Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3617

Search results for: periodic structures

3617 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads

Authors: Seyed Sadegh Naseralavi


This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.

Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation

Procedia PDF Downloads 185
3616 Theoretical Analysis of Mechanical Vibration for Offshore Platform Structures

Authors: Saeed Asiri, Yousuf Z. AL-Zahrani


A new class of support structures, called periodic structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that creates stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities; and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.

Keywords: vibrations, periodic structures, offshore, platforms, transfer matrix method

Procedia PDF Downloads 215
3615 The Structure of Invariant Manifolds after a Supercritical Hamiltonian Hopf Bifurcation

Authors: Matthaios Katsanikas


We study the structure of the invariant manifolds of complex unstable periodic orbits of a family of periodic orbits, in a 3D autonomous Hamiltonian system of galactic type, after a transition of this family from stability to complex instability (Hamiltonian Hopf bifurcation). We consider the case of a supercritical Hamiltonian Hopf bifurcation. The invariant manifolds of complex unstable periodic orbits have two kinds of structures. The first kind is represented by a disk confined structure on the 4D space of section. The second kind is represented by a complicated central tube structure that is associated with an extended network of tube structures, strips and flat structures of sheet type on the 4D space of section.

Keywords: dynamical systems, galactic dynamics, chaos, phase space

Procedia PDF Downloads 63
3614 An Ancient Rule for Constructing Dodecagonal Quasi-Periodic Formations

Authors: Rima A. Ajlouni


The discovery of quasi-periodic structures in material science is revealing an exciting new class of symmetries, which has never been explored before. Due to their unique structural and visual properties, these symmetries are drawing interest from many scientific and design disciplines. Especially, in art and architecture, these symmetries can provide a rich source of geometry for exploring new patterns, forms, systems, and structures. However, the structural systems of these complicated symmetries are still posing a perplexing challenge. While much of their local order has been explored, the global governing system is still unresolved. Understanding their unique global long-range order is essential to their generation and application. The recent discovery of dodecagonal quasi-periodic patterns in historical Islamic architecture is generating a renewed interest into understanding the mathematical principles of traditional Islamic geometry. Astonishingly, many centuries before its description in the modern science, ancient artists, by using the most primitive tools (a compass and a straight edge), were able to construct patterns with quasi-periodic formations. These ancient patterns can be found all over the ancient Islamic world, many of which exhibit formations with 5, 8, 10 and 12 quasi-periodic symmetries. Based on the examination of these historical patterns and derived from the generating principles of Islamic geometry, a global multi-level structural model is presented that is able to describe the global long-range order of dodecagonal quasi-periodic formations in Islamic Architecture. Furthermore, this method is used to construct new quasi-periodic tiling systems as well as generating their deflation and inflation rules. This method can be used as a general guiding principle for constructing infinite patches of dodecagon-based quasi-periodic formations, without the need for local strategies (tiling, matching, grid, substitution, etc.) or complicated mathematics; providing an easy tool for scientists, mathematicians, teachers, designers and artists, to generate and study a wide range of dodecagonal quasi-periodic formations.

Keywords: dodecagonal, Islamic architecture, long-range order, quasi-periodi

Procedia PDF Downloads 318
3613 Defuzzification of Periodic Membership Function on Circular Coordinates

Authors: Takashi Mitsuishi, Koji Saigusa


This paper presents circular polar coordinates transformation of periodic fuzzy membership function. The purpose is identification of domain of periodic membership functions in consequent part of IF-THEN rules. The proposed methods are applied to the simple color construct system.

Keywords: periodic membership function, polar coordinates transformation, defuzzification, circular coordinates

Procedia PDF Downloads 220
3612 Micromechanics Modeling of 3D Network Smart Orthotropic Structures

