Search results for: deformation mode
1339 Vibration Based Structural Health Monitoring of Connections in Offshore Wind Turbines
Authors: Cristobal García
Abstract:
The visual inspection of bolted joints in wind turbines is dangerous, expensive, and impractical due to the non-possibility to access the platform by workboat in certain sea state conditions, as well as the high costs derived from the transportation of maintenance technicians to offshore platforms located far away from the coast, especially if helicopters are involved. Consequently, the wind turbine operators have the need for simpler and less demanding techniques for the analysis of the bolts tightening. Vibration-based structural health monitoring is one of the oldest and most widely-used means for monitoring the health of onshore and offshore wind turbines. The core of this work is to find out if the modal parameters can be efficiently used as a key performance indicator (KPIs) for the assessment of joint bolts in a 1:50 scale tower of a floating offshore wind turbine (12 MW). A non-destructive vibration test is used to extract the vibration signals of the towers with different damage statuses. The procedure can be summarized in three consecutive steps. First, an artificial excitation is introduced by means of a commercial shaker mounted on the top of the tower. Second, the vibration signals of the towers are recorded for 8 s at a sampling rate of 20 kHz using an array of commercial accelerometers (Endevco, 44A16-1032). Third, the natural frequencies, damping, and overall vibration mode shapes are calculated using the software Siemens LMS 16A. Experiments show that the natural frequencies, damping, and mode shapes of the tower are directly dependent on the fixing conditions of the towers, and therefore, the variations of both parameters are a good indicator for the estimation of the static axial force acting in the bolt. Thus, this vibration-based structural method proposed can be potentially used as a diagnostic tool to evaluate the tightening torques of the bolted joints with the advantages of being an economical, straightforward, and multidisciplinary approach that can be applied for different typologies of connections by operation and maintenance technicians. In conclusion, TSI, in collaboration with the consortium of the FIBREGY project, is conducting innovative research where vibrations are utilized for the estimation of the tightening torque of a 1:50 scale steel-based tower prototype. The findings of this research carried out in the context of FIBREGY possess multiple implications for the assessment of the bolted joint integrity in multiple types of connections such as tower-to-nacelle, modular, tower-to-column, tube-to-tube, etc. This research is contextualized in the framework of the FIBREGY project. The EU-funded FIBREGY project (H2020, grant number 952966) will evaluate the feasibility of the design and construction of a new generation of marine renewable energy platforms using lightweight FRP materials in certain structural elements (e.g., tower, floating platform). The FIBREGY consortium is composed of 11 partners specialized in the offshore renewable energy sector and funded partially by the H2020 program of the European Commission with an overall budget of 8 million Euros.Keywords: SHM, vibrations, connections, floating offshore platform
Procedia PDF Downloads 1241338 BIM Application Research Based on the Main Entrance and Garden Area Project of Shanghai Disneyland
Authors: Ying Yuken, Pengfei Wang, Zhang Qilin, Xiao Ben
Abstract:
Based on the main entrance and garden area (ME&G) project of Shanghai Disneyland, this paper introduces the application of BIM technology in this kind of low-rise comprehensive building with complex facade system, electromechanical system and decoration system. BIM technology is applied to the whole process of design, construction and completion of the whole project. With the construction of BIM application framework of the whole project, the key points of BIM modeling methods of different systems and the integration and coordination of BIM models are elaborated in detail. The specific application methods of BIM technology in similar complex low-rise building projects are sorted out. Finally, the paper summarizes the benefits of BIM technology application, and puts forward some suggestions for BIM management mode and practical application of similar projects in the future.Keywords: BIM, complex low-rise building, BIM modeling, model integration and coordination, 3D scanning
Procedia PDF Downloads 1701337 Near-Infrared Spectrometry as an Alternative Method for Determination of Oxidation Stability for Biodiesel
Authors: R. Velvarska, A. Vrablik, M. Fiedlerova, R. Cerny
Abstract:
Near-infrared spectrometry (NIR) was tested as a rapid and alternative tool for determination of biodiesel oxidation stability. A PetroOxy method is standardly used for the determination, but this method is hazardous due to the possibility of explosion and ignition of flammable fuels. The second disadvantage is time consuming. The near-infrared spectrometry served for the development of the calibration model which was composed of 133 real samples (calibration standards). The reference values of these standards were obtained by PetroOxy method. Many chemometric diagnostics were used for the development of the final NIR model with the aim to have accurate prediction of the oxidation stability. The final NIR model was validated by 30 validation standards. The repeatability was determined as well with the acceptable residual standard deviation (8.59 %). The NIR spectrometry has proved to be an accurate alternative method for the determination of biodiesel oxidation stability with advantages as the time and cost saving, non-destructive character of analyzing and the possibility of online monitoring in safe mode.Keywords: biodiesel, fatty acid methyl ester, NIR, oxidation stability
