding presents thoughts that aim to improve quality engineering proficiency and effectiveness by introducing essential quality techniques and tools in some selected industries.Keywords: essential quality tools, quality systems and models, quality management systems, and quality assurance
Procedia PDF Downloads 1526903 Performance Analysis and Comparison of Various 1-D and 2-D Prime Codes for OCDMA Systems
Authors: Gurjit Kaur, Shashank Johri, Arpit Mehrotra
Abstract:
In this paper we have analyzed and compared the performance of various coding schemes. The basic ID prime sequence codes are unique in only dimension i.e. time slots whereas 2D coding techniques are not unique by their time slots but with their wavelengths also. In this research we have evaluated and compared the performance of 1D and 2D coding techniques constructed using prime sequence coding pattern for OCDMA system on a single platform. Results shows that 1D Extended Prime Code (EPC) can support more number of active users compared to other codes but at the expense of larger code length which further increases the complexity of the code. Modified Prime Code (MPC) supports lesser number of active users at λc=2 but it has a lesser code length as compared to 1D prime code. Analysis shows that 2D prime code supports lesser number of active users than 1D codes but they are having large code family and are the most secure codes compared to other codes. The performance of all these codes is analyzed on basis of number of active users supported at a Bit Error Rate (BER) of 10-9.Keywords: CDMA, OCDMA, BER, OOC, PC, EPC, MPC, 2-D PC/PC, λc, λa
Procedia PDF Downloads 5106902 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network
Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima
Abstract:
Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network
Procedia PDF Downloads 3306901 Object-Centric Process Mining Using Process Cubes
Authors: Anahita Farhang Ghahfarokhi, Alessandro Berti, Wil M.P. van der Aalst
Abstract:
Process mining provides ways to analyze business processes. Common process mining techniques consider the process as a whole. However, in real-life business processes, different behaviors exist that make the overall process too complex to interpret. Process comparison is a branch of process mining that isolates different behaviors of the process from each other by using process cubes. Process cubes organize event data using different dimensions. Each cell contains a set of events that can be used as an input to apply process mining techniques. Existing work on process cubes assume single case notions. However, in real processes, several case notions (e.g., order, item, package, etc.) are intertwined. Object-centric process mining is a new branch of process mining addressing multiple case notions in a process. To make a bridge between object-centric process mining and process comparison, we propose a process cube framework, which supports process cube operations such as slice and dice on object-centric event logs. To facilitate the comparison, the framework is integrated with several object-centric process discovery approaches.Keywords: multidimensional process mining, mMulti-perspective business processes, OLAP, process cubes, process discovery, process mining
Procedia PDF Downloads 2556900 Status of Bio-Graphene Extraction from Biomass: A Review
Authors: Simon Peter Wafula, Ziporah Nakabazzi Kitooke
Abstract:
Graphene is a carbon allotrope made of a two-dimensional shape. This material has got a number of materials researchers’ interest due to its properties that are special compared to ordinary material. Graphene is thought to enhance a number of material properties in the manufacturing, energy, and construction industries. Many studies consider graphene to be a wonder material, just like plastic in the 21st century. This shows how much should be invested in graphene research. This review highlights the status of graphene extracted from various biomass sources together with their appropriate extraction techniques, including the pretreatment methods for a better product. The functional groups and structure of graphene extracted using several common methods of synthesis are in this paper as well. The review explores methods like chemical vapor deposition (CVD), hydrothermal, chemical exfoliation method, liquid exfoliation, and Hummers. Comparative analysis of the various extraction techniques gives an insight into each of their advantages, challenges, and potential scalability. The review also highlights the pretreatment process for biomass before carbonation for better quality of bio-graphene. The various graphene modes, as well as their applications, are in this study. Recommendations for future research for improving the efficiency and sustainability of bio-graphene are highlighted.Keywords: exfoliation, nanomaterials, biochar, large-scale, two-dimension
Procedia PDF Downloads 496899 Deep-Learning Coupled with Pragmatic Categorization Method to Classify the Urban Environment of the Developing World
Authors: Qianwei Cheng, A. K. M. Mahbubur Rahman, Anis Sarker, Abu Bakar Siddik Nayem, Ovi Paul, Amin Ahsan Ali, M. Ashraful Amin, Ryosuke Shibasaki, Moinul Zaber
Abstract:
Thomas Friedman, in his famous book, argued that the world in this 21st century is flat and will continue to be flatter. This is attributed to rapid globalization and the interdependence of humanity that engendered tremendous in-flow of human migration towards the urban spaces. In order to keep the urban environment sustainable, policy makers need to plan based on extensive analysis of the urban environment. With the advent of high definition satellite images, high resolution data, computational methods such as deep neural network analysis, and hardware capable of high-speed analysis; urban planning is seeing a paradigm shift. Legacy data on urban environments are now being complemented with high-volume, high-frequency data. However, the first step of understanding urban space lies in useful categorization of the space that is usable for data collection, analysis, and visualization. In this paper, we propose a pragmatic categorization method that is readily usable for machine analysis and show applicability of the methodology on a developing world setting. Categorization to plan sustainable urban spaces should encompass the buildings and their surroundings. However, the state-of-the-art is mostly dominated by classification of building structures, building types, etc. and largely represents the developed world. Hence, these methods and models are not sufficient for developing countries such as Bangladesh, where the surrounding environment is crucial for the categorization. Moreover, these categorizations propose small-scale classifications, which give limited information, have poor scalability and are slow to compute in real time. Our proposed method is divided into two steps-categorization and automation. We categorize the urban area in terms of informal and formal spaces and take the surrounding environment into account. 50 km × 50 km Google Earth image of Dhaka, Bangladesh was visually annotated and categorized by an expert and consequently a map was drawn. The categorization is based broadly on two dimensions-the state of urbanization and the architectural form of urban environment. Consequently, the urban space is divided into four categories: 1) highly informal area; 2) moderately informal area; 3) moderately formal area; and 4) highly formal area. In total, sixteen sub-categories were identified. For semantic segmentation and automatic categorization, Google’s DeeplabV3+ model was used. The model uses Atrous convolution operation to analyze different layers of texture and shape. This allows us to enlarge the field of view of the filters to incorporate larger context. Image encompassing 70% of the urban space was used to train the model, and the remaining 30% was used for testing and validation. The model is able to segment with 75% accuracy and 60% Mean Intersection over Union (mIoU). In this paper, we propose a pragmatic categorization method that is readily applicable for automatic use in both developing and developed world context. The method can be augmented for real-time socio-economic comparative analysis among cities. It can be an essential tool for the policy makers to plan future sustainable urban spaces.Keywords: semantic segmentation, urban environment, deep learning, urban building, classification
Procedia PDF Downloads 1916898 A Phishing Email Detection Approach Using Machine Learning Techniques
Authors: Kenneth Fon Mbah, Arash Habibi Lashkari, Ali A. Ghorbani
Abstract:
Phishing e-mails are a security issue that not only annoys online users, but has also resulted in significant financial losses for businesses. Phishing advertisements and pornographic e-mails are difficult to detect as attackers have been becoming increasingly intelligent and professional. Attackers track users and adjust their attacks based on users’ attractions and hot topics that can be extracted from community news and journals. This research focuses on deceptive Phishing attacks and their variants such as attacks through advertisements and pornographic e-mails. We propose a framework called Phishing Alerting System (PHAS) to accurately classify e-mails as Phishing, advertisements or as pornographic. PHAS has the ability to detect and alert users for all types of deceptive e-mails to help users in decision making. A well-known email dataset has been used for these experiments and based on previously extracted features, 93.11% detection accuracy is obtainable by using J48 and KNN machine learning techniques. Our proposed framework achieved approximately the same accuracy as the benchmark while using this dataset.Keywords: phishing e-mail, phishing detection, anti phishing, alarm system, machine learning
Procedia PDF Downloads 3406897 Genetic Programming: Principles, Applications and Opportunities for Hydrological Modelling
Authors: Oluwaseun K. Oyebode, Josiah A. Adeyemo
Abstract:
Hydrological modelling plays a crucial role in the planning and management of water resources, most especially in water stressed regions where the need to effectively manage the available water resources is of critical importance. However, due to the complex, nonlinear and dynamic behaviour of hydro-climatic interactions, achieving reliable modelling of water resource systems and accurate projection of hydrological parameters are extremely challenging. Although a significant number of modelling techniques (process-based and data-driven) have been developed and adopted in that regard, the field of hydrological modelling is still considered as one that has sluggishly progressed over the past decades. This is majorly as a result of the identification of some degree of uncertainty in the methodologies and results of techniques adopted. In recent times, evolutionary computation (EC) techniques have been developed and introduced in response to the search for efficient and reliable means of providing accurate solutions to hydrological related problems. This paper presents a comprehensive review of the underlying principles, methodological needs and applications of a promising evolutionary computation modelling technique – genetic programming (GP). It examines the specific characteristics of the technique which makes it suitable to solving hydrological modelling problems. It discusses the opportunities inherent in the application of GP in water related-studies such as rainfall estimation, rainfall-runoff modelling, streamflow forecasting, sediment transport modelling, water quality modelling and groundwater modelling among others. Furthermore, the means by which such opportunities could be harnessed in the near future are discussed. In all, a case for total embracement of GP and its variants in hydrological modelling studies is made so as to put in place strategies that would translate into achieving meaningful progress as it relates to modelling of water resource systems, and also positively influence decision-making by relevant stakeholders.Keywords: computational modelling, evolutionary algorithms, genetic programming, hydrological modelling
Procedia PDF Downloads 2986896 Case for Simulating Consumer Response to Feed in Tariff Based on Socio-Economic Parameters
Authors: Fahad Javed, Tasneem Akhter, Maria Zafar, Adnan Shafique
Abstract:
Evaluation and quantification of techniques is critical element of research and development of technology. Simulations and models play an important role in providing the tools for such assessments. When we look at technologies which impact or is dependent on an average Joe consumer then modeling the socio-economic and psychological aspects of the consumer also gain an importance. For feed in tariff for home consumers which is being deployed for average consumer may force many consumers to be adapters of the technology. Understanding how consumers will adapt this technologies thus hold as much significance as evaluating how the techniques would work in consumer agnostic scenarios. In this paper we first build the case for simulators which accommodate socio-economic realities of the consumers to evaluate smart grid technologies, provide a glossary of data that can aid in this effort and present an abstract model to capture and simulate consumers' adaptation and behavioral response to smart grid technologies. We provide a case study to express the power of such simulators.Keywords: smart grids, simulation, socio-economic parameters, feed in tariff (FiT), forecasting
Procedia PDF Downloads 3586895 Research Trends in Fine Arts Education Dissertations in Turkey
Authors: Suzan Duygu Bedir Erişti
Abstract:
The present study tried to make a general evaluation of the dissertations conducted in the last decade in the field of art education in the Department of Fine Arts Education in the Institutes of Education Sciences in Turkey. In the study, most of the universities which involved an Institute of Education Sciences within their bodies in Turkey were reached. As a result, a total of a hundred dissertations conducted in the departments of Fine Arts Education at several universities (Anadolu, Gazi, Ankara, Marmara, Dokuz Eylul, Ondokuz Mayıs, Selcuk and Necmettin Erbakan) were determined via the open access systems of universities as well as via the Thesis Search System of Higher Education Council. Most of the dissertations were reached via the latter system, and in cases of failure, the dissertations were reached via the former system. Consequently, most of the dissertations which did not have any access restriction and which had appropriate content were reached. The dissertations reached were examined based on document analysis in terms of their research topics, research paradigms, contents, purposes, methodologies, data collection tools, and analysis techniques. The dissertations conducted in institutes of Education Sciences could be said to have demonstrated a development, especially in recent years with respect to their qualities. It was also found that a great majority of the dissertations were carried out at Gazi University and Marmara University and that a similar number of dissertations were conducted in other universities. When all the dissertations were taken into account, in general, they were found to differ a lot in their subject areas. In most of the dissertations, the quantitative paradigm was adopted, while especially in recent years, more importance has been given to methods based on the qualitative paradigm. In addition, most of the dissertations conducted with quantitative paradigm were structured based on the general survey model and experimental research model. In terms of statistical techniques, university-focused approaches were used. In some universities, advanced statistical techniques were applied, while in some other universities, there was a moderate use of statistical techniques. Most of the studies produced results generalizable to the levels of postgraduate education and elementary school education. The studies were generally structured in face-to-face teaching processes, while some of them were designed in environments which did not include results generalizable to the face-to-face education system. In the present study, it was seen that the dissertations conducted in the departments of Fine Arts Education at the Institutes of Education Sciences in Turkey did not involve application-based approaches which included art-based or visual research in terms of either research topic or methodology.Keywords: fine arts education, dissertations, evaluation of dissertations, research trends in fine arts education
Procedia PDF Downloads 1976894 Brain Age Prediction Based on Brain Magnetic Resonance Imaging by 3D Convolutional Neural Network
Authors: Leila Keshavarz Afshar, Hedieh Sajedi
Abstract:
Estimation of biological brain age from MR images is a topic that has been much addressed in recent years due to the importance it attaches to early diagnosis of diseases such as Alzheimer's. In this paper, we use a 3D Convolutional Neural Network (CNN) to provide a method for estimating the biological age of the brain. The 3D-CNN model is trained by MRI data that has been normalized. In addition, to reduce computation while saving overall performance, some effectual slices are selected for age estimation. By this method, the biological age of individuals using selected normalized data was estimated with Mean Absolute Error (MAE) of 4.82 years.Keywords: brain age estimation, biological age, 3D-CNN, deep learning, T1-weighted image, SPM, preprocessing, MRI, canny, gray matter
Procedia PDF Downloads 1476893 Optimization for Autonomous Robotic Construction by Visual Guidance through Machine Learning
Authors: Yangzhi Li
Abstract:
Network transfer of information and performance customization is now a viable method of digital industrial production in the era of Industry 4.0. Robot platforms and network platforms have grown more important in digital design and construction. The pressing need for novel building techniques is driven by the growing labor scarcity problem and increased awareness of construction safety. Robotic approaches in construction research are regarded as an extension of operational and production tools. Several technological theories related to robot autonomous recognition, which include high-performance computing, physical system modeling, extensive sensor coordination, and dataset deep learning, have not been explored using intelligent construction. Relevant transdisciplinary theory and practice research still has specific gaps. Optimizing high-performance computing and autonomous recognition visual guidance technologies improves the robot's grasp of the scene and capacity for autonomous operation. Intelligent vision guidance technology for industrial robots has a serious issue with camera calibration, and the use of intelligent visual guiding and identification technologies for industrial robots in industrial production has strict accuracy requirements. It can be considered that visual recognition systems have challenges with precision issues. In such a situation, it will directly impact the effectiveness and standard of industrial production, necessitating a strengthening of the visual guiding study on positioning precision in recognition technology. To best facilitate the handling of complicated components, an approach for the visual recognition of parts utilizing machine learning algorithms is proposed. This study will identify the position of target components by detecting the information at the boundary and corner of a dense point cloud and determining the aspect ratio in accordance with the guidelines for the modularization of building components. To collect and use components, operational processing systems assign them to the same coordinate system based on their locations and postures. The RGB image's inclination detection and the depth image's verification will be used to determine the component's present posture. Finally, a virtual environment model for the robot's obstacle-avoidance route will be constructed using the point cloud information.Keywords: robotic construction, robotic assembly, visual guidance, machine learning
Procedia PDF Downloads 866892 The Impact of Varying the Detector and Modulation Types on Inter Satellite Link (ISL) Realizing the Allowable High Data Rate
Authors: Asmaa Zaki M., Ahmed Abd El Aziz, Heba A. Fayed, Moustafa H. Aly
Abstract:
ISLs are the most popular choice for deep space communications because these links are attractive alternatives to present day microwave links. This paper explored the allowable high data rate in this link over different orbits, which is affected by variation in modulation scheme and detector type. Moreover, the objective of this paper is to optimize and analyze the performance of ISL in terms of Q-factor and Minimum Bit Error Rate (Min-BER) based on different detectors comprising some parameters.Keywords: free space optics (FSO), field of view (FOV), inter satellite link (ISL), optical wireless communication (OWC)
Procedia PDF Downloads 3976891 Use of Improved Genetic Algorithm in Cloud Computing to Reduce Energy Consumption in Migration of Virtual Machines
Authors: Marziyeh Bahrami, Hamed Pahlevan Hsseini, Behnam Ghamami, Arman Alvanpour, Hamed Ezzati, Amir Salar Sadeghi
Abstract:
One of the ways to increase the efficiency of services in the system of agents and, of course, in the world of cloud computing, is to use virtualization techniques. The aim of this research is to create changes in cloud computing services that will reduce as much as possible the energy consumption related to the migration of virtual machines and, in some way, the energy related to the allocation of resources and reduce the amount of pollution. So far, several methods have been proposed to increase the efficiency of cloud computing services in order to save energy in the cloud environment. The method presented in this article tries to prevent energy consumption by data centers and the subsequent production of carbon and biological pollutants as much as possible by increasing the efficiency of cloud computing services. The results show that the proposed algorithm, using the improvement in virtualization techniques and with the help of a genetic algorithm, improves the efficiency of cloud services in the matter of migrating virtual machines and finally saves consumption. becomes energy.Keywords: consumption reduction, cloud computing, genetic algorithm, live migration, virtual Machine
Procedia PDF Downloads 606890 A Low-Cost and Easy-To-Operate Remediation Technology of Heavy Metals Contaminated Agricultural Soil
Authors: Xiao-Hua Zhu, Xin Yuan, Yi-Ran Zhao
Abstract:
High-cadmium pollution in rice is a serious problem in many parts of China. Many kinds of remediation technologies have been tested and applied in many farmlands. Because of the productive function of the farmland, most technologies are inappropriate due to their destruction to the tillage soil layer. And the large labours and expensive fees of many technologies are also the restrictive factors for their applications. The conception of 'Root Micro-Geochemical Barrier' was proposed to reduce cadmium (Cd) bioavailability and the concentration of the cadmium in rice. Remediation and mitigation techniques were demonstrated on contaminated farmland in the downstream of some mine. According to the rule of rice growth, Cd would be absorbed by the crops in every growth stage, and the plant-absorb efficiency in the first stage of the tillering stage is almost the highest. We should create a method to protect the crops from heavy metal pollution, which could begin to work from the early growth stage. Many materials with repair property get our attention. The materials will create a barrier preventing Cd from being absorbed by the crops during all the growing process because the material has the ability to adsorb soil-Cd and making it losing its migration activity. And we should choose a good chance to put the materials into the crop-growing system cheaply as soon as early. Per plant, rice has a little root system scope, which makes the roots reach about 15cm deep and 15cm wide. So small root radiation area makes it possible for all the Cd approaching the roots to be adsorbed with a small amount of adsorbent. Mixing the remediation materials with the seed-raising soli and adding them to the tillage soil in the process of transplanting seedlings, we can control the soil-Cd activity in the range of roots to reduce the Cd-amount absorbed by the crops. Of course, the mineral materials must have enough adsorptive capacity and no additional pollution. More than 3000 square meters farmlands have been remediated. And on the application of root micro-geochemical barrier, the Cd-concentration in rice and the remediation-cost have been decreased by 90% and 80%, respectively, with little extra labour brought to the farmers. The Cd-concentrations in rice from remediated farmland have been controlled below 0.1 ppm. The remediation of one acre of contaminated cropland costs less than $100. The concept has its advantage in the remediation of paddy field contaminated by Cd, especially for the field with outside pollution sources.Keywords: cadmium pollution, growth stage, cost, root micro-geochemistry barrier
Procedia PDF Downloads 84