Authors: E. M. Hassan, A. L. Kalamkarov


Two micromechanical models for 3D smart composite with embedded periodic or nearly periodic network of generally orthotropic reinforcements and actuators are developed and applied to cubic structures with unidirectional orientation of constituents. Analytical formulas for the effective piezothermoelastic coefficients are derived using the Asymptotic Homogenization Method (AHM). Finite Element Analysis (FEA) is subsequently developed and used to examine the aforementioned periodic 3D network reinforced smart structures. The deformation responses from the FE simulations are used to extract effective coefficients. The results from both techniques are compared. This work considers piezoelectric materials that respond linearly to changes in electric field, electric displacement, mechanical stress and strain and thermal effects. This combination of electric fields and thermo-mechanical response in smart composite structures is characterized by piezoelectric and thermal expansion coefficients. The problem is represented by unit-cell and the models are developed using the AHM and the FEA to determine the effective piezoelectric and thermal expansion coefficients. Each unit cell contains a number of orthotropic inclusions in the form of structural reinforcements and actuators. Using matrix representation of the coupled response of the unit cell, the effective piezoelectric and thermal expansion coefficients are calculated and compared with results of the asymptotic homogenization method. A very good agreement is shown between these two approaches.

Keywords: asymptotic homogenization method, finite element analysis, effective piezothermoelastic coefficients, 3D smart network composite structures

Procedia PDF Downloads 314
3611 Hybrid Inventory Model Optimization under Uncertainties: A Case Study in a Manufacturing Plant

Authors: E. Benga, T. Tengen, A. Alugongo


Periodic and continuous inventory models are the two classical management tools used to handle inventories. These models have advantages and disadvantages. The implementation of both continuous (r,Q) inventory and periodic (R, S) inventory models in most manufacturing plants comes with higher cost. Such high inventory costs are due to the fact that most manufacturing plants are not flexible enough. Since demand and lead-time are two important variables of every inventory models, their effect on the flexibility of the manufacturing plant matter most. Unfortunately, these effects are not clearly understood by managers. The reason is that the decision parameters of the continuous (r, Q) inventory and periodic (R, S) inventory models are not designed to effectively deal with the issues of uncertainties such as poor manufacturing performances, delivery performance supplies performances. There is, therefore, a need to come up with a predictive and hybrid inventory model that can combine in some sense the feature of the aforementioned inventory models. A linear combination technique is used to hybridize both continuous (r, Q) inventory and periodic (R, S) inventory models. The behavior of such hybrid inventory model is described by a differential equation and then optimized. From the results obtained after simulation, the continuous (r, Q) inventory model is more effective than the periodic (R, S) inventory models in the short run, but this difference changes as time goes by. Because the hybrid inventory model is more cost effective than the continuous (r,Q) inventory and periodic (R, S) inventory models in long run, it should be implemented for strategic decisions.

Keywords: periodic inventory, continuous inventory, hybrid inventory, optimization, manufacturing plant

Procedia PDF Downloads 311
3610 Effect of Geometric Imperfections on the Vibration Response of Hexagonal Lattices

Authors: P. Caimmi, E. Bele, A. Abolfathi


Lattice materials are cellular structures composed of a periodic network of beams. They offer high weight-specific mechanical properties and lend themselves to numerous weight-sensitive applications. The periodic internal structure responds to external vibrations through characteristic frequency bandgaps, making these materials suitable for the reduction of noise and vibration. However, the deviation from architectural homogeneity, due to, e.g., manufacturing imperfections, has a strong influence on the mechanical properties and vibration response of these materials. In this work, we present results on the influence of geometric imperfections on the vibration response of hexagonal lattices. Three classes of geometrical variables are used: the characteristics of the architecture (relative density, ligament length/cell size ratio), imperfection type (degree of non-periodicity, cracks, hard inclusions) and defect morphology (size, distribution). Test specimens with controlled size and distribution of imperfections are manufactured through selective laser sintering. The Frequency Response Functions (FRFs) in the form of accelerance are measured, and the modal shapes are captured through a high-speed camera. The finite element method is used to provide insights on the extension of these results to semi-infinite lattices. An updating procedure is conducted to increase the reliability of numerical simulation results compared to experimental measurements. This is achieved by updating the boundary conditions and material stiffness. Variations in FRFs of periodic structures due to changes in the relative density of the constituent unit cell are analysed. The effects of geometric imperfections on the dynamic response of periodic structures are investigated. The findings can be used to open up the opportunity for tailoring these lattice materials to achieve optimal amplitude attenuations at specific frequency ranges.