Procedia PDF Downloads 1741336 Quantum Localization of Vibrational Mirror in Cavity Optomechanics
Authors: Madiha Tariq, Hena Rabbani
Abstract:
Recently, cavity-optomechanics becomes an extensive research field that has manipulated the mechanical effects of light for coupling of the optical field with other physical objects specifically with regards to dynamical localization. We investigate the dynamical localization (both in momentum and position space) for a vibrational mirror in a Fabry-Pérot cavity driven by a single mode optical field and a transverse probe field. The weak probe field phenomenon results in classical chaos in phase space and spatio temporal dynamics in position |ψ(x)²| and momentum space |ψ(p)²| versus time show quantum localization in both momentum and position space. Also, we discuss the parametric dependencies of dynamical localization for a designated set of parameters to be experimentally feasible. Our work opens an avenue to manipulate the other optical phenomena and applicability of proposed work can be prolonged to turn-able laser sources in the future.Keywords: dynamical localization, cavity optomechanics, Hamiltonian chaos, probe field
Procedia PDF Downloads 1481335 Fresh State Properties of Steel Fiber Reinforced Self Compacting Concrete
Authors: Anil Nis, Nilufer Ozyurt Zihnioglu
Abstract:
The object of the study is to investigate fresh state properties of the steel fiber reinforced self-compacting concrete (SFR-SCC). Three different steel fibers; straight (Vf:0.5%), hooked-end long (Vf:0.5% and 1%) and hybrid fibers (0.5%short+0.5%long) were used in the research aiming to obtain flow properties of non-fibrous self-compacting concrete. Fly ash was used as a supplementary with an optimum dosage of 30% of the total cementitious materials. Polycarboxylic ether based high-performance concrete superplasticizer was used to get high flowability with percentages ranging from 0.81% (non-fibrous SCC) to 1.07% (hybrid SF-SCC) of the cement weight. The flowability properties of SCCs were measured via slump flow and V-funnel tests; passing ability properties of SCCs were measured with J-Ring, L-Box, and U-Box tests. Workability results indicate that small increase on the superplasticizer dosages compensate the adverse effects of steel fibers on flowability properties of SSC. However, higher dosage fiber addition has a negative effect on passing ability properties, causing blocking of the mixes. In addition, compressive strength, tensile strength, and four point bending results were given. Results indicate that SCCs including steel fibers have superior performances on tensile and bending strength of concrete. Crack bridging capability of steel fibers prevents concrete from splitting, yields higher deformation and energy absorption capacities than non-fibrous SCCs.Keywords: fiber reinforced self-compacting concrete, fly ash, fresh state properties, steel fiber
Procedia PDF Downloads 2221334 Effect of Zirconium Addition to Aluminum Grain Refined by Ti on its Resistance to Wear: A Three-Dimensional Approach
Authors: S. M. A. Al-Qawabah, A. I. O. Zaid
Abstract:
Aluminum and its alloys are versatile materials which are widely used in industrial and engineering applications due to their good and useful properties e.g. high strength to weight ratio, high thermal and electrical conductivities and good resistance to corrosion. However, against these favorable properties they have the disadvantage they solidifying large grain columnar structure which negatively affects their mechanical properties and surface quality. Aluminum alloys are normally grain refined by some alloying elements, such as Ti, Ti-B or Zr. In this paper, the effect of zirconium addition to Al grain refined by Ti after extrusion on its wear resistance is investigated under different loads and sliding speeds namely at 5,10 and 20 N loads and sliding speeds ranging from m/min. and m/min. the results are presented in three-dimensional wear mode. To the best the authors' knowledge, the wear of aluminum in 3-dimensions has never been tackled before. In this work, the wear resistance of by presenting the results of wear are presented and discussed on the time, load and speed plots.Keywords: aluminum grain refined, addition of titanium, wear resistance, titanium
Procedia PDF Downloads 3991333 Nonlocal Phenomena in Quantum Mechanics
Authors: Kazim G. Atman, Hüseyin Sirin
Abstract:
In theoretical physics, nonlocal phenomena has always been subject of debate. However, in the conventional mathematical approach where the developments of the physical systems are investigated by using the standard mathematical tools, nonlocal effects are not taken into account. In order to investigate the nonlocality in quantum mechanics and fractal property of space, fractional derivative operators are employed in this study. In this manner, fractional creation and annihilation operators are introduced and Einstein coefficients are taken into account as an application of concomitant formalism in quantum field theory. Therefore, each energy mode of photons are considered as fractional quantized harmonic oscillator hereby Einstein coefficients are obtained. Nevertheless, wave function and energy eigenvalues of fractional quantum mechanical harmonic oscillator are obtained via the fractional derivative order α which is a measure of the influence of nonlocal effects. In the case α = 1, where space becomes homogeneous and continuous, standard physical conclusions are recovered.Keywords: Einstein’s Coefficients, Fractional Calculus, Fractional Quantum Mechanics, Nonlocal Theories
Procedia PDF Downloads 1691332 Structural Analysis and Strengthening of the National Youth Foundation Building in Igoumenitsa, Greece
Authors: Chrysanthos Maraveas, Argiris Plesias, Garyfalia G. Triantafyllou, Konstantinos Petronikolos
Abstract:
The current paper presents a structural assessment and proposals for retrofit of the National Youth Foundation Building, an existing reinforced concrete (RC) building in the city of Igoumenitsa, Greece. The building is scheduled to be renovated in order to create a Municipal Cultural Center. The bearing capacity and structural integrity have been investigated in relation to the provisions and requirements of the Greek Retrofitting Code (KAN.EPE.) and European Standards (Eurocodes). The capacity of the existing concrete structure that makes up the two central buildings in the complex (buildings II and IV) has been evaluated both in its present form and after including several proposed architectural interventions. The structural system consists of spatial frames of columns and beams that have been simulated using beam elements. Some RC elements of the buildings have been strengthened in the past by means of concrete jacketing and have had cracks sealed with epoxy injections. Static-nonlinear analysis (Pushover) has been used to assess the seismic performance of the two structures with regard to performance level B1 from KAN.EPE. Retrofitting scenarios are proposed for the two buildings, including type Λ steel bracings and placement of concrete shear walls in the transverse direction in order to achieve the design-specification deformation in each applicable situation, improve the seismic performance, and reduce the number of interventions required.Keywords: earthquake resistance, pushover analysis, reinforced concrete, retrofit, strengthening
Procedia PDF Downloads 2901331 Numerical and Simulation Analysis of Composite Friction Materials Using Single Plate Clutch Pad in Agricultural Tractors
Authors: Ravindra Raju, Vidhu Kampurath
Abstract:
For smooth transition of the power from the engine to the transmission system, a clutch is used. In agricultural tractors, friction clutches are widely used in power transmission applications. To transmit the maximum torque in friction clutches, selection of materials is one of the important tasks. The present used material for friction disc is Asbestos, Ceramic etc. In this study, analysis is performed using composites materials. The composite materials are considered due to their high strength to weight ratio. Composite materials like kevlar49, kevlar 29U were used in the study. The paper presents a systematic approach to optimize the structural and thermal characteristics of the clutch friction pad. A single plate clutch is modeled using Creo 2.0 software and analyzed using ANSYS. Thermal analysis considers the reduction of heat generated between the friction surfaces and reducing the temperature rise during the steady state period. Structural analysis is done to minimize the stresses developed as a result of the loading contact between friction surfaces. Also, modal analysis is done to optimize the natural frequency of the friction plate to avoid being in resonance with the engine frequency range. The analysis carried out on ANSYS workbench to get the foremost appropriate friction material for clutch. From the analyzed results stress, strain / total deformation values and natural frequency of the materials were compared for all the composite materials and the best one was taken out. For the study purpose, specifications of the clutch are obtained from the MF1035 (47KW) Tractor model.Keywords: ANSYS, clutch, composite materials, creo
Procedia PDF Downloads 2981330 Ethnobotanical Study of Medicinal Plants of Leguminosae in Kantharalak Community Forest, Si Sa Ket Province, Thailand
Authors: W. Promprom, W. Chatan
Abstract:
Leguminosae is a large plant family and its members are important for local people utilization in the Northeast of Thailand. This research aimed to survey medicinal plants in this family in Kantharalak Community forest. The plant collection and exploration were made from October 2017 to September 2018. Folk medicinal uses were studied by interviewing villagers and folk medicine healers living around the community forest by asking about local names, using parts, preparation and properties. The results showed that 65 species belonging to 40 genera were found. Among these, 30 species were medicinal plant. The most used plant parts were leaf. Decoction and drinking were mostly preparation method and administration mode used. All medicinal plants could be categorized into 17 diseases/symptoms. Most plant (56.66%) were used for fever. The voucher specimens were deposited in Department of Biology, Faculty of Science, Mahasarakham University, Thailand. Therefore, the data from this study might be widely used by the local area and further scientific study.Keywords: ethnobotany, ethnophamacology, medicinal plant, taxonomy, utilization
Procedia PDF Downloads 1581329 A Genetic Algorithm Based Sleep-Wake up Protocol for Area Coverage in WSNs
Authors: Seyed Mahdi Jameii, Arash Nikdel, Seyed Mohsen Jameii
Abstract:
Energy efficiency is an important issue in the field of Wireless Sensor Networks (WSNs). So, minimizing the energy consumption in this kind of networks should be an essential consideration. Sleep/wake scheduling mechanism is an efficient approach to handling this issue. In this paper, we propose a Genetic Algorithm-based Sleep-Wake up Area Coverage protocol called GA-SWAC. The proposed protocol puts the minimum of nodes in active mode and adjusts the sensing radius of each active node to decrease the energy consumption while maintaining the network’s coverage. The proposed protocol is simulated. The results demonstrate the efficiency of the proposed protocol in terms of coverage ratio, number of active nodes and energy consumption.Keywords: wireless sensor networks, genetic algorithm, coverage, connectivity
Procedia PDF Downloads 5191328 FEM Study of Different Methods of Fiber Reinforcement Polymer Strengthening of a High Strength Concrete Beam-Column Connection
Authors: Talebi Aliasghar, Ebrahimpour Komeleh Hooman, Maghsoudi Ali Akbar
Abstract:
In reinforced concrete (RC) structures, beam-column connection region has a considerable effect on the behavior of structures. Using fiber reinforcement polymer (FRP) for the strengthening of connections in RC structures can be one of the solutions to retrofitting this zone which result in the enhanced behavior of structure. In this paper, these changes in behavior by using FRP for high strength concrete beam-column connection have been studied by finite element modeling. The concrete damage plasticity (CDP) model has been used to analyze the RC. The results illustrated a considerable development in load-bearing capacity but also a noticeable reduction in ductility. The study also assesses these qualities for several modes of strengthening and suggests the most effective mode of strengthening. Using FRP in flexural zone and FRP with 45-degree oriented fibers in shear zone of joint showed the most significant change in behavior.Keywords: HSC, beam-column connection, Fiber Reinforcement Polymer, FRP, Finite Element Modeling, FEM
Procedia PDF Downloads 1571327 Off Design Modelling of 650MW Combined Cycle Gas Turbine Power Plant Integrated with a Retrofitted Inlet Fogging System
Authors: Osarobo Omorogieva Ighodaro, Josephus Otejere
Abstract:
This paper contains the modelling and simulation of GT13E2 combined cycle gas turbine with the aid of the software EBSILON PROFESSIONAL. The design mode was modeled using guaranteed performance data from the power plant, in the off design, temperature variation of ambient air and fogging (spray water at inlet to compressor) was simulated. The fogging was simulated under two different modes; constant fuel consumption and constant turbine exhaust temperature .The model results were validated using actual operating data by applying error percentage analysis. The validation results obtained ranged from -0.0038% to 0% in design condition while the results varied from -0.9202% to 10.24% The model shows that fogging decreases compressor inlet temperature which in turn decreases the power required to drive the compressor hence improving the simple cycle efficiency and hence increasing power generated.Keywords: inlet fogging, off design, combined cycle, modelling
Procedia PDF Downloads 381326 Mistuning in Radial Inflow Turbines
Authors: Valentina Futoryanova, Hugh Hunt
Abstract:
One of the common failure modes of the diesel engine turbochargers is high cycle fatigue of the turbine wheel blades. Mistuning of the blades due to the casting process is believed to contribute to the failure mode. Laser vibrometer is used to characterize mistuning for a population of turbine wheels through the analysis of the blade response to piezo speaker induced noise. The turbine wheel design under investigation is radial and is typically used in 6-12 L diesel engine applications. Amplitudes and resonance frequencies are reviewed and summarized. The study also includes test results for a paddle wheel that represents a perfectly tuned system and acts as a reference. Mass spring model is developed for the paddle wheel and the model suitability is tested against the actual data. Randomization is applied to the stiffness matrix to model the mistuning effect in the turbine wheels. Experimental data is shown to have good agreement with the model.Keywords: vibration, radial turbines, mistuning, turbine blades, modal analysis, periodic structures, finite element
Procedia PDF Downloads 4321325 Effects of Preparation Caused by Ischemic-Reperfusion along with Sodium Bicarbonate Supplementation on Submaximal Dynamic Force Production
Authors: Sara Nasiri Semnani, Alireza Ramzani
Abstract:
Background and Aims: Sodium bicarbonate is a supplementation that used to reduce fatigue and increase power output in short-term training. On the other hand, the Ischemic Reperfusion Preconditioning (IRPC) is an appropriate stimulus to increase the submaximal contractile response. Materials and methods: 9 female student-athletes in double-blind randomized crossover design were three mode, sodium bicarbonate + IRPC, sodium bicarbonate and placebo+ IRPC. Participants moved forward single arm dumbbell hand with a weight of 2 kg can be carried out most frequently. Results: The results showed that plasma lactate concentration and records of sodium bicarbonate + IRPC and sodium bicarbonate conditions were significantly different compared to placebo + IRPC (Respectively p=0.001, p=0/02). Conclusion: According to the research findings, bicarbonate supplementation in IRPC training condition increased force and delay fatigue in submaximal dynamic contraction.Keywords: ischemic reperfusion, preconditioning, sodium bicarbonate, submaximal dynamic force
Procedia PDF Downloads 3031324 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.Keywords: communication, LED, Li-Fi, Wi-Fi
Procedia PDF Downloads 3441323 Factors Affecting Bus Use as a Sustainable Mode of Transportation: Insights from Kerman, Iran
Authors: Fatemeh Rahmani, Navid Nadimi, Vahid Khalifeh
Abstract:
In the near future, cities with medium populations will face traffic congestion, air pollution, high fuel consumption, and noise pollution. It is possible to improve the sustainability of cities by utilizing public transportation. A study of the factors that influence citizens' bus usage in medium-sized cities is presented in this paper. For this purpose, Kerman's citizens were surveyed online. The model was based on a binary logistic regression. A descriptive analysis revealed that simple measures like renewing the fleet, upgrading the stations, establishing a schedule program, and cleaning the buses could improve passenger satisfaction. In addition, the modeling results showed that future traffic congestion can be prevented by implementing road and parking lot pricing plans. Further, as the number and length of trips increases, the probability of citizens taking the bus increases. In conclusion, Kerman's bus system is both secure and fast, but these two characteristics can be improved to increase bus ridership.Keywords: sustainability, transportation, bus, congestion, satisfaction
Procedia PDF Downloads 81322 Micromechanics Modeling of 3D Network Smart Orthotropic Structures
Authors: E. M. Hassan, A. L. Kalamkarov
Abstract:
Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures
Procedia PDF Downloads 3991321 Technological Ensuring of the Space Reflector Antennas Manufacturing Process from Carbon Fiber Reinforced Plastics
Authors: Pyi Phyo Maung
Abstract:
In the study, the calculations of the permeability coefficient, values of the volume and porosity of a unit cell of a woven fabric before and after deformation based on the geometrical parameters are presented. Two types of carbon woven fabric structures were investigated: standard type, which integrated the filament, has a cross sectional shape of a cylinder and spread tow type, which has a rectangular cross sectional shape. The space antennas reflector, which distinctive feature is the presence of the surface of double curvature, is considered as the object of the research. Modeling of the kinetics of the process of impregnation of the reflector for the two types of carbon fabric’s unit cell structures was performed using software RAM-RTM. This work also investigated the influence of the grid angle between warp and welt of the unit cell on the duration of impregnation process. The results showed that decreasing the angle between warp and welt of the unit cell, the decreasing of the permeability values were occurred. Based on the results of calculation samples of the reflectors, their quality was determined. The comparisons of the theoretical and experimental results have been carried out. Comparison of the two textile structures (standard and spread tow) showed that the standard textiles with circular cross section were impregnated faster than spread tows, which have a rectangular cross section.Keywords: vacuum assistant resin infusion, impregnation time, shear angle, reflector and modeling
Procedia PDF Downloads 2721320 Control of Base Isolated Benchmark using Combined Control Strategy with Fuzzy Algorithm Subjected to Near-Field Earthquakes
Authors: Hashem Shariatmadar, Mozhgansadat Momtazdargahi
Abstract:
The purpose of control structure against earthquake is to dissipate earthquake input energy to the structure and reduce the plastic deformation of structural members. There are different methods for control structure against earthquake to reduce the structure response that they are active, semi-active, inactive and hybrid. In this paper two different combined control systems are used first system comprises base isolator and multi tuned mass dampers (BI & MTMD) and another combination is hybrid base isolator and multi tuned mass dampers (HBI & MTMD) for controlling an eight story isolated benchmark steel structure. Active control force of hybrid isolator is estimated by fuzzy logic algorithms. The influences of the combined systems on the responses of the benchmark structure under the two near-field earthquake (Newhall & Elcentro) are evaluated by nonlinear dynamic time history analysis. Applications of combined control systems consisting of passive or active systems installed in parallel to base-isolation bearings have the capability of reducing response quantities of base-isolated (relative and absolute displacement) structures significantly. Therefore in design and control of irregular isolated structures using the proposed control systems, structural demands (relative and absolute displacement and etc.) in each direction must be considered separately.Keywords: base-isolated benchmark structure, multi-tuned mass dampers, hybrid isolators, near-field earthquake, fuzzy algorithm
Procedia PDF Downloads 3031319 Laser-TIG Welding-Brazing for Dissimilar Metals between Aluminum Alloy and Steel
Authors: Xiangfang Xu, Bintao Wu, Yugang Miao, Duanfeng Han
Abstract:
Experiments were conducted on 5A06 aluminum alloy and Q235 steel using the laser-TIG hybrid heat source welding-brazing method to realize the reliable connection of Al/Fe dissimilar metals and the welding characteristics were analyzed. It was found that the joints with uniform seam and high tensile strength could be obtained using such a method, while the welding process demanded special welding parameters. Spectrum measurements showed that the Al and Fe atoms diffused more thoroughly at the brazing interface and formed a 3μm-thick intermetallic compound layer at the Al/Fe joints brazed connection interface. Shearing tests indicated that the shearing strength of the Al/Fe welding-brazed joint was 165MPa. The fracture occurred near the melting zone of aluminum alloy, which belonged to the mixed mode with the ductile fracture as the base and the brittle fracture as the supplement.Keywords: Al/Fe dissimilar metals, laser-TIG hybrid heat source, shearing strength, welding-brazing method
Procedia PDF Downloads 4001318 The Application of Extend Spectrum-Based Pushover Analysis for Seismic Evaluation of Reinforced Concrete Wall Structures
Authors: Yang Liu
Abstract:
Reinforced concrete (RC) shear wall structures are one of the most popular and efficient structural forms for medium- and high-rise buildings to resist the action of earthquake loading. Thus, it is of great significance to evaluate the seismic demands of the RC shear walls. In this paper, the application of the extend spectrum-based pushover analysis (ESPA) method on the seismic evaluation of the shear wall structure is presented. The ESPA method includes a nonlinear consecutive pushover analysis procedure and a linear elastic modal response analysis procedure to consider the combination of modes in both elastic and inelastic cases. It is found from the results of case study that the ESPA method can predict the seismic performance of shear wall structures, including internal forces and deformations very well.Keywords: reinforced concrete shear wall, seismic performance, high mode effect, nonlinear analysis
Procedia PDF Downloads 1561317 Effect of Taper Pin Ratio on Microstructure and Mechanical Property of Friction Stir Welded AZ31 Magnesium Alloy
Authors: N. H. Othman, N. Udin, M. Ishak, L. H. Shah
Abstract:
This study focuses on the effect of pin taper tool ratio on friction stir welding of magnesium alloy AZ31. Two pieces of AZ31 alloy with thickness of 6 mm were friction stir welded by using the conventional milling machine. The shoulder diameter used in this experiment is fixed at 18 mm. The taper pin ratio used are varied at 6:6, 6:5, 6:4, 6:3, 6:2 and 6:1. The rotational speeds that were used in this study were 500 rpm, 1000 rpm and 1500 rpm, respectively. The welding speeds used are 150 mm/min, 200 mm/min and 250 mm/min. Microstructure observation of welded area was studied by using optical microscope. Equiaxed grains were observed at the TMAZ and stir zone indicating fully plastic deformation. Tool pin diameter ratio 6/1 causes low heat input to the material because of small contact surface between tool surface and stirred materials compared to other tool pin diameter ratio. The grain size of stir zone increased with increasing of ratio of rotational speed to transverse speed due to higher heat input. It is observed that worm hole is produced when excessive heat input is applied. To evaluate the mechanical properties of this specimen, tensile test was used in this study. Welded specimens using taper pin ratio 6:1 shows higher tensile strength compared to other taper pin ratio up to 204 MPa. Moreover, specimens using taper pin ratio 6:1 showed better tensile strength with 500 rpm of rotational speed and 150mm/min welding speed.Keywords: friction stir welding, magnesium AZ31, cylindrical taper tool, taper pin ratio
Procedia PDF Downloads 2841316 Optimum Design of Hybrid (Metal-Composite) Mechanical Power Transmission System under Uncertainty by Convex Modelling
Authors: Sfiso Radebe
Abstract:
The design models dealing with flawless composite structures are in abundance, where the mechanical properties of composite structures are assumed to be known a priori. However, if the worst case scenario is assumed, where material defects combined with processing anomalies in composite structures are expected, a different solution is attained. Furthermore, if the system being designed combines in series hybrid elements, individually affected by material constant variations, it implies that a different approach needs to be taken. In the body of literature, there is a compendium of research that investigates different modes of failure affecting hybrid metal-composite structures. It covers areas pertaining to the failure of the hybrid joints, structural deformation, transverse displacement, the suppression of vibration and noise. In the present study a system employing a combination of two or more hybrid power transmitting elements will be explored for the least favourable dynamic loads as well as weight minimization, subject to uncertain material properties. Elastic constants are assumed to be uncertain-but-bounded quantities varying slightly around their nominal values where the solution is determined using convex models of uncertainty. Convex analysis of the problem leads to the computation of the least favourable solution and ultimately to a robust design. This approach contrasts with a deterministic analysis where the average values of elastic constants are employed in the calculations, neglecting the variations in the material properties.Keywords: convex modelling, hybrid, metal-composite, robust design
Procedia PDF Downloads 2101315 Occupational Health Hazards of Itinerant Waste Buyers (IWBs) in Kathmandu, Nepal
Authors: Ashish Khanal, Suja Giri
Abstract:
The scrap collection work is associated with multiple health hazards. Cut and scratches during collection and transportation of scraps are common. IWBs purchase the scraps mainly papers, cartoons, glass bottles and metals from the households. This study was conducted in Kathmandu, the capital city of Nepal. The location was chosen because Kathmandu is the biggest city of Nepal with highest number of IWBs. The research used a case study strategy to examine the occupational health hazards of IWBs. The only mode of collecting and transporting of scraps in Kathmandu is the bicycle. They have to do this regular work even during the scorching sun and chilled winter. The musculoskeletal and gastrointestinal disorders are the common health problem shared by IWBs in Kathmandu, Nepal. Despite of these problems, IWBs don’t take it seriously and rarely goes for the health check-up. There is need of personal protective equipment and guidance for safety of IWBs. IWBs need to wear closed shoes and use gloves to avoid cuts during the collection and transportation of the recyclables.Keywords: itinerant waste buyers, Kathmandu, occupational health, scrap
Procedia PDF Downloads 1771314 Antitrypanosomal Activity of Stigmasterol: An in silico Approach
Authors: Mohammed Auwal Ibrahim, Aminu Mohammed
Abstract:
Stigmasterol has previously been reported to possess antitrypanosomal activity using in vitro and in vivo models. However, the mechanism of antitrypanosomal activity is yet to be elucidated. In the present study, molecular docking was used to decipher the mode of interaction and binding affinity of stigmasterol to three known antitrypanosomal drug targets viz; adenosine kinase, ornithine decarboxylase and triose phosphate isomerase. Stigmasterol was found to bind to the selected trypanosomal enzymes with minimum binding energy of -4.2, -6.5 and -6.6 kcal/mol for adenosine kinase, ornithine decarboxylase, and triose phosphate isomerase respectively. However, hydrogen bond was not involved in the interaction of stigmasterol with all the three enzymes, but hydrophobic interaction seemed to play a vital role in the binding phenomenon which was predicted to be non-competitive like type of inhibition. It was concluded that binding to the three selected enzymes, especially triose phosphate isomerase, might be involved in the antitrypanosomal activity of stigmasterol but not mediated via a hydrogen bond interaction.Keywords: antitrypanosomal, in silico, molecular docking, stigmasterol
Procedia PDF Downloads 2761313 Theoretical and Experimental Investigation of Structural, Electrical and Photocatalytic Properties of K₀.₅Na₀.₅NbO₃ Lead- Free Ceramics Prepared via Different Synthesis Routes
Authors: Manish Saha, Manish Kumar Niranjan, Saket Asthana
Abstract:
The K₀.₅Na₀.₅NbO₃ (KNN) system has emerged as one of the most promising lead-free piezoelectric over the years. In this work, we perform a comprehensive investigation of electronic structure, lattice dynamics and dielectric/ferroelectric properties of the room temperature phase of KNN by combining ab-initio DFT-based theoretical analysis and experimental characterization. We assign the symmetry labels to KNN vibrational modes and obtain ab-initio polarized Raman spectra, Infrared (IR) reflectivity, Born-effective charge tensors, oscillator strengths etc. The computed Raman spectrum is found to agree well with the experimental spectrum. In particular, the results suggest that the mode in the range ~840-870 cm-¹ reported in the experimental studies is longitudinal optical (LO) with A_1 symmetry. The Raman mode intensities are calculated for different light polarization set-ups, which suggests the observation of different symmetry modes in different polarization set-ups. The electronic structure of KNN is investigated, and an optical absorption spectrum is obtained. Further, the performances of DFT semi-local, metal-GGA and hybrid exchange-correlations (XC) functionals, in the estimation of KNN band gaps are investigated. The KNN bandgap computed using GGA-1/2 and HSE06 hybrid functional schemes are found to be in excellant agreement with the experimental value. The COHP, electron localization function and Bader charge analysis is also performed to deduce the nature of chemical bonding in the KNN. The solid-state reaction and hydrothermal methods are used to prepare the KNN ceramics, and the effects of grain size on the physical characteristics these ceramics are examined. A comprehensive study on the impact of different synthesis techniques on the structural, electrical, and photocatalytic properties of ferroelectric ceramics KNN. The KNN-S prepared by solid-state method have significantly larger grain size as compared to that for KNN-H prepared by hydrothermal method. Furthermore, the KNN-S is found to exhibit higher dielectric, piezoelectric and ferroelectric properties as compared to KNN-H. On the other hand, the increased photocatalytic activity is observed in KNN-H as compared to KNN-S. As compared to the hydrothermal synthesis, the solid-state synthesis causes an increase in the relative dielectric permittivity (ε^') from 2394 to 3286, remnant polarization (P_r) from 15.38 to 20.41 μC/cm^², planer electromechanical coupling factor (k_p) from 0.19 to 0.28 and piezoelectric coefficient (d_33) from 88 to 125 pC/N. The KNN-S ceramics are also found to have a lower leakage current density, and higher grain resistance than KNN-H ceramic. The enhanced photocatalytic activity of KNN-H is attributed to relatively smaller particle sizes. The KNN-S and KNN-H samples are found to have degradation efficiencies of RhB solution of 20% and 65%, respectively. The experimental study highlights the importance of synthesis methods and how these can be exploited to tailor the dielectric, piezoelectric and photocatalytic properties of KNN. Overall, our study provides several bench-mark important results on KNN that have not been reported so far.Keywords: lead-free piezoelectric, Raman intensity spectrum, electronic structure, first-principles calculations, solid state synthesis, photocatalysis, hydrothermal synthesis
Procedia PDF Downloads 471312 Parametric Study on Dynamic Analysis of Composite Laminated Plate
Authors: Junaid Kameran Ahmed
Abstract:
A laminated plate composite of graphite/epoxy has been analyzed dynamically in the present work by using a quadratic element (8-node diso-parametric), and by depending on 1st order shear deformation theory, every node in this element has 6-degrees of freedom (displacement in x, y, and z axis and twist about x, y, and z axis). The dynamic analysis in the present work covered parametric studies on a composite laminated plate (square plate) to determine its effect on the natural frequency of the plate. The parametric study is represented by set of changes (plate thickness, number of layers, support conditions, layer orientation), and the plates have been simulated by using ANSYS package 12. The boundary conditions considered in this study, at all four edges of the plate, are simply supported and fixed boundary condition. The results obtained from ANSYS program show that the natural frequency for both fixed and simply supported increases with increasing the number of layers, but this increase in the natural frequency for the first five modes will be neglected after 10 layers. And it is observed that the natural frequency of a composite laminated plate will change with the change of ply orientation, the natural frequency increases and it will be at maximum with angle 45 of ply for simply supported laminated plate, and maximum natural frequency will be with cross-ply (0/90) for fixed laminated composite plate. It is also observed that the natural frequency increase is approximately doubled when the thickness is doubled.Keywords: laminated plate, orthotropic plate, square plate, natural frequency (free vibration), composite (graphite / epoxy)
Procedia PDF Downloads 3471311 Pharmacokinetic Monitoring of Glimepiride and Ilaprazole in Rat Plasma by High Performance Liquid Chromatography with Diode Array Detection
Authors: Anil P. Dewani, Alok S. Tripathi, Anil V. Chandewar
Abstract:
Present manuscript reports the development and validation of a quantitative high performance liquid chromatography method for the pharmacokinetic evaluation of Glimepiride (GLM) and Ilaprazole (ILA) in rat plasma. The plasma samples were involved with Solid phase extraction process (SPE). The analytes were resolved on a Phenomenex C18 column (4.6 mm× 250 mm; 5 µm particle size) using a isocratic elution mode comprising methanol:water (80:20 % v/v) with pH of water modified to 3 using Formic acid, the total run time was 10 min at 225 nm as common wavelength, the flow rate throughout was 1ml/min. The method was validated over the concentration range from 10 to 600 ng/mL for GLM and ILA, in rat plasma. Metformin (MET) was used as Internal Standard. Validation data demonstrated the method to be selective, sensitive, accurate and precise. The limit of detection was 1.54 and 4.08 and limit of quantification was 5.15 and 13.62 for GLM and ILA respectively, the method demonstrated excellent linearity with correlation coefficients (r2) 0.999. The intra and inter-day precision (RSD%) values were < 2.0% for both ILA and GLM. The method was successfully applied in pharmacokinetic studies followed by oral administration in rats.Keywords: pharmacokinetics, glimepiride, ilaprazole, HPLC, SPE
Procedia PDF Downloads 3671310 Traditional Herbal Medicine Used to Treat Infertility in Women by Traditional Practitioner of Malwa Region of Madhya Pradesh, India
Authors: Shweta Shriwas, Sumeet Dwivedi
Abstract:
Knowledge of use of traditional medicine is as old as human civilization in almost every system of medicine. Traditional practitioner viz., vaidhayas, ojha, hakim have their own herbal therapy in the treatment of infertility among women’s. Infertility is very common in developed and developing countries due to busy life style of women’s. The present study was initiated with an aim to identify medicinal plants resources from traditional practitioners of Malwa region of Madhya Pradesh to treat infertility. An ethnomedicinal study of Malwa region viz., Indore, Dewas, Ratlam, Ujjain, Dhar, Mandsour and Neemuch of Madhya Pradesh, India comprising fifty-seven study site was conducted during Jan-217 to June-2017. During the course of present investigation, the traditional use of medicinal plants for infertility in women was revealed by traditional practitioner. The botanical name, family, local name, part used, habit along with mode of their administration and dose duration were enumerated.Keywords: herbal medicine, infertility, traditional, Malwa, Madhya Pradesh
Procedia PDF Downloads 432