Search results for: temperature change
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13090

Search results for: temperature change

11530 Kinetic Studies on CO₂ Gasification of Low and High Ash Indian Coals in Context of Underground Coal Gasification

Authors: Geeta Kumari, Prabu Vairakannu

Abstract:

Underground coal gasification (UCG) technology is an efficient and an economic in-situ clean coal technology, which converts unmineable coals into calorific valuable gases. This technology avoids ash disposal, coal mining, and storage problems. CO₂ gas can be a potential gasifying medium for UCG. CO₂ is a greenhouse gas and, the liberation of this gas to the atmosphere from thermal power plant industries leads to global warming. Hence, the capture and reutilization of CO₂ gas are crucial for clean energy production. However, the reactivity of high ash Indian coals with CO₂ needs to be assessed. In the present study, two varieties of Indian coals (low ash and high ash) are used for thermogravimetric analyses (TGA). Two low ash north east Indian coals (LAC) and a typical high ash Indian coal (HAC) are procured from the coal mines of India. Low ash coal with 9% ash (LAC-1) and 4% ash (LAC-2) and high ash coal (HAC) with 42% ash are used for the study. TGA studies are carried out to evaluate the activation energy for pyrolysis and gasification of coal under N₂ and CO₂ atmosphere. Coats and Redfern method is used to estimate the activation energy of coal under different temperature regimes. Volumetric model is assumed for the estimation of the activation energy. The activation energy estimated under different temperature range. The inherent properties of coals play a major role in their reactivity. The results show that the activation energy decreases with the decrease in the inherent percentage of coal ash due to the ash layer hindrance. A reverse trend was observed with volatile matter. High volatile matter of coal leads to the estimation of low activation energy. It was observed that the activation energy under CO₂ atmosphere at 400-600°C is less as compared to N₂ inert atmosphere. At this temperature range, it is estimated that 15-23% reduction in the activation energy under CO₂ atmosphere. This shows the reactivity of CO₂ gas with higher hydrocarbons of the coal volatile matters. The reactivity of CO₂ with the volatile matter of coal might occur through dry reforming reaction in which CO₂ reacts with higher hydrocarbon, aromatics of the tar content. The observed trend of Ea in the temperature range of 150-200˚C and 400-600˚C is HAC > LAC-1 >LAC-2 in both N₂ and CO₂ atmosphere. At the temperature range of 850-1000˚C, higher activation energy is estimated when compared to those values in the temperature range of 400-600°C. Above 800°C, char gasification through Boudouard reaction progressed under CO₂ atmosphere. It was observed that 8-20 kJ/mol of activation energy is increased during char gasification above 800°C compared to volatile matter pyrolysis between the temperature ranges of 400-600°C. The overall activation energy of the coals in the temperature range of 30-1000˚C is higher in N₂ atmosphere than CO₂ atmosphere. It can be concluded that higher hydrocarbons such as tar effectively undergoes cracking and reforming reactions in presence of CO₂. Thus, CO₂ gas is beneficial for the production of high calorific value syngas using high ash Indian coals.

Keywords: clean coal technology, CO₂ gasification, activation energy, underground coal gasification

Procedia PDF Downloads 171
11529 Influence of Structured Capillary-Porous Coatings on Cryogenic Quenching Efficiency

Authors: Irina P. Starodubtseva, Aleksandr N. Pavlenko

Abstract:

Quenching is a term generally accepted for the process of rapid cooling of a solid that is overheated above the thermodynamic limit of the liquid superheat. The main objective of many previous studies on quenching is to find a way to reduce the total time of the transient process. Computational experiments were performed to simulate quenching by a falling liquid nitrogen film of an extremely overheated vertical copper plate with a structured capillary-porous coating. The coating was produced by directed plasma spraying. Due to the complexities in physical pattern of quenching from chaotic processes to phase transition, the mechanism of heat transfer during quenching is still not sufficiently understood. To our best knowledge, no information exists on when and how the first stable liquid-solid contact occurs and how the local contact area begins to expand. Here we have more models and hypotheses than authentically established facts. The peculiarities of the quench front dynamics and heat transfer in the transient process are studied. The created numerical model determines the quench front velocity and the temperature fields in the heater, varying in space and time. The dynamic pattern of the running quench front obtained numerically satisfactorily correlates with the pattern observed in experiments. Capillary-porous coatings with straight and reverse orientation of crests are investigated. The results show that the cooling rate is influenced by thermal properties of the coating as well as the structure and geometry of the protrusions. The presence of capillary-porous coating significantly affects the dynamics of quenching and reduces the total quenching time more than threefold. This effect is due to the fact that the initialization of a quench front on a plate with a capillary-porous coating occurs at a temperature significantly higher than the thermodynamic limit of the liquid superheat, when a stable solid-liquid contact is thermodynamically impossible. Waves present on the liquid-vapor interface and protrusions on the complex micro-structured surface cause destabilization of the vapor film and the appearance of local liquid-solid micro-contacts even though the average integral surface temperature is much higher than the liquid superheat limit. The reliability of the results is confirmed by direct comparison with experimental data on the quench front velocity, the quench front geometry, and the surface temperature change over time. Knowledge of the quench front velocity and total time of transition process is required for solving practically important problems of nuclear reactors safety.

Keywords: capillary-porous coating, heat transfer, Leidenfrost phenomenon, numerical simulation, quenching

Procedia PDF Downloads 130
11528 Detonalization of Punjabi: Towards a Loss of Linguistic Indigeneity

Authors: Sukhvinder Singh

Abstract:

Punjabi language is related to the languages of New Indo-Aryan group that, in turn, is related to the branch of Indo-European language family. Punjabi language covers the areas of Western part (that is in Pakistan) and Eastern part (the Punjab state, Haryana, Delhi Himachal and J&K) and abroad (particularly Canada, USA, U.K. and Arab Emirates), where it is spoken widely. Besides India and Pakistan, Punjabi is the third language spoken in Canada after English, French having more than one hundred millions speakers worldwide. It is the fourth language spoken in Canada after English, French, and Chinese. It is also being taught as second language in most of the community school of British Columbia. The total number of Punjabi speakers is more than one hundred millions including India, Pakistan and abroad. Punjabi has a long tradition of linguistic tradition. A large number of scholars have studied Punjabi at different linguistic levels. Various studies are devoted to its special phonological characteristics, especially the tone, which has now started disappearing in favour of aspiration, a rare example of a language change in progress in its reversal direction. This process of language change in progress in reversal is dealt with in this paper a change towards a loss of linguistic indigeneity. The tone being a distinctive linguistic feature of Punjabi language is getting lost due to the increasing influence of Hindi and English particularly in the speech Urban Punjabi and Punjabi settled abroad. In this paper, an attempt has been made to discuss the sociolinguistics and sociology of Punjabi language and Punjab to trace the initiation and progression of this change towards a loss of Linguistic Indigeneity.

Keywords: language change in reversal, reaspiration, detonalization, new Indo-Aryan group

Procedia PDF Downloads 172
11527 Flame Propagation Velocity of Selected Gas Mixtures Depending on the Temperature

Authors: Kaczmarzyk Piotr, Anna Dziechciarz, Wojciech Klapsa

Abstract:

The purpose of this paper is demonstration the test results of research influence of temperature on the velocity of flame propagation using gas and air mixtures for selected gas mixtures. The research was conducted on the test apparatus in the form of duct 2 m long. The test apparatus was funded from the project: “Development of methods to neutralize threats of explosion for determined tanks contained technical gases, including alternative sources of supply in the fire environment, taking into account needs of rescuers” number: DOB-BIO6/02/50/2014. The Project is funded by The National Centre for Research and Development. This paper presents the results of measurement of rate of pressure rise and rate in flame propagation, using test apparatus for mixtures air and methane or air and propane. This paper presents the results performed using the test apparatus in the form of duct measuring the rate of flame and overpressure wave. Studies were performed using three gas mixtures with different concentrations: Methane (3% to 8% vol), Propane (3% to 6% vol). As regard to the above concentrations, tests were carried out at temperatures 20 and 30 ̊C. The gas mixture was supplied to the inside of the duct by the partial pressure molecules. Data acquisition was made using 5 dynamic pressure transducers and 5 ionization probes, arranged along of the duct. Temperature conditions changes were performed using heater which was mounted on the duct’s bottom. During the tests, following parameters were recorded: maximum explosion pressure, maximum pressure recorded by sensors and voltage recorded by ionization probes. Performed tests, for flammable gas and air mixtures, indicate that temperature changes have an influence on overpressure velocity. It should be noted, that temperature changes do not have a major impact on the flame front velocity. In the case of propane and air mixtures (temperature 30 ̊C) was observed DDT (Deflagration to Detonation) phenomena. The velocity increased from 2 to 20 m/s. This kind of explosion could turn into a detonation, but the duct length is too short (2 m).

Keywords: flame propagation, flame propagation velocity, explosion, propane, methane

Procedia PDF Downloads 226
11526 Testing the Change in Correlation Structure across Markets: High-Dimensional Data

Authors: Malay Bhattacharyya, Saparya Suresh

Abstract:

The Correlation Structure associated with a portfolio is subjected to vary across time. Studying the structural breaks in the time-dependent Correlation matrix associated with a collection had been a subject of interest for a better understanding of the market movements, portfolio selection, etc. The current paper proposes a methodology for testing the change in the time-dependent correlation structure of a portfolio in the high dimensional data using the techniques of generalized inverse, singular valued decomposition and multivariate distribution theory which has not been addressed so far. The asymptotic properties of the proposed test are derived. Also, the performance and the validity of the method is tested on a real data set. The proposed test performs well for detecting the change in the dependence of global markets in the context of high dimensional data.

Keywords: correlation structure, high dimensional data, multivariate distribution theory, singular valued decomposition

Procedia PDF Downloads 125
11525 Assessment of Metal and Nano-Metal Doped TiO₂ Nanoparticles for Photocatalytic Degradation of Methylene Blue in Almeda Textile Industry, Tigray, Ethiopia

Authors: Mulugeta Gurum Gerechal

Abstract:

Nowadays, the photocatalytic mechanism of water purification using nanoparticles has gained wider acceptance. For this purpose, the Crystal form of N- TiO₂ and Ag-TiO₂ was prepared from TiCl₄, Urea, NH₄OH and AgNO₃ by sol-gel method and simple solid phase reaction followed by calcination at a temperature of 400 °C for 4h at each. The synthesized photocatalysts were characterized using XRD, SEM and UV-visible diffuse reflectance spectra. In the experiment, it was found that the absorption edge of N-TiO₂ was a well efficient shift to visible light as compared to Ag-TiO₂. The XRD diffraction makes the particle size of N-TiO₂ smaller than Ag-TiO₂. The effect of catalyst loading and the effect of temperature on the photocatalytic efficiency of the prepared samples was tested using methylene blue as a target pollutant. The photocatalytic degradation efficiency of the catalysts for methylene blue was increased from 57.05 to 96.02% under solar radiation as the amount of the catalyst increased from 0.15 to 0.45 gram for N-TiO₂. Similarly, photocatalytic degradation of methylene blue was increased from 40.32 to 81.21% as the amount of Ag-TiO₂ increased from 0.05g to 0.1g. In addition, the photocatalytic degradation efficiency of the catalysts for the removal of methylene blue was increased from 58.00 to 98.00 and 47.00 to 81.21 % under solar radiation as the calcination temperature of the catalyst increased from 300 to 500 for N-TiO₂ for Ag-TiO₂ 300 to 4000C. However, a further increase in catalyst loading and calcination temperature was found to decrease the degradation efficiency.

Keywords: photocatalysis, degradation, nanoparticles, catalyst loading, calcination and methylene blue

Procedia PDF Downloads 63
11524 [Keynote Talk]: Machining Parameters Optimization with Genetic Algorithm

Authors: Dejan Tanikić, Miodrag Manić, Jelena Đoković, Saša Kalinović

Abstract:

This paper deals with the determination of the optimum machining parameters, according to the measured and modelled data of the cutting temperature and surface roughness, during the turning of the AISI 4140 steel. The high cutting temperatures are unwanted occurences in the metal cutting process. They impact negatively on the quality of the machined part. The machining experiments were performed using different cutting regimes (cutting speed, feed rate and depth of cut), with different values of the workpiece hardness, which causes different values of the measured cutting temperature as well as the measured surface roughness. The temperature and surface roughness data were modelled after that using Response Surface Methodology (RSM). The obtained RSM models are used in the process of optimization of the cutting regimes using the Genetic Algorithms (GA) tool, which enables the metal cutting process in the optimum conditions.

Keywords: genetic algorithms, machining parameters, response surface methodology, turning process

Procedia PDF Downloads 188
11523 Climate Change Adaptation Interventions in Agriculture and Sustainable Development through South-South Cooperation in Sub-Saharan Africa

Authors: Nuhu Mohammed Gali, Kenichi Matsui

Abstract:

Climate change poses a significant threat to agriculture and food security in Africa. The UNFCC recognized the need to address climate change adaptation in the broader context of sustainable development. African countries have initiated a governance system for adapting and responding to climate change in their Nationally Determined Contributions (NDCs). Despite the implementation limitations, Africa’s adaptation initiatives highlight the need to strengthen and expand adaptation responses. This paper looks at the extent to which South-South cooperation facilitates the implementation of adaptation actions between nations for agriculture and sustainable development. We conducted a literature review and content analysis of reports prepared by international organizations, reflecting the diversity of adaptation activities taking place in Sub-Saharan Africa. Our analysis of the connection between adaptation and nationally determined contributions (NDCs) showed that climate actions are mainstreamed into sustainable development. The NDCs in many countries on climate change adaptation action for agriculture aimed to strengthen the resilience of the poor. We found that climate-smart agriculture is the core of many countries target to end hunger. We revealed that South-South Cooperation, in terms of capacity, technology, and financial support, can help countries to achieve their climate action priorities and the Sustainable Development Goals (SDGs). We found that inadequate policy and regulatory frameworks between countries, differences in development priorities and strategies, poor communication, inadequate coordination, and the lack of local engagement and advocacy are some key barriers to South-South Cooperation in Africa. We recommend a multi-dimensional partnership, provisionoffinancialresources, systemic approach for coordination and engagement to promote and achieve the potential of SSC in Africa.

Keywords: climate change, adaptation, food security, sustainable development goals

Procedia PDF Downloads 129
11522 Analysis of Heat Transfer and Energy Saving Characteristics for Bobsleigh/Skeleton Ice Track

Authors: Zichu Liu, Zhenhua Quan, Xin Liu, Yaohua Zhao

Abstract:

Enhancing the heat transfer characteristics of the bobsleigh/skeleton ice track and reducing the energy consumption of the bobsleigh/skeleton ice track plays an important role in energy saving of the refrigeration systems. In this study, a track ice-making test rig was constructed to verify the accuracy of the established ice track heat transfer model. The different meteorological conditions on the variations in the heat transfer characteristics of the ice surface, ice temperature, and evaporation temperature with or without Terrain Weather Protection System (TWPS) were investigated, and the influence of the TWPS with and without low emissivity materials on these indexes was also compared. In addition, the influence of different pipe spacing and diameters of refrigeration pipe on the heat transfer resistance of the track is also analyzed. The results showed that compared with the ice track without sunshade facilities, TWPS could reduce the heat transfer between ice surface and air by 17.6% in the transition season, and TWPS with low emissivity material could reduce the heat transfer by 37%. The thermal resistance of the ice track decreased by 8.9×10⁻⁴ m²·°C/W, and the refrigerant evaporation temperature increased by 0.25 °C when the cooling pipes spacing decreased by every 10 mm. The thermal resistance decreased by 1.46×10⁻³ m²·°C/W, and the refrigerant evaporation temperature increased by 0.3 °C when the pipe diameter increased by one nominal diameter.

Keywords: bobsleigh/skeleton ice track, calculation model, heat transfer characteristics, refrigeration

Procedia PDF Downloads 110
11521 Elaboration and Characterization of CdxZn1-XS Thin Films Deposed by Chemical Bath Deposition

Authors: Zellagui Rahima, Chaumont Denis, Boughelout Abderrahman, Adnane Mohamed

Abstract:

Thin films of CdxZn1-xS were deposed by chemical bath deposition on glass substrates for photovoltaic applications. The thin films CdZnS were synthesized by chemical bath (CBD) with different deposition protocols for optimized the parameter of deposition as the temperature, time of deposition, concentrations of ion and pH. Surface morphology, optical and chemical composition properties of thin film CdZnS were investigated by SEM, EDAX, spectrophotometer. The transmittance is 80% in visible region 300 nm – 1000 nm; it has been observed in that films the grain size is between 50nm and 100nm measured by SEM image and we also note that the shape of particle is changing with the change in concentration. This result favors of application these films in solar cells; the chemical analysis with EDAX gives information about the presence of Cd, Zn and S elements and investigates the stoichiometry.

Keywords: thin film, solar cells, transmition, cdzns

Procedia PDF Downloads 262
11520 Urban Change Detection and Pattern Analysis Using Satellite Data

Authors: Shivani Jha, Klaus Baier, Rafiq Azzam, Ramakar Jha

Abstract:

In India, generally people migrate from rural area to the urban area for better infra-structural facilities, high standard of living, good job opportunities and advanced transport/communication availability. In fact, unplanned urban development due to migration of people causes seriou damage to the land use, water pollution and available water resources. In the present work, an attempt has been made to use satellite data of different years for urban change detection of Chennai metropolitan city along with pattern analysis to generate future scenario of urban development using buffer zoning in GIS environment. In the analysis, SRTM (30m) elevation data and IRS-1C satellite data for the years 1990, 2000, and 2014, are used. The flow accumulation, aspect, flow direction and slope maps developed using SRTM 30 m data are very useful for finding suitable urban locations for industrial setup and urban settlements. Normalized difference vegetation index (NDVI) and Principal Component Analysis (PCA) have been used in ERDAS imagine software for change detection in land use of Chennai metropolitan city. It has been observed that the urban area has increased exponentially in Chennai metropolitan city with significant decrease in agriculture and barren lands. However, the water bodies located in the study regions are protected and being used as freshwater for drinking purposes. Using buffer zone analysis in GIS environment, it has been observed that the development has taken place in south west direction significantly and will do so in future.

Keywords: urban change, satellite data, the Chennai metropolis, change detection

Procedia PDF Downloads 408
11519 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating

Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok

Abstract:

Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.

Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis

Procedia PDF Downloads 342
11518 Normal Spectral Emissivity of Roughened Aluminum Alloy AL 6061 Surfaces at High Temperature

Authors: Sumeet Kumar, C. V. Krishnamurthy, Krishnan Balasubramaniam

Abstract:

Normal spectral emissivity of Al 6061 alloys with different surface finishes was experimentally measured at 833°K. Four different samples were prepared by polishing the surfaces of the alloy by 80, 220, 600 grit sizes of SiC abrasive papers and diamond paste. The samples were heated in air for 6 h at 833°K, and the emissivity was measured during the process from pyrometers operating at wavelengths of 3.9, 5.14 and 7.8 μm. The results indicated that the emissivity was increasing with heating time and the rate of increase was rapid during the initial stage of heating in comparison with the later stage. This appears to be because of the parabolic rate law followed by the process of oxidation. Further, it is found that the increase in emissivity with heating time was higher for rough surfaces than that for polished surfaces. Both the results were analyzed at all the three wavelengths, and qualitatively similar results were obtained for all of them. In this way emissivity of the alloy can be increased by roughening the surfaces and heating it at high temperature until the surfaces are oxidized.

Keywords: aluminum alloy, high temperature, normal spectral emissivity, surface roughness

Procedia PDF Downloads 227
11517 The Effect of Material Properties and Volumetric Changes in Phase Transformation to the Final Residual Stress of Welding Process

Authors: Djarot B. Darmadi

Abstract:

The wider growing Finite Element Method (FEM) application is caused by its benefits of cost saving and environment friendly. Also, by using FEM a deep understanding of certain phenomenon can be achieved. This paper observed the role of material properties and volumetric change when Solid State Phase Transformation (SSPT) takes place in residual stress formation due to a welding process of ferritic steels through coupled Thermo-Metallurgy-Mechanical (TMM) analysis. The correctness of FEM residual stress prediction was validated by experiment. From parametric study of the FEM model, it can be concluded that the material properties change tend to over-predicts residual stress in the weld center whilst volumetric change tend to underestimates it. The best final result is the compromise of both by incorporates them in the model which has a better result compared to a model without SSPT.

Keywords: residual stress, ferritic steels, SSPT, coupled-TMM

Procedia PDF Downloads 270
11516 Climate Risk Perception and Trust – Presence of a Social Trap for Willingness to Act in Favour of Climate Mitigation and Support for Renewables: A Cross-sectional Study of Four European Countries

Authors: Lana Singleton

Abstract:

Achieving a sufficient global solution to climate change seems elusive through disappointing climate agreements and lack of cooperation. However, is this reluctance of coordination deep rooted on a more individual, societal level within countries due to a fundamental lack of social and institutional trust? The risks of climate change are illustrious and widely accepted, yet responses on an individual level are also largely inadequate. This research looks to further investigate types of trust, risk perception of climate change, and their interaction to build a greater understanding of whether a social trap (Rothstein, 2005) – where an absence of trust can overwhelm an individuals’ risk perception and result in minimal action despite knowing the dangers of no action – exists and where it is more prevalent. Presence of the social trap will be analysed for willingness to act in favour of climate change mitigation as well as attitude (acceptance) of different types of renewable energy forms. Using probit models with cross-sectional survey data on four developed European countries (UK, France, Germany, and Norway), we find evidence of the social trap in the aggregated data model, which highlights the importance of social trust regarding willingness to act in favour of climate mitigation as there is a high probability of action regardless of risk perception of climate change when social trust is high. In contrast, the same is not true for renewables, as interactions were mainly insignificant, although there were interesting findings involving institutional trust, gender, and country specific results for particular renewables.

Keywords: climate risk, renewables, risk perception, social trap, trust, willingness to act

Procedia PDF Downloads 95
11515 The Role of Climate-Smart Agriculture in the Contribution of Small-Scale Farming towards Ensuring Food Security in South Africa

Authors: Victor O. Abegunde, Melusi Sibanda

Abstract:

There is need for a great deal of attention on small-scale agriculture for livelihood and food security because of the expanding global population. Small-scale agriculture has been identified as a major driving force of agricultural and rural development. However, the high dependence of the sector on natural and climatic resources has made small-scale farmers highly vulnerable to the adverse impact of climatic change thereby necessitating the need for embracing practices or concepts that will help absorb shocks from changes in climatic condition. This study examines the strategic position of small-scale farming in South African agriculture and in ensuring food security in the country, the vulnerability of small-scale agriculture to climate change and the potential of the concept of climate-smart agriculture to tackle the challenge of climate change. The study carried out a systematic review of peer-reviewed literature touching small-scale agriculture, climate change, food security and climate-smart agriculture, employing the realist review method. Findings revealed that increased productivity in the small-scale agricultural sector has a great potential of improving the food security of households in South Africa and reducing dependence on food purchase in a context of high food price inflation. Findings, however, also revealed that climate change affects small-scale subsistence farmers in terms of productivity, food security and family income, categorizing the impact on smallholder livelihoods into three major groups; biological processes, environmental and physical processes and impact on health. Analysis of the literature consistently showed that climate-smart agriculture integrates the benefits of adaptation and resilience to climate change, mitigation, and food security. As a result, farming households adopting climate-smart agriculture will be better off than their counterparts who do not. This study concludes that climate-smart agriculture could be a very good bridge linking small-scale agricultural sector and agricultural productivity and development which could bring about the much needed food security.

Keywords: climate change, climate-smart agriculture, food security, small-scale

Procedia PDF Downloads 241
11514 The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes

Authors: Adilah Shariff, Nur Syairah Mohamad Aziz, Norsyahidah Md Saleh, Nur Syuhada Izzati Ruzali

Abstract:

The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 °C for 2 hours at 10 °C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 °C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 °C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 °C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 °C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.

Keywords: biochar, biomass, coconut wastes, slow pyrolysis

Procedia PDF Downloads 213
11513 The Key Role of Yttrium Oxide on Devitrification Resilience of Barium Gallo-germanate Glasses: Physicochemical Properties and Crystallization Study

Authors: Samar Aoujia, Théo Guérineaub, Rayan Zaitera, Evelyne Fargina, Younès Messaddeqb, Thierry Cardinala

Abstract:

Two barium gallo-germanate glass series were elaborated to investigate the effect of the yttrium introduction on the glass physicochemical properties and crystallization behavior. One to twenty mol% of YO3/2 were either added into the glass matrix or substituted for gallium oxide. The glass structure was studied by Raman spectroscopy, and the thermal, optical, thermo-mechanical and physical properties are examined. The introduction of yttrium ions in both glass series increases the glass transition temperature, crystallization temperature, softening temperature, coefficient of linear thermal expansion and density. Through differential scanning calorimetry and X-ray diffraction analyses, it was found that competition occurs between the gallo-germanate zeolite-type phase and the yttrium-containing phase. From 13 mol% of YO3/2, the yttrium introduction impedes the formation of surface crystallization in these glasses.

Keywords: photonic, heavy-metal oxide, glass, crystallization

Procedia PDF Downloads 145
11512 Study of Operating Conditions Impact on Physicochemical and Functional Properties of Dairy Powder Produced by Spray-drying

Authors: Adeline Meriaux, Claire Gaiani, Jennifer Burgain, Frantz Fournier, Lionel Muniglia, Jérémy Petit

Abstract:

Spray-drying process is widely used for the production of dairy powders for food and pharmaceuticals industries. It involves the atomization of a liquid feed into fine droplets, which are subsequently dried through contact with a hot air flow. The resulting powders permit transportation cost reduction and shelf life increase but can also exhibit various interesting functionalities (flowability, solubility, protein modification or acid gelation), depending on operating conditions and milk composition. Indeed, particles porosity, surface composition, lactose crystallization, protein denaturation, protein association or crust formation may change. Links between spray-drying conditions and physicochemical and functional properties of powders were investigated by a design of experiment methodology and analyzed by principal component analysis. Quadratic models were developed, and multicriteria optimization was carried out by the use of genetic algorithm. At the time of abstract submission, verification spray-drying trials are ongoing. To perform experiments, milk from dairy farm was collected, skimmed, froze and spray-dried at different air pressure (between 1 and 3 bars) and outlet temperature (between 75 and 95 °C). Dry matter, minerals content and proteins content were determined by standard method. Solubility index, absorption index and hygroscopicity were determined by method found in literature. Particle size distribution were obtained by laser diffraction granulometry. Location of the powder color in the Cielab color space and water activity were characterized by a colorimeter and an aw-value meter, respectively. Flow properties were characterized with FT4 powder rheometer; in particular, compressibility and shearing test were performed. Air pressure and outlet temperature are key factors that directly impact the drying kinetics and powder characteristics during spray-drying process. It was shown that the air pressure affects the particle size distribution by impacting the size of droplet exiting the nozzle. Moreover, small particles lead to more cohesive powder and less saturated color of powders. Higher outlet temperature results in lower moisture level particles which are less sticky and can explain a spray-drying yield increase and the higher cohesiveness; it also leads to particle with low water activity because of the intense evaporation rate. However, it induces a high hygroscopicity, thus, powders tend to get wet rapidly if they are not well stored. On the other hand, high temperature provokes a decrease of native serum proteins, which is positively correlated to gelation properties (gel point and firmness). Partial denaturation of serum proteins can improve functional properties of powder. The control of air pressure and outlet temperature during the spray-drying process significantly affects the physicochemical and functional properties of powder. This study permitted to better understand the links between physicochemical and functional properties of powder to identify correlations between air pressure and outlet temperature. Therefore, mathematical models have been developed, and the use of genetic algorithm will allow the optimization of powder functionalities.

Keywords: dairy powders, spray-drying, powders functionalities, design of experiment

Procedia PDF Downloads 65
11511 Effect of Concrete Strength on the Bond Between Carbon Fiber Reinforced Polymer and Concrete in Hot Weather

Authors: Usama Mohamed Ahamed

Abstract:

This research deals with the bond behavior of carbon FRP composite wraps adhered/bonded to the surface of the concrete. Four concrete mixes were designed to achieve a concrete compressive strength of 18, 22.5,25 and 30 MP after 28 days of curing. The focus of the study is on bond degradation when the hybrid structure is exposed to hot weather conditions. Specimens were exposed to 50 0C temperature duration 6 months and other specimens were sustained in laboratory temperature ( 20-24) 0C. Upon removing the specimens from their conditioning environment, tension tests were performed in the machine using a specially manufactured concrete cube holder. A lightweight mortar layer is used to protect the bonded carbon FRP layer on the concrete surface. The results show that the higher the concrete's compressive, the higher the bond strength. The high temperature decreases the bond strength between concrete and carbon fiber-reinforced polymer. The use of a protection layer is essential for concrete exposed to hot weather.

Keywords: concrete, bond, hot weather and carbon fiber, carbon fiber reinforced polymers

Procedia PDF Downloads 107
11510 Prevalence of Parasitic Diseases in Different Fishes of North-West Himalayan Streams of India

Authors: Feroz A. Shah, M. H. Balkhi

Abstract:

The study was aimed at to record the distribution and prevalence of various metazoan parasites of fish from hill stream/coldwater fishes of various water bodies of northwest Himalayan region of India. Snow trout (Schizoth oracids) from eutrophic lakes and fresh water streams were collected from January to December 2012, to study the impact of environmental factors on the dynamics and distribution of parasitic infection. The prevalence of helminth parasites was correlated with available physico-chemical parameters including water temperature, pH and dissolved oxygen (DO). The most abundant parasitic infection recorded during this study was Adenoscolex sp. (Cestode parasite) which showed positive correlation with pH (significant p≤0.05) negative correlation with temperature. The Bothriocephalus was having positive correlation with water temperature while as negative correlation was observed with pH and DO. The correlation between Diplozoon sp. and Clinostomum sp. with the physiochemical parameters were non-significant.

Keywords: hill stream fishes, parasites, Western Himalayas, prevelance

Procedia PDF Downloads 392
11509 Preliminary Study on Using of Thermal Energy from Effluent Water for the SBR Process of RO

Authors: Gyeong-Sung Kim, In-soo Ahn, Yong Cho

Abstract:

SBR (Sequencing Batch Reactor) process is usually applied to membrane water treatment plants to treat its concentrated wastewater. The role of SBR process is to remove COD (Chemical Oxygen Demand) and NH3 from wastewater before discharging it outside of the water treatment plant using microorganism. Microorganism’s nitrification capability is influenced by water temperature because the nitrification rate of the concentrated wastewater becomes ‘zero’ as water temperature approach 0℃. Heating system is necessary to operate SBR in winter season even though the operating cost increase sharply. The operating cost of SBR at ‘D’ RO water treatment plant in Korea was 51.8 times higher in winter (October to March) compare to summer (April to September) season in 2014. Otherwise the effluent water temperature maintained around 8℃ constantly in winter. This study focuses on application heat pump system to recover the thermal energy from the effluent water of ‘D’ RO plant so that the operating cost will be reduced.

Keywords: water treatment, water thermal energy, energy saving, RO, SBR

Procedia PDF Downloads 516
11508 Optimization of Supercritical CO2 Power Cycle for Waste Heat Recovery from Gas Turbine with Respect to Cooling Condition

Authors: Young Min Kim, Jeong Lak Sohn, Eui Soo Yoon

Abstract:

This study describes the optimization of supercritical carbon dioxide (S-CO2) power cycle for recovering waste heat from a gas turbine. An S-CO2 cycle that recovers heat from small industrial and aeroderivative gas turbines can outperform a steam-bottoming cycle despite its simplicity and compactness. In using S-CO2 power cycles for waste heat recovery, a split cycle was studied to maximize the net output power by incorporating the utilization efficiency of the waste heat (lowering the temperature of the exhaust gas through the heater) along with the thermal efficiency of the cycle (minimizing the temperature difference for the heat transfer, exergy loss). The cooling condition of the S-CO2 WHR system has a great impact on the performance and the optimum low pressure of the system. Furthermore, the optimum high pressure of the S-CO2 WHR systems for the maximum power from the given heat sources is dependent on the temperature of the waste heat source.

Keywords: exergy loss, gas turbine, optimization, supercritical CO2 power cycle, split cycle, waste heat recovery

Procedia PDF Downloads 349
11507 Si Doped HfO₂ Anti-Ferroelectric Thin Films for Energy Storage and Solid State Cooling Applications

Authors: Faizan Ali, Dayu Zhou, Xiaohua Liu, Tony Schenk, Johannes Muller, Uwe Schroeder

Abstract:

Recently, the ferroelectricity (FE) and anti-ferroelectricity (AFE) introduced in so-called 'high-k dielectric' HfO₂ material incorporated with various dopants (Si, Gd, Y, Sr, Gd, Al, and La, etc.), HfO₂-ZrO₂ solid-solution, Al or Si-doped Hf₀.₅Zr₀.₅O₂ and even undoped HfO₂ thin films. The origin of FE property was attributed to the formation of a non-centrosymmetric orthorhombic (o) phase of space group Pbc2₁. To the author’s best knowledge, AFE property was observed only in HfO₂ doped with a certain amount of Si, Al, HfₓZr₁₋ₓO₂ (0 ≤ x < 0.5), and in Si or Al-doped Hf₀.₅Zr₀.₅O₂. The origin of the anti-ferroelectric behavior is an electric field induced phase transition between the non-polar tetragonal (t) and the polar ferroelectric orthorhombic (o) phase. Compared with the significant amount of studies for the FE properties in the context of non-volatile memories, AFE properties of HfO₂-based and HfₓZr₁₋ₓO₂ (HZO) thin films have just received attention recently for energy-related applications such as electrocaloric cooling, pyroelectric energy harvesting, and electrostatic energy storage. In this work, energy storage and solid state cooling properties of Si-doped HfO₂ AFE thin films are investigated. Owing to the high field-induced polarization and slim double hysteresis, an extremely large Energy storage density (ESD) value of 61.2 J cm⁻³ is achieved at 4.5 MV cm⁻¹ with high efficiency of ~65%. In addition, the ESD and efficiency exhibit robust thermal stability in 210-400 K temperature range and excellent endurance up to 10⁹ times of charge/discharge cycling at a very high electric field of 4.0 MV cm⁻¹. Similarly, for solid-state cooling, the maximum adiabatic temperature change (

Keywords: thin films, energy storage, endurance, solid state cooling, anti-ferroelectric

Procedia PDF Downloads 128
11506 Agriculture and Global Economy vis-à-vis the Climate Change

Authors: Assaad Ghazouani, Ati Abdessatar

Abstract:

In the world, agriculture maintains a social and economic importance in the national economy. Its importance is distinguished by its ripple effects not only downstream but also upstream vis-à-vis the non-agricultural sector. However, the situation is relatively fragile because of weather conditions. In this work, we propose a model to highlight the impacts of climate change (CC) on economic growth in the world where agriculture is considered as a strategic sector. The CC is supposed to directly and indirectly affect economic growth by reducing the performance of the agricultural sector. The model is tested for Tunisia. The results validate the hypothesis that the potential economic damage of the CC is important. Indeed, an increase in CO2 concentration (temperatures and disruption of rainfall patterns) will have an impact on global economic growth particularly by reducing the performance of the agricultural sector. Analysis from a vector error correction model also highlights the magnitude of climate impact on the performance of the agricultural sector and its repercussions on economic growth

Keywords: Climate Change, Agriculture, Economic Growth, World, VECM, Cointegration.

Procedia PDF Downloads 619
11505 Effect of Evaporator Temperature on the Performance of Water Desalination/Refrigeration Adsorption System Using AQSOA-ZO2

Authors: Peter G. Youssef, Saad M. Mahmoud, Raya K. AL-Dadah

Abstract:

Many water desalination technologies have been developed but in general they are energy intensive and have high cost and adverse environmental impact. Recently, adsorption technology for water desalination has been investigated showing the potential of using low temperature waste heat (50-85oC) thus reducing energy consumption and CO2 emissions. This work mathematically compares the performance of an adsorption cycle that produces two useful effects namely, fresh water and cooling using two different adsorbents, silica-gel and an advanced zeolite material AQSOA-ZO2, produced by Mitsubishi plastics. It was found that at low chilled water temperatures, typically below 20oC, the AQSOA-Z02 is more efficient than silica-gel as the cycle can produce 5.8 m3 of fresh water per day and 50.1 Rton of cooling per tonne of AQSOA-ZO2. Above 20oC silica-gel is still better as the cycle production reaches 8.4 m3 per day and 62.4 Rton per tonne of silica-gel. These results show the potential of using the AQSOA-Z02 at low chilled water temperature for water desalination and cooling applications.

Keywords: adsorption, desalination, refrigeration, seawater

Procedia PDF Downloads 495
11504 Effects of Sintering Temperature on Microstructure and Mechanical Properties of Nanostructured Ni-17Cr Alloy

Authors: B. J. Babalola, M. B. Shongwe

Abstract:

Spark Plasma Sintering technique is a novel processing method that produces limited grain growth and highly dense variety of materials; alloys, superalloys, and carbides just to mention a few. However, initial particle size and spark plasma sintering parameters are factors which influence the grain growth and mechanical properties of sintered materials. Ni-Cr alloys are regarded as the most promising alloys for aerospace turbine blades, owing to the fact that they meet the basic requirements of desirable mechanical strength at high temperatures and good resistance to oxidation. The conventional method of producing this alloy often results in excessive grain growth and porosity levels that are detrimental to its mechanical properties. The effect of sintering temperature was evaluated on the microstructure and mechanical properties of the nanostructured Ni-17Cr alloy. Nickel and chromium powder were milled using high energy ball milling independently for 30 hours, milling speed of 400 revs/min and ball to powder ratio (BPR) of 10:1. The milled powders were mixed in the composition of Nickel having 83 wt % and chromium, 17 wt %. This was sintered at varied temperatures from 800°C, 900°C, 1000°C, 1100°C and 1200°C. The structural characteristics such as porosity, grain size, fracture surface and hardness were analyzed by scan electron microscopy and X-ray diffraction, Archimedes densitometry, micro-hardness tester. The corresponding results indicated an increase in the densification and hardness property of the alloy as the temperature increases. The residual porosity of the alloy reduces with respect to the sintering temperature and in contrast, the grain size was enhanced. The study of the mechanical properties, including hardness, densification shows that optimum properties were obtained for the sintering temperature of 1100°C. The advantages of high sinterability of Ni-17Cr alloy using milled powders and microstructural details were discussed.

Keywords: densification, grain growth, milling, nanostructured materials, sintering temperature

Procedia PDF Downloads 402
11503 Development of a Very High Sensitivity Magnetic Field Sensor Based on Planar Hall Effect

Authors: Arnab Roy, P. S. Anil Kumar

Abstract:

Hall bar magnetic field sensors based on planar hall effect were fabricated from permalloy (Ni¬80Fe20) thin films grown by pulsed laser ablation. As large as 400% planar Hall voltage change was observed for a magnetic field sweep within ±4 Oe, a value comparable with present day TMR sensors at room temperature. A very large planar Hall sensitivity of 1200 Ω/T was measured close to switching fields, which was not obtained so far apart from 2DEG Hall sensors. In summary, a highly sensitive low magnetic field sensor has been constructed which has the added advantage of simple architecture, good signal to noise ratio and robustness.

Keywords: planar hall effect, permalloy, NiFe, pulsed laser ablation, low magnetic field sensor, high sensitivity magnetic field sensor

Procedia PDF Downloads 515
11502 Assessment of Land Surface Temperature Using Satellite Remote Sensing

Authors: R. Vidhya, M. Navamuniyammal M. Sivakumar, S. Reeta

Abstract:

The unplanned urbanization affects the environment due to pollution, conditions of the atmosphere, decreased vegetation and the pervious and impervious soil surface. Considered to be a cumulative effect of all these impacts is the Urban Heat Island. In this paper, the urban heat island effect is studied for the Chennai city, TamilNadu, South India using satellite remote sensing data. LANDSAT 8 OLI and TIRS DATA acquired on 9th September 2014 were used to Land Surface Temperature (LST) map, vegetation fraction map, Impervious surface fraction, Normalized Difference Water Index (NDWI), Normalized Difference Building Index (NDBI) and Normalized Difference Vegetation Index (NDVI) map. The relationship among LST, Vegetation fraction, NDBI, NDWI, and NDVI was calculated. The Chennai city’s Urban Heat Island effect is significant, and the results indicate LST has strong negative correlation with the vegetation present and positive correlation with NDBI. The vegetation is the main factor to control urban heat island effect issues in urban area like Chennai City. This study will help in developing measures to land use planning to reduce the heat effects in urban area based on remote sensing derivatives.

Keywords: land surface temperature, brightness temperature, emissivity, vegetation index

Procedia PDF Downloads 274
11501 The Role of Emotion in Attention Allocation

Authors: Michaela Porubanova

Abstract:

In this exploratory study to examine the effects of emotional significance on change detection using the flicker paradigm, three different categories of scenes were randomly presented (neutral, positive and negative) in three different blocks. We hypothesized that because of the different effects on attention, performance in change detection tasks differs for scenes with different effective values. We found the greatest accuracy of change detection was for changes occurring in positive and negative scenes (compared with neutral scenes). Secondly and most importantly, changes in negative scenes (and also positive scenes, though not with statistical significance) were detected faster than changes in neutral scenes. Interestingly, women were less accurate than men in detecting changes in emotionally significant scenes (both negative and positive), i.e., women detected fewer changes in emotional scenes in the time limit of 40s. But on the other hand, women were quicker to detect changes in positive and negative images than men. The study makes important contributions to the area of the role of emotions on information processing. The role of emotion in attention will be discussed.

Keywords: attention, emotion, flicker task, IAPS

Procedia PDF Downloads 354