Keywords: lattice architectures, geometric imperfections, vibration attenuation, experimental modal analysis

Procedia PDF Downloads 47
3609 Existence of positive periodic solutions for certain delay differential equations

Authors: Farid Nouioua, Abdelouaheb Ardjouni


In this article, we study the existence of positive periodic solutions of certain delay differential equations. In the process we convert the differential equation into an equivalent integral equation after which appropriate mappings are constructed. We then employ Krasnoselskii's fixed point theorem to obtain sufficient conditions for the existence of a positive periodic solution of the differential equation. The obtained results improve and extend the results in the literature. Finally, an example is given to illustrate our results.

Keywords: delay differential equations, positive periodic solutions, integral equations, Krasnoselskii fixed point theorem

Procedia PDF Downloads 279
3608 On Periodic Integer-Valued Moving Average Models

Authors: Aries Nawel, Bentarzi Mohamed


This paper deals with the study of some probabilistic and statistical properties of a Periodic Integer-Valued Moving Average Model (PINMA_{S}(q)). The closed forms of the mean, the second moment and the periodic autocovariance function are obtained. Furthermore, the time reversibility of the model is discussed in details. Moreover, the estimation of the underlying parameters are obtained by the Yule-Walker method, the Conditional Least Square method (CLS) and the Weighted Conditional Least Square method (WCLS). A simulation study is carried out to evaluate the performance of the estimation method. Moreover, an application on real data set is provided.

Keywords: periodic integer-valued moving average, periodically correlated process, time reversibility, count data

Procedia PDF Downloads 67
3607 Defect Modes in Multilayered Piezoelectric Structures

Authors: D. G. Piliposyan


Propagation of electro-elastic waves in a piezoelectric waveguide with finite stacks and a defect layer is studied using a modified transfer matrix method. The dispersion equation for a periodic structure consisting of unit cells made up from two piezoelectric materials with metallized interfaces is obtained. An analytical expression, for the transmission coefficient for a waveguide with finite stacks and a defect layer, that is found can be used to accurately detect and control the position of the passband within a stopband. The result can be instrumental in constructing a tunable waveguide made of layers of different or identical piezoelectric crystals and separated by metallized interfaces.

Keywords: piezoelectric layered structure, periodic phononic crystal, bandgap, bloch waves

Procedia PDF Downloads 145
3606 Structural Identification for Layered Composite Structures through a Wave and Finite Element Methodology

Authors: Rilwan Kayode Apalowo, Dimitrios Chronopoulos


An approach for identifying the geometric and material characteristics of layered composite structures through an inverse wave and finite element methodology is proposed. These characteristics are obtained through multi-frequency single shot measurements. However, it is established that the frequency regime of the measurements does not matter, meaning that both ultrasonic and structural dynamics frequency spectra can be employed. Taking advantage of a full FE (finite elements) description of the periodic composite, the scheme is able to account for arbitrarily complex structures. In order to demonstrate the robustness of the presented scheme, it is applied to a sandwich composite panel and results are compared with that of experimental characterization techniques. Excellent agreement is obtained with the experimental measurements.

Keywords: structural identification, non-destructive evaluation, finite elements, wave propagation, layered structures, ultrasound

Procedia PDF Downloads 60
3605 Stabilization of Displaced Periodic Orbit Using Feedback Linearization Control Scheme

Authors: Arun Kumar Yadav, Badam Singh Kushvah


In the present work, we investigated displaced periodic orbits in the linear order in the circular restricted three-body Sun-Jupiter system, where the third mass-less body utilizes solar electric sail. The electric solar sail is a new space propulsion concept which uses the solar wind momentum for producing thrust, and it is somewhat like to the more well-known solar radiation pressure sail which is often called simply the solar sail. Moreover, we implement the feedback linearization control scheme to perform the stabilization and trajectory tracking for the nonlinear system. Further, we derived periodic orbits analytically in linear order by introducing a first order approximation. These approximate analytic solutions are utilized in a numerical search to determine displaced periodic orbit in the full nonlinear model. We found the displaced periodic orbit for the defined non-linear model and stabilized the model.

Keywords: solar electric sail, circular restricted three-body problem (CRTBP), displaced orbit, feedback linearization control

Procedia PDF Downloads 116
3604 Shear Elastic Waves in Disordered Anisotropic Multi-Layered Periodic Structure

Authors: K. B. Ghazaryan, R. A. Ghazaryan


Based on the constitutive model and anti-plane equations of anisotropic elastic body of monoclinic symmetry we consider the problem of shear wave propagation in multi-layered disordered composite structure with point defect. Using transfer matrix method the analytic expression is obtained providing solutions of shear Floquet wave propagation in periodic disordered anisotropic structure. The usefulness of the obtained analytical expression was discussed also in reflection and refraction problems from multi-layered reflector as well as in vibration problem of multi-layered waveguides. Numerical results are presented highlighting the effects arising in disordered periodic structure due to defects of multi-layered structure.

Keywords: shear elastic waves, monoclinic anisotropic media, periodic structure, disordered multilayer laminae, multi-layered waveguide

Procedia PDF Downloads 290
3603 A Modified Periodic 2D Cellular Re-Entrant Honeycomb Model to Enhance the Auxetic Elastic Properties

Authors: Sohaib Z. Khan, Farrukh Mustahsan, Essam R. I. Mahmoud, S. H. Masood


Materials or structures that contract laterally on the application of a compressive load and vice versa are said to be Auxetic materials which exhibit Negative Poisson’s Ratio (NPR). Numerous auxetic structures are proposed in the literature. One of the most studied periodic auxetic structure is the re-entrant honeycomb model. In this paper, a modified re-entrant model is proposed to enhance the auxetic behavior. The paper aimed to investigate the elastic behaviour of the proposed model to improve Young’s modulus and NPR by evaluating the analytical model. Finite Element Analysis (FEA) is also conducted to support the analytical results. A significant increment in Young’s modulus and NPR can be achieved in one of the two orthogonal directions of the loading at the cost of compromising these values in other direction. The proposed modification resulted in lower relative densities when compared to the existing re-entrant honeycomb structure. A trade-off in the elastic properties in one direction at low relative density makes the proposed model suitable for uni-direction applications where higher stiffness and NPR is required, and strength to weight ratio is important.

Keywords: 2D model, auxetic materials, re-entrant honeycomb, negative Poisson's ratio

Procedia PDF Downloads 51
3602 Acoustic Radiation from an Infinite Cylindrical Shell with Periodic Lengthwise Ribs

Authors: Yunzhe Tong, Jun Fan, Bin Wang


The vibroacoustic behavior of an immersed infinite cylindrical shell with periodic lengthwise ribs has been studied in this paper. The motions of the shell are described by the Donnell equations. Each lengthwise rib is modeled as an elastic beam. The motions of the bulkheads are decomposed into the longitudinal motions and flexural motions. The analytical expressions of the shell motions can be obtained through circumferential mode expansion, Fourier Transform and periodic boundary condition in the circumferential direction. Furthermore, the far-field radiated pressure has been obtained using the stationary phase. The analysis of wavenumber domain shows that periodic lengthwise stiffeners in the circumferential direction can produce flexural Bloch waves. The dominant feature in far-field pressure amplitude is the resonance of the supersonic components of the flexural Bloch waves in the circumferential direction.

Keywords: flexural Bloch wave, stiffened shell, vibroacoustics, wavenumber analysis

Procedia PDF Downloads 138
3601 Homogenization of a Non-Linear Problem with a Thermal Barrier

Authors: Hassan Samadi, Mustapha El Jarroudi


In this work, we consider the homogenization of a non-linear problem in periodic medium with two periodic connected media exchanging a heat flux throughout their common interface. The interfacial exchange coefficient λ is assumed to tend to zero or to infinity following a rate λ=λ(ε) when the size ε of the basic cell tends to zero. Three homogenized problems are determined according to some critical value depending of λ and ε. Our method is based on Γ-Convergence techniques.

Keywords: variational methods, epiconvergence, homogenization, convergence technique

Procedia PDF Downloads 410
3600 Developing Performance Model for Road Side Elements Receiving Periodic Maintenance

Authors: Ayman M. Othman, Hassan Y. Ahmed, Tallat A. Ali


Inadequate maintenance programs and funds allocated for highway networks in the developed countries have led to fast deterioration of road side elements. Therefore, this research focuses on developing a performance model for road side elements periodic maintenance activities. Road side elements that receive periodic maintenance include; earthen shoulder, road signs and traffic markings. Using the level of service concept, the developed model can determine the optimal periodic maintenance intervals for those elements based on a selected level of service suitable with the available periodic maintenance budget. Data related to time periods for progressive deterioration stages for the chosen elements were collected. Ten maintenance experts in Aswan, Sohag and Assiut cities were interviewed for that purpose. Time in months related to 10%, 25%, 40%, 50%, 75%, 90% and 100% deterioration of each road side element was estimated based on the experts opinion. Least square regression analysis has shown that a power function represents the best fit for earthen shoulders edge drop-off and damage of road signs with time. It was also evident that, the progressive dirtiness of road signs could be represented by a quadratic function an a linear function could represent the paint degradation nature of both traffic markings and road signs. Actual measurements of earthen shoulder edge drop-off agree considerably with the developed model.

Keywords: deterioration, level of service, periodic maintenance, performance model, road side element

Procedia PDF Downloads 495
3599 Fabrication of Periodic Graphene-Like Structure of Zinc Oxide Piezoelectric Device

Authors: Zi-Gui Huang, Shen-Hsien Hu


This study proposes a fabrication of phononic-crystal acoustic wave device. A graphene-like atomic structure was adopted as the main research subject, and a graphene-like structure was designed using piezoelectric material zinc oxide and its periodic boundary conditions were defined using the finite element method. The effects of a hexagonal honeycomb structure were investigated regarding the band gap phenomenon. The use of micro-electromechanical systems process technology to make the film etched micron graphics, designed to produce four kinds of different piezoelectric structure (plat, periodic, single defect and double defects). Frequency response signals and phase change were also measured in this paper.

Keywords: MEMS, phononic crystal, piezoelectric material, Zinc oxide

Procedia PDF Downloads 436
3598 Effects of Continuous and Periodic Aerobic Exercises on C Reactive Protein in Overweight Women

Authors: Maesoomeh Khorshidi Mehr, Mohammad Sajadian, Shadi Alipour


The purpose of the present study was to compare the effects of eight weeks of continuous and periodic aerobic exercises on serum levels of CRP in overweight woman. 36 woman aged between 20 and 35 years from the city of Ahwaz were randomly selected as the sample of the study. This sample was further divided into three groups (n= 12) of continuous aerobic exercise, periodic aerobic exercise, and control. Subjects of the groups of continuous and periodic aerobic exercise participated in 8 weeks of specialized exercises while the control group subjects did not take part in any regular physical activity program. Blood samples were collected from subjects in 24 hours prior to and 48 hours past to the intervention period. Afterwards, the serum level of CRP was measured for each blood sample. Results showed that BMI and serum level of CRP both significantly reduced as a result of aerobic exercises. However, no statistically significant difference was recorded between the extent of effects of the former and latter aerobic exercise types. Eight weeks of aerobic exercise will probably result in reduced inflammation and cardiovascular diseases risk in overweight women. The reason for lack of difference between effects of continuous and periodic aerobic exercise may lie in the similarity of average intensity and length of physical administered activities.

Keywords: heart diseases, aerobic exercise, inflammation, CRP, overweight

Procedia PDF Downloads 119
3597 Motion of an Infinitesimal Particle in Binary Stellar Systems: Kepler-34, Kepler-35, Kepler-16, Kepler-413

Authors: Rajib Mia, Badam Singh Kushvah


The present research was motivated by the recent discovery of the binary star systems. In this paper, we use the restricted three-body problem in the binary stellar systems, considering photogravitational effects of both the stars. The aim of this study is to investigate the motion of the infinitesimal mass in the vicinity of the Lagrangian points. The stability and periodic orbits of collinear points and the stability and trajectories of the triangular points are studied in stellar binary systems Kepler-34, Kepler-35, Kepler-413 and Kepler-16 systems. A detailed comparison is made among periodic orbits and trajectories.

Keywords: exoplanetary systems, lagrangian points, periodic orbit, restricted three body problem, stability

Procedia PDF Downloads 345
3596 Retrofitting of Historical Structures in Van City

Authors: Eylem Güzel, Mustafa Gülen


Historical structures are the most important symbols of a country that link the past with the future. In order to transfer them in their present conditions to the next generations, maintaining these historical structures are one of our main tasks. Seismic performance of historical structures damaged by the earthquake effects can be enhanced by repair and retrofitting applications. However, repair and retrofitting applications of historical structures are more complicated compared with the traditional structures. For this reason, they need much more attention in repair and retrofitting applications to preserve the spirit of historical structures. In this study, the present condition of selected historical structures built up in Van city that has a very rich historical heritage is given and the necessity of repair and retrofitting applications of historical structures are debated in detail.

Keywords: historical structures, repair, retrofitting, Van city

Procedia PDF Downloads 245
3595 Optimal Emergency Shipment Policy for a Single-Echelon Periodic Review Inventory System

Authors: Saeed Poormoaied, Zumbul Atan


Emergency shipments provide a powerful mechanism to alleviate the risk of imminent stock-outs and can result in substantial benefits in an inventory system. Customer satisfaction and high service level are immediate consequences of utilizing emergency shipments. In this paper, we consider a single-echelon periodic review inventory system consisting of a single local warehouse, being replenished from a central warehouse with ample capacity in an infinite horizon setting. Since the structure of the optimal policy appears to be complicated, we analyze this problem under an order-up-to-S inventory control policy framework, the (S, T) policy, with the emergency shipment consideration. In each period of the periodic review policy, there is a single opportunity at any point of time for the emergency shipment so that in case of stock-outs, an emergency shipment is requested. The goal is to determine the timing and amount of the emergency shipment during a period (emergency shipment policy) as well as the base stock periodic review policy parameters (replenishment policy). We show that how taking advantage of having an emergency shipment during periods improves the performance of the classical (S, T) policy, especially when fixed and unit emergency shipment costs are small. Investigating the structure of the objective function, we develop an exact algorithm for finding the optimal solution. We also provide a heuristic and an approximation algorithm for the periodic review inventory system problem. The experimental analyses indicate that the heuristic algorithm is computationally more efficient than the approximation algorithm, but in terms of the solution efficiency, the approximation algorithm performs very well. We achieve up to 13% cost savings in the (S, T) policy if we apply the proposed emergency shipment policy. Moreover, our computational results reveal that the approximated solution is often within 0.21% of the globally optimal solution.

Keywords: emergency shipment, inventory, periodic review policy, approximation algorithm.

Procedia PDF Downloads 60
3594 Sustainable Design in the Use of Deployable Structures

Authors: Umweni Osahon Joshua, Anton Ianakiev


Deployable structures have been used in various scenarios from moving roofs in stadia, space antennae or booms. There has been a lot of literature relating deployable structures but with main focus on space applications. The complexities in the design of deployable structures may be the reason only few have been constructed for earth based solutions. This paper intends to explore the possibilities of integrating sustainable design concepts in deployable structures. Key aspects of sustainable design of structures as applicable to deployable structures have not been explored. Sustainable design of structures have mainly been concerned with static structures in the built environment. However, very little literature, concepts or framework has been drafted as it relates to deployable structures or their integration to static structures as a model for sustainable design. This article seeks to address this flaw in sustainable design for structural engineering and to provide a framework for designing structures in a sustainable manner. This framework will apply to deployable structures for earth-based environments as a form of disaster relief measures and also as part of static structures in the built environment.

Keywords: deployable structures, sustainable design, framework, earth-based environments

Procedia PDF Downloads 383
3593 On the Effects of the Frequency and Amplitude of Sinusoidal External Cross-Flow Excitation Forces on the Vortex-Induced-Vibrations of an Oscillating Cylinder

Authors: Abouzar Kaboudian, Ravi Chaithanya Mysa, Boo Cheong Khoo, Rajeev Kumar Jaiman


Vortex induced vibrations can significantly affect the effectiveness of structures in aerospace as well as offshore marine industries. The oscillatory nature of the forces resulting from the vortex shedding around bluff bodies can result in undesirable effects such as increased loading, stresses, deflections, vibrations and noise in the structures, and also reduced fatigue life of the structures. To date, most studies concentrate on either the free oscillations or the prescribed motion of the bluff bodies. However, the structures in operation are usually subject to the external oscillatory forces (e.g. due to the platform motions in offshore industries). Periