Search results for: particle emission
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2979

Search results for: particle emission

1419 Leveraging Laser Cladding Technology for Eco-Friendly Solutions and Sustainability in Equipment Refurbishment

Authors: Rakan A. Ahmed, Raja S. Khan, Mohammed M. Qahtani

Abstract:

This paper explores the transformative impact of laser cladding technology on the circular economy, emphasizing its role in reducing environmental impact compared to traditional welding methods. Laser cladding, an innovative manufacturing process, optimizes resource efficiency and sustainability by significantly decreasing power consumption and minimizing material waste. The study explores how laser cladding operates within the framework of the circular economy, promoting energy efficiency, waste reduction, and emissions control. Through a comparative analysis of energy and material consumption between laser cladding and conventional welding methods, the paper highlights the significant strides in environmental conservation and resource optimization made possible by laser cladding. The findings highlight the potential for this technology to revolutionize industrial practices and propel a more sustainable and eco-friendly manufacturing landscape.

Keywords: laser cladding, circular economy, carbon emission, energy

Procedia PDF Downloads 61
1418 Wavelet Based Signal Processing for Fault Location in Airplane Cable

Authors: Reza Rezaeipour Honarmandzad

Abstract:

Wavelet analysis is an exciting method for solving difficult problems in mathematics, physics, and engineering, with modern applications as diverse as wave propagation, data compression, signal processing, image processing, pattern recognition, etc. Wavelets allow complex information such as signals, images and patterns to be decomposed into elementary forms at different positions and scales and subsequently reconstructed with high precision. In this paper a wavelet-based signal processing algorithm for airplane cable fault location is proposed. An orthogonal discrete wavelet decomposition and reconstruction algorithm is used to eliminate the noise in the aircraft cable fault signal. The experiment result has shown that the character of emission pulse and reflect pulse used to test the aircraft cable fault point are reserved and the high-frequency noise are eliminated by means of the proposed algorithm in this paper.

Keywords: wavelet analysis, signal processing, orthogonal discrete wavelet, noise, aircraft cable fault signal

Procedia PDF Downloads 502
1417 Environmental Pollution and Health Risks of Residents Living near Ewekoro Cement Factory, Ewekoro, Nigeria

Authors: Michael Ajide Oyinloye

Abstract:

The natural environment is made up of air, water and soil. The release of emission of industrial waste into anyone of the components of the environment causes pollution. Industrial pollution significantly threatens the inherent right of people, to the enjoyment of a safe and secure environment. The aim of this paper is to assess the effect of environmental pollution and health risks of residents living near Ewekoro Cement factory. The research made use of IKONOS imagery for Geographical Information System (GIS) to buffer and extract buildings that are less than 1 km to the plant, within 1 km to 5 km and above 5 km to the factory. Also, a questionnaire was used to elicit information on the socio-economic factors, the effect of environmental pollution on residents and measures adopted to control industrial pollution on the residents. Findings show that most buildings that between less than 1 km and 1 km to 5 km to the factory have high health risk in the study area. The study recommended total relocation for the residents of the study area to reduce risk health problems.

Keywords: environmental pollution, health risk, GIS, satellite imagery, ewekoro

Procedia PDF Downloads 521
1416 Growth Mechanism and Sensing Behaviour of Sn Doped ZnO Nanoprisms Prepared by Thermal Evaporation Technique

Authors: Sudip Kumar Sinha, Saptarshi Ghosh

Abstract:

While there’s a perpetual buzz around zinc oxide (ZnO) superstructures for their unique optical features, the versatile material has been constantly utilized to manifest tailored electronic properties through rendition of distinct morphologies. And yet, the unorthodox approach of implementing the novel 1D nanostructures of ZnO (pristine or doped) for volatile sensing applications has ample scope to accommodate new unconventional morphologies. In the last two decades, solid-state sensors have attracted much curiosity for their relevance in identifying pollutant, toxic and other industrial gases. In particular gas sensors based on metal oxide semiconducting (wide Eg) nanomaterials have recently attracted intensive attention owing to their high sensitivity and fast response and recovery time. These materials when exposed to air, the atmospheric O2 dissociates and get absorb on the surface of the sensors by trapping the outermost shell electrons. Finally a depleted zone on the surface of the sensors is formed, that enhances the potential barrier height at grain boundary . Once a target gas is exposed to the sensor, the chemical interaction between the chemisorbed oxygen and the specific gas liberates the trapped electrons. Therefore altering the amount of adsorbate is a considerable approach to improve the sensitivity of any target gas/vapour molecule. Likewise, this study presents a spontaneous but self catalytic creation of Sn-doped ZnO hexagonal nanoprisms on Si (100) substrates through thermal evaporation-condensation method, and their subsequent deployment for volatile sensing. In particular, the sensors were utilized to detect molecules of ethanol, acetone and ammonia below their permissible exposure limits which returned sensitivities of around 85%, 80% and 50% respectively. The influence of Sn concentration on the growth, microstructural and optical properties of the nanoprisms along with its role in augmenting the sensing parameters has been detailed. The single-crystalline nanostructures have a typical diameter ranging from 300 to 500 nm and a length that extends up to few micrometers. HRTEM images confirmed the hexagonal crystallography for the nanoprisms, while SAED pattern asserted the single crystalline nature. The growth habit is along the low index <0001>directions. It has been seen that the growth mechanism of the as-deposited nanostructures are directly influenced by varying supersaturation ratio, fairly high substrate temperatures, and specified surface defects in certain crystallographic planes, all acting cooperatively decide the final product morphology. Room temperature photoluminescence (PL) spectra of this rod like structures exhibits a weak ultraviolet (UV) emission peak at around 380 nm and a broad green emission peak in the 505 nm regime. An estimate of the sensing parameters against dispensed target molecules highlighted the potential for the nanoprisms as an effective volatile sensing material. The Sn-doped ZnO nanostructures with unique prismatic morphology may find important applications in various chemical sensors as well as other potential nanodevices.

Keywords: gas sensor, HRTEM, photoluminescence, ultraviolet, zinc oxide

Procedia PDF Downloads 225
1415 A New Tool for Global Optimization Problems: Cuttlefish Algorithm

Authors: Adel Sabry Eesa, Adnan Mohsin Abdulazeez Brifcani, Zeynep Orman

Abstract:

This paper presents a new meta-heuristic bio-inspired optimization algorithm which is called Cuttlefish Algorithm (CFA). The algorithm mimics the mechanism of color changing behavior of the cuttlefish to solve numerical global optimization problems. The colors and patterns of the cuttlefish are produced by reflected light from three different layers of cells. The proposed algorithm considers mainly two processes: reflection and visibility. Reflection process simulates light reflection mechanism used by these layers, while visibility process simulates visibility of matching patterns of the cuttlefish. To show the effectiveness of the algorithm, it is tested with some other popular bio-inspired optimization algorithms such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO) and Bees Algorithm (BA) that have been previously proposed in the literature. Simulations and obtained results indicate that the proposed CFA is superior when compared with these algorithms.

Keywords: Cuttlefish Algorithm, bio-inspired algorithms, optimization, global optimization problems

Procedia PDF Downloads 547
1414 Corrosion Protection of Structural Steel by Surfactant Containing Reagents

Authors: D. Erdenechimeg, T. Bujinlkham, N. Erdenepurev

Abstract:

The anti-corrosion performance of fatty acid coated mild steel samples is studied. Samples of structural steel coated with collector reagents deposited from surfactant in ethanol solution and overcoated with an epoxy barrier paint. A quantitative corrosion rate was determined by linear polarization resistance method using biopotentiostat/galvanostat 400. Coating morphology was determined by scanning electronic microscopy. A test for hydrophobic surface of steel by surfactant was done. From the samples, the main component or high content iron was determined by chemical method and other metal contents were determined by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES) method. Prior to measuring the corrosion rate, mechanical and chemical treatments were performed to prepare the test specimens. Overcoating the metal samples with epoxy barrier paint after exposing them with surfactant the corrosion rate can be inhibited by 34-35 µm/year.

Keywords: corrosion, linear polarization resistance, coating, surfactant

Procedia PDF Downloads 87
1413 The Environmental Impact of Geothermal Energy and Opportunities for Its Utilization in Hungary

Authors: András Medve, Katalin Szabad, István Patkó

Abstract:

According to the International Energy Association the previous principles of the energy sector should be reassessed, in which renewable energy sources have a significant role. We might witness the exchange of roles of countries from importer to exporter, which look for the main resources of market needs. According to the World Energy Outlook 2013, the duration of high oil prices is exceptionally long in the history of the energy market. Forecasts also point at the expected great differences between the regional prices of gas and electric energy. The energy need of the world will grow by its third. two thirds of which will appear in China, India, and South-East Asia, while only 4 per cent of which will be related to OECD countries. Current trends also forecast the growth of the price of energy sources and the emission of glasshouse gases. As a reflection of these forecasts alternative energy sources will gain value, of which geothermic energy is one of the cheapest and most economical. Hungary possesses outstanding resources of geothermic energy. The aim of the study is to research the environmental effects of geothermic energy and the opportunities of its exploitation in Hungary, related to „Horizon 2020” project.

Keywords: sustainable energy, renewable energy, development of geothermic energy in Hungary

Procedia PDF Downloads 584
1412 Sand Production Modelled with Darcy Fluid Flow Using Discrete Element Method

Authors: M. N. Nwodo, Y. P. Cheng, N. H. Minh

Abstract:

In the process of recovering oil in weak sandstone formations, the strength of sandstones around the wellbore is weakened due to the increase of effective stress/load from the completion activities around the cavity. The weakened and de-bonded sandstone may be eroded away by the produced fluid, which is termed sand production. It is one of the major trending subjects in the petroleum industry because of its significant negative impacts, as well as some observed positive impacts. For efficient sand management therefore, there has been need for a reliable study tool to understand the mechanism of sanding. One method of studying sand production is the use of the widely recognized Discrete Element Method (DEM), Particle Flow Code (PFC3D) which represents sands as granular individual elements bonded together at contact points. However, there is limited knowledge of the particle-scale behavior of the weak sandstone, and the parameters that affect sanding. This paper aims to investigate the reliability of using PFC3D and a simple Darcy flow in understanding the sand production behavior of a weak sandstone. An isotropic tri-axial test on a weak oil sandstone sample was first simulated at a confining stress of 1MPa to calibrate and validate the parallel bond models of PFC3D using a 10m height and 10m diameter solid cylindrical model. The effect of the confining stress on the number of bonds failure was studied using this cylindrical model. With the calibrated data and sample material properties obtained from the tri-axial test, simulations without and with fluid flow were carried out to check on the effect of Darcy flow on bonds failure using the same model geometry. The fluid flow network comprised of every four particles connected with tetrahedral flow pipes with a central pore or flow domain. Parametric studies included the effects of confining stress, and fluid pressure; as well as validating flow rate – permeability relationship to verify Darcy’s fluid flow law. The effect of model size scaling on sanding was also investigated using 4m height, 2m diameter model. The parallel bond model successfully calibrated the sample’s strength of 4.4MPa, showing a sharp peak strength before strain-softening, similar to the behavior of real cemented sandstones. There seems to be an exponential increasing relationship for the bigger model, but a curvilinear shape for the smaller model. The presence of the Darcy flow induced tensile forces and increased the number of broken bonds. For the parametric studies, flow rate has a linear relationship with permeability at constant pressure head. The higher the fluid flow pressure, the higher the number of broken bonds/sanding. The DEM PFC3D is a promising tool to studying the micromechanical behavior of cemented sandstones.

Keywords: discrete element method, fluid flow, parametric study, sand production/bonds failure

Procedia PDF Downloads 305
1411 Implementation of Synthesis and Quality Control Procedures of ¹⁸F-Fluoromisonidazole Radiopharmaceutical

Authors: Natalia C. E. S. Nascimento, Mercia L. Oliveira, Fernando R. A. Lima, Leonardo T. C. do Nascimento, Marina B. Silveira, Brigida G. A. Schirmer, Andrea V. Ferreira, Carlos Malamut, Juliana B. da Silva

Abstract:

Tissue hypoxia is a common characteristic of solid tumors leading to decreased sensitivity to radiotherapy and chemotherapy. In the clinical context, tumor hypoxia assessment employing the positron emission tomography (PET) tracer ¹⁸F-fluoromisonidazole ([¹⁸F]FMISO) is helpful for physicians for planning and therapy adjusting. The aim of this work was to implement the synthesis of 18F-FMISO in a TRACERlab® MXFDG module and also to establish the quality control procedure. [¹⁸F]FMISO was synthesized at Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN/Brazil) using an automated synthesizer (TRACERlab® MXFDG, GE) adapted for the production of [¹⁸F]FMISO. The FMISO chemical standard was purchased from ABX. 18O- enriched water was acquired from Center of Molecular Research. Reagent kits containing eluent solution, acetonitrile, ethanol, 2.0 M HCl solution, buffer solution, water for injections and [¹⁸F]FMISO precursor (dissolved in 2 ml acetonitrile) were purchased from ABX. The [¹⁸F]FMISO samples were purified by Solid Phase Extraction method. The quality requirements of [¹⁸F]FMISO are established in the European Pharmacopeia. According to that reference, quality control of [¹⁸F]FMISO should include appearance, pH, radionuclidic identity and purity, radiochemical identity and purity, chemical purity, residual solvents, bacterial endotoxins, and sterility. The duration of the synthesis process was 53 min, with radiochemical yield of (37.00 ± 0.01) % and the specific activity was more than 70 GBq/µmol. The syntheses were reproducible and showed satisfactory results. In relation to the quality control analysis, the samples were clear and colorless at pH 6.0. The spectrum emission, measured by using a High-Purity Germanium Detector (HPGe), presented a single peak at 511 keV and the half-life, determined by the decay method in an activimeter, was (111.0 ± 0.5) min, indicating no presence of radioactive contaminants, besides the desirable radionuclide (¹⁸F). The samples showed concentration of tetrabutylammonium (TBA) < 50μg/mL, assessed by visual comparison to TBA standard applied in the same thin layer chromatographic plate. Radiochemical purity was determined by high performance liquid chromatography (HPLC) and the results were 100%. Regarding the residual solvents tested, ethanol and acetonitrile presented concentration lower than 10% and 0.04%, respectively. Healthy female mice were injected via lateral tail vein with [¹⁸F]FMISO, microPET imaging studies (15 min) were performed after 2 h post injection (p.i), and the biodistribution was analyzed in five-time points (30, 60, 90, 120 and 180 min) after injection. Subsequently, organs/tissues were assayed for radioactivity with a gamma counter. All parameters of quality control test were in agreement to quality criteria confirming that [¹⁸F]FMISO was suitable for use in non-clinical and clinical trials, following the legal requirements for the production of new radiopharmaceuticals in Brazil.

Keywords: automatic radiosynthesis, hypoxic tumors, pharmacopeia, positron emitters, quality requirements

Procedia PDF Downloads 179
1410 Nexus among Foreign Private Investment, CO2 Emissions, Energy Consumption and Sustainable Economic Growth

Authors: Aysha Zamir

Abstract:

This study examines to what extent foreign private investment (FPI) affects the clean industrial environment and sustainable economic growth through developed countries investment in China. Moreover, this study investiage an association among FPI, CO2 emission, energy consumption, and sustainable economic growth. This study uses random effects and generalized least squares (GLS) and panel VAR estimators for data analysis. The results indicate that the Chinese economy has a vastly positive influenced regarding the location and choice of emerging and developed countries’ investment in the domestic market. Furthermore, emerging and developed economies investment increases the contribution among domestic firms, environment sustainability toward the national economy. The further results show that foreign private investment and gross domestic investment have a positive impact on sustainable economic growth.

Keywords: clean industrial environment, energy consumption, CO2 emmission, foreign private investment, developed and emerging economies

Procedia PDF Downloads 110
1409 Improvement of Thermal Stability in Ethylene Methyl Acrylate Composites for Gasket Application

Authors: Pemika Ketsuwan, Pitt Supaphol, Manit Nithitanakul

Abstract:

A typical used of ethylene methyl acrylate (EMA) gasket is in the manufacture of optical lens, and often, they are deteriorated rapidly due to high temperature during the process. The objective of this project is to improve the thermal stability of the EMA copolymer gasket by preparing EMA with cellulose and silica composites. Hydroxy propyl methyl cellulose (HPMC) and Carboxy methyl cellulose (CMC) were used in preparing of EMA/cellulose composites and fumed silica (SiO2) was used in preparing EMA/silica composites with different amounts of filler (3, 5, 7, 10, 15 wt.%), using a twin screw extruder at 160 °C and the test specimens were prepared by the injection molding machine. The morphology and dispersion of fillers in the EMA matrix were investigated by field emission scanning electron microscopy (FESEM). The thermal stability of the composite was determined by thermal gravimetric analysis (TGA), and differential scanning calorimeter (DSC). Mechanical properties were evaluated by tensile testing. The developed composites were found to enhance thermal and mechanical properties when compared to that of the EMA copolymer alone.

Keywords: ethylene methyl acrylate, HPMC, Silica, Thermal stability

Procedia PDF Downloads 105
1408 Use of Cobalt Graphene in Place of Platnium in Catalytic Converter

Authors: V. Srinivasan, S. M. Sriram Nandan

Abstract:

Today in the modern world the most important problem faced by the mankind is increasing the pollution in a very high rate. It affects the ecosystem of the environment and also aids to increase the greenhouse effect. The exhaust gases from the automobile is the major cause of a pollution. Automobiles have increased to a large number which has increased the pollution of our world to an alarming rate. There are two methods of controlling the pollution namely, pre-pollution control method and post-pollution control method. This paper is based on controlling the emission by post-pollution control method. The ratio of surface area of nanoparticles to the volume of the nanoparticles is inversely proportional to the radius of the nanoparticles. So decreasing the radius, this ratio is leading resulting in an increased rate of reaction and thus the concentration of the pollution is decreased. To achieve this objective, use of cobalt-graphene element is proposed. The proposed method is mainly to decrease the cost of platinum as it is expensive. This has a longer life than the platinum-based catalysts.

Keywords: automobile emissions, catalytic converter, cobalt-graphene, replacement of platinum

Procedia PDF Downloads 375
1407 Cr³⁺/SiO₄⁴⁻ Codoped Hydroxyapatite Nanorods: Fabrication and Microstructure Analysis

Authors: Ammar Z. Alshemary, Zafer Evis

Abstract:

In this study, nanorods of Cr³⁺/SiO₄⁴⁻ codoped hydroxyapatite (Cr³⁺/SiO₄⁴⁻-HA) were synthesized successfully and rapidly through microwave irradiation technique, using (Ca(NO₃)₂•4H₂O), ((NH₄)₂HPO₄), (SiC₈H₂₀O₄) and (Cr(NO₃)₃.9H₂O) as source materials for Ca²⁺, PO₄³⁻, SiO₄⁴⁻ and Cr³⁺ ions, respectively. The impact of dopants on the phase formation and microstructure of the powders were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrum analysis (FT-IR) and Field emission electron microscopy (FESEM) techniques. XRD analysis showed that with an incorporation of Cr³⁺/SiO₄⁴⁻ ions into HA structure resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. FTIR spectroscopy revealed the existence of the different vibrational modes matching to phosphates and hydroxyl groups. The FESEM analysis showed a change in the crystal shape from spherical to rod shaped particles upon Cr³⁺ doping into the crystal structure. Acknowledgments: This study was supported by Karabük University (Project no. KBÜBAP-17-YD-144). The authors would like to thank for support.

Keywords: nano-hydroxyapatite, microwave, dopants, characterization, microstructure

Procedia PDF Downloads 208
1406 Climate Change and Tourism: A Scientometric Analysis Using Citespace

Authors: Yan Fang, Jie Yin, Bihu Wu

Abstract:

The interaction between climate change and tourism is one of the most promising research areas of recent decades. In this paper, a scientometric analysis of 976 academic publications between 1990 and 2015 related to climate change and tourism is presented in order to characterize the intellectual landscape by identifying and visualizing the evolution of the collaboration network, the co-citation network, and emerging trends of citation burst and keyword co-occurrence. The results show that the number of publications in this field has increased rapidly and it has become an interdisciplinary and multidisciplinary topic. The research areas are dominated by Australia, USA, Canada, New Zealand, and European countries, which have the most productive authors and institutions. The hot topics of climate change and tourism research in recent years are further identified, including the consequences of climate change for tourism, necessary adaptations, the vulnerability of the tourism industry, tourist behaviour and demand in response to climate change, and emission reductions in the tourism sector. The work includes an in-depth analysis of a major forum of climate change and tourism to help readers to better understand global trends in this field in the past 25 years.

Keywords: climate change, tourism, scientometrics, CiteSpace

Procedia PDF Downloads 394
1405 Arbutin-loaded Butylglyceryl Dextran Nanoparticles for Topical Delivery

Authors: Mohammad F. Bostanudin, Tan S. Fei, Azwan M. Lazim

Abstract:

Toward the development of colloidal systems that are able to enhance permeation across the skin, a material combining the non-toxic and non-immunogenic of dextran with alkylglycerols permeation enhancing property has been designed. To this purpose, a range of butylglyceryl dextrans (DEX-OX4) were synthesized via functionalization with n-butylglycidyl ether and the successful functionalization was confirmed by NMR and FT-IR spectroscopies, along with GPC with a degree of modification in the range 6.3–35.7 %. A reduced viscosity and an increased molecular weight of DEX-OX4 were also recorded when compared to that of the native dextran. DEX-OX4 was further formulated into nanocarriers and loaded with α-arbutin prior to be investigated for their particle size, morphology, stability, loading ability, and release profiles. The resulting nanoparticles were found to be close-to-spherical and relatively stable at pH 5 and 7, with size 180–220 nm (ζ-potential -22 to -25 mV), and a loading degree of 11.7 %. Lack of toxicity at application-relevant concentrations and increased permeation across skin biological membrane model were demonstrated by nanoparticles in-vitro results against immortalized skin human keratinocytes cells (HaCaT).

Keywords: butylglycerols, dextran, nanoparticles, transdermal

Procedia PDF Downloads 110
1404 Assessment of Fluid Flow Hydrodynamics for Cylindrical and Conical Fluidized Bed Reactor

Authors: N. G. Thangan, A. B. Deoghare, P. M. Padole

Abstract:

Computational Fluid Dynamics (CFD) aids in modeling the prototype of a real world processes. CFD approach is useful in predicting the fluid flow, heat transfer mass transfer and other flow related phenomenon. In present study, hydrodynamic characteristics of gas-solid cylindrical fluidized bed is compared with conical fluidized beds. A 2D fluidized bed consists of different configurations of particle size of iron oxide, bed height and superficial velocities of nitrogen. Simulations are performed to capture the complex physics associated with it. The Eulerian multiphase model is prepared in ANSYS FLUENT v.14 which is used to simulate fluidization process. It is analyzed with nitrogen as primary phase and iron oxide as secondary phase. The bed hydrodynamics is assessed prominently to examine effect on fluidization time, pressure drop, minimum fluidization velocity, and gas holdup in the system.

Keywords: fluidized bed, bed hydrodynamics, Eulerian multiphase approach, computational fluid dynamics

Procedia PDF Downloads 432
1403 Self-Assembly of Monodisperse Oleic Acid-Capped Superparamagnetic Iron Oxide Nanoparticles

Authors: Huseyin Kavas

Abstract:

Oleic acid (OA) capped superparamagnetic iron oxide nanoparticles (SPION) were synthesized by a thermal decomposition method. The composition of nanoparticles was confirmed by X-ray powder diffraction, and the morphology of particles was investigated by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), and Transmission electron microscopy (TEM). The crystalline and particle size distribution of SPIONS capped with OA were investigated with a mean size of 6.99 nm and 8.9 nm, respectively. It was found that SPIONS have superparamagnetic characteristics with a saturation magnetization value of 64 emu/g. The thin film form of self-assembled SPIONS was fabricated by coating techniques of spin coating and dip coating. SQUID-VSM magnetometer and FMR techniques were performed in order to evaluate the magnetic properties of thin films, especially the existence of magnetic anisotropy. The thin films with magnetic anisotropy were obtained by self-assembled monolayers of SPION.

Keywords: magnetic materials, nanostructures, self-assembly, FMR

Procedia PDF Downloads 90
1402 PM10 Concentration Emitted from Blasting and Crushing Processes of Limestone Mines in Saraburi Province, Thailand

Authors: Kanokrat Makkwao, Tassanee Prueksasit

Abstract:

This study aimed to investigate PM10 emitted from different limestone mines in Saraburi province, Thailand. The blasting and crushing were the main processes selected for PM10 sampling. PM10 was collected in two mines including, a limestone mine for cement manufacturing (mine A) and a limestone mine for construction (mine B). The IMPACT samplers were used to collect PM10. At blasting, the points aligning with the upwind and downwind direction were assigned for the sampling. The ranges of PM10 concentrations at mine A and B were 0.267-5.592 and 0.130-0.325 mg/m³, respectively, and the concentration at blasting from mine A was significantly higher than mine B (p < 0.05). During crushing at mine A, the PM10 concentration with the range of 1.153-3.716 and 0.085-1.724 mg/m³ at crusher and piles in respectively were observed whereas the PM10 concentration measured at four sampling points in mine B, including secondary crusher, tertiary crusher, screening point, and piles, were ranged 1.032-16.529, 10.957-74.057, 0.655-4.956, and 0.169-1.699 mg/m³, respectively. The emission of PM10 concentration at the crushing units was different in the ranges depending on types of machine, its operation, dust collection and control system, and environmental conditions.

Keywords: PM₁₀ concentration, limestone mines, blasting, crushing

Procedia PDF Downloads 130
1401 Linear Array Geometry Synthesis with Minimum Sidelobe Level and Null Control Using Taguchi Method

Authors: Amara Prakasa Rao, N. V. S. N. Sarma

Abstract:

This paper describes the synthesis of linear array geometry with minimum sidelobe level and null control using the Taguchi method. Based on the concept of the orthogonal array, Taguchi method effectively reduces the number of tests required in an optimization process. Taguchi method has been successfully applied in many fields such as mechanical, chemical engineering, power electronics, etc. Compared to other evolutionary methods such as genetic algorithms, simulated annealing and particle swarm optimization, the Taguchi method is much easier to understand and implement. It requires less computational/iteration processing to optimize the problem. Different cases are considered to illustrate the performance of this technique. Simulation results show that this method outperforms the other evolution algorithms (like GA, PSO) for smart antenna systems design.

Keywords: array factor, beamforming, null placement, optimization method, orthogonal array, Taguchi method, smart antenna system

Procedia PDF Downloads 374
1400 Distribution and Segregation of Aerosols in Ambient Air

Authors: S. Ramteke, K. S. Patel

Abstract:

Aerosols are complex mixture of particulate matters (PM) inclusive of carbons, silica, elements, various salts, etc. Aerosols get deep into the human lungs and cause a broad range of health effects, in particular, respiratory and cardiovascular illnesses. They are one of the major culprits for the climate change. They are emitted by the high thermal processes i.e. vehicles, steel, sponge, cement, thermal power plants, etc. Raipur (22˚33'N to 21˚14'N and 82˚6'E) to 81˚38'E) is a growing industrial city in central India with population of two million. In this work, the distribution of inorganics (i.e. Cl⁻, NO³⁻, SO₄²⁻, NH₄⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Al, Cr, Mn, Fe, Ni, Cu, Zn, and Pb) associated to the PM in the ambient air is described. The PM₁₀ in ambient air of Raipur city was collected for duration of one year (December 2014 - December 2015). The PM₁₀ was segregated into nine modes i.e. PM₁₀.₀₋₉.₀, PM₉.₀₋₅.₈, PM₅.₈₋₄.₇, PM₄.₇₋₃.₃, PM₃.₃₋₂.₁, PM₂.₁₋₁.₁, PM₁.₁₋₀.₇, PM₀.₇₋₀.₄ and PM₀.₄ to know their emission sources and health hazards. The analysis of ions and metals was carried out by techniques i.e. ion chromatography and TXRF. The PM₁₀ concentration (n=48) was ranged from 100-450 µg/m³ with mean value of 73.57±20.82 µg/m³. The highest concentration of PM₄.₇₋₃.₃, PM₂.₁₋₁.₁, PM₁.₁₋₀.₇ was observed in the commercial, residential and industrial area, respectively. The effect of meteorology i.e. temperature, humidity, wind speed and wind direction in the PM₁₀ and associated elemental concentration in the air is discussed.

Keywords: ambient aerosol, ions, metals, segregation

Procedia PDF Downloads 182
1399 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction

Procedia PDF Downloads 361
1398 Structural, Magnetic and Electrical Properties of Gd3+ Doped CoFe2O4 Nanoparticles Synthesized by Sonochemical Method

Authors: Raghvendra Singh Yadav, Ivo Kuřitka

Abstract:

In this report, we studied the impact of Gd3+ substitution on structural, magnetic and electrical properties of CoFe2O4 nanoparticles synthesized by sonochemical method. X-ray diffraction pattern confirmed the formation of cubic spinel structure at low concentration of Gd3+ ions, however, GdFeO3 additional phase was observed at higher concentration of Gd3+ ions. Raman and Fourier Transform Infrared spectroscopy study also confirmed cubic spinel structure of Gd3+ substituted CoFe2O4 nanoparticles. The field emission scanning electron microscopy study revealed that Gd3+ substituted CoFe2O4 nanoparticles were in the range of 5-20 nm. The magnetic properties of Gd3+ substituted CoFe2O4 nanoparticles were investigated by using vibrating sample magnetometer. The variation in saturation magnetization, coercivity and remanent magnetization with Gd3+ concentration in CoFe2O4 nanoparticles was observed. The variation of real and imaginary part of dielectric constant, tan δ, and AC conductivity were studied at room temperature.

Keywords: spinel ferrites, nanoparticles, sonochemical method, magnetic properties

Procedia PDF Downloads 279
1397 Thermal Conductivity and Optical Absorption of GaInAsSb/GaSb Laser Structure: Impact of Annealing Time

Authors: Soufiene Ilahi, Noureddine Yacoubi

Abstract:

GaInAsSb grown on GaSb substrate is an interesting material employed as an active layer in vertical-cavity surface-emitting lasers (VCSELs) operating in mid-infrared emission. This material presents some advantages like highs optical absorption coefficient and good thermal conductivity, which is very desirable for VCSEL application. In this paper, we have investigated the effects of thermal annealing on optical properties and thermal conductivity of GaInAsSb/GaSb. The studies are carried out by means of the photo thermal deflection spectroscopy technique (PDS). In fact, optical absorption spectrum and thermal conductivity have been determined by a comparison between the experimental and theoretical phases of the PDS signal. We have found that thermal conductivity increased significantly to 13 W/m.K for GaInAsSb annealed during 60 min. In addition, we have found that bandgap energy is blue-shifted around 30 meV. The amplitudes signal of PDS reveals multiple reflections as a function of annealing time, which reflect the high crystalline quality of the layer.

Keywords: thermal conductivity, bandgap energy of GaInAsSb, GaInAsSb active layer, optical absorption

Procedia PDF Downloads 134
1396 European Environmental Policy for Road Transport: Analysis of the Perverse Effects Generated and Proposals for a Good Practice Guide

Authors: Pedro Pablo Ramírez Sánchez, Alassane Ballé Ndiaye, Roberto Rendeiro Martín-Cejas

Abstract:

The aim of this paper is to analyse the different environmental policies adopted in Europe for car emissions, to comment on some of the possible perverse effects generated and point out these policies which are considered more efficient under the environmental perspective. This paper is focused on passenger cars as this category is the most significant in road transport. The utility of this research lies in this being the first step or basis to improve and optimise actual policies. The methodology applied in this paper refers to a comparative analysis from a practical and theoretical point of view of European environmental policies in road transport. This work describes an overview of the road transport industry in Europe pointing out some relevant aspects such as the contribution of road transport to total emissions and the vehicle fleet in Europe. Additionally, we propose a brief practice guide with the combined policies in order to optimise their aim.

Keywords: air quality, climate change, emission, environment, perverse effect, road transport, tax policy

Procedia PDF Downloads 141
1395 Opto-Electronic Study of the Silicon Nitride Doped Cerium Thin Films Deposed by Evaporation

Authors: Bekhedda Kheira

Abstract:

Rare earth-doped luminescent materials (Ce, Eu, Yb, Tb, etc.) are now widely used in flat-screen displays, fluorescent lamps, and photovoltaic solar cells. They exhibit several fine emission bands in a spectral range from near UV to infrared when added to inorganic materials. This study chose cerium oxide (CeO2) because of its exceptional intrinsic properties, energy levels, and ease of implementation of doped layer synthesis. In this study, thin films were obtained by the evaporation deposition technique of cerium oxide (CeO2) on silicon Nitride (SiNx) layers and then annealing under nitrogen N2. The characterization of these films was carried out by different techniques, scanning electron microscopy (SEM) to visualize morphological properties and (EDS) was used to determine the elemental composition of individual dots, optical analysis characterization of thin films was studied by a spectrophotometer in reflectance mode to determine different energies gap of the nanostructured layers and to adjust these values for the photovoltaic application.

Keywords: thin films, photovoltaic, rare earth, evaporation

Procedia PDF Downloads 61
1394 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts

Authors: Nuray Güy, Mahmut Özacar

Abstract:

Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.

Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS

Procedia PDF Downloads 267
1393 High Harmonics Generation in Hexagonal Graphene Quantum Dots

Authors: Armenuhi Ghazaryan, Qnarik Poghosyan, Tadevos Markosyan

Abstract:

We have considered the high-order harmonic generation in-plane graphene quantum dots of hexagonal shape by the independent quasiparticle approximation-tight binding model. We have investigated how such a nonlinear effect is affected by a strong optical wave field, quantum dot typical band gap and lateral size, and dephasing processes. The equation of motion for the density matrix is solved by performing the time integration with the eight-order Runge-Kutta algorithm. If the optical wave frequency is much less than the quantum dot intrinsic band gap, the main aspects of multiphoton high harmonic emission in quantum dots are revealed. In such a case, the dependence of the cutoff photon energy on the strength of the optical pump wave is almost linear. But when the wave frequency is comparable to the bandgap of the quantum dot, the cutoff photon energy shows saturation behavior with an increase in the wave field strength.

Keywords: strong wave field, multiphoton, bandgap, wave field strength, nanostructure

Procedia PDF Downloads 128
1392 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 324
1391 Thermal Expansion Coefficient and Young’s Modulus of Silica-Reinforced Epoxy Composite

Authors: Hyu Sang Jo, Gyo Woo Lee

Abstract:

In this study, the evaluation of thermal stability of the micrometer-sized silica particle reinforced epoxy composite was carried out through the measurement of thermal expansion coefficient and Young’s modulus of the specimens. For all the specimens in this study from the baseline to those containing 50 wt% silica filler, the thermal expansion coefficients and the Young’s moduli were gradually decreased down to 20% and increased up to 41%, respectively. The experimental results were compared with filler-volume-based simple empirical relations. The experimental results of thermal expansion coefficients correspond with those of Thomas’s model which is modified from the rule of mixture. However, the measured result for Young’s modulus tends to be increased slightly. The differences in increments of the moduli between experimental and numerical model data are quite large.

Keywords: thermal stability, silica-reinforced, epoxy composite, coefficient of thermal expansion, empirical model

Procedia PDF Downloads 282
1390 Whale Optimization Algorithm for Optimal Reactive Power Dispatch Solution Under Various Contingency Conditions

Authors: Medani Khaled Ben Oualid

Abstract:

Most of researchers solved and analyzed the ORPD problem in the normal conditions. However, network collapses appear in contingency conditions. In this paper, ORPD under several contingencies is presented using the proposed method WOA. To ensure viability of the power system in contingency conditions, several critical cases are simulated in order to prevent and prepare the power system to face such situations. The results obtained are carried out in IEEE 30 bus test system for the solution of ORPD problem in which control of bus voltages, tap position of transformers and reactive power sources are involved. Moreover, another method, namely, Particle Swarm Optimization with Time Varying Acceleration Coefficient (PSO-TVAC) has been compared with the proposed technique. Simulation results indicate that the proposed WOA gives remarkable solution in terms of effectiveness in case of outages.

Keywords: optimal reactive power dispatch, metaheuristic techniques, whale optimization algorithm, real power loss minimization, contingency conditions

Procedia PDF Downloads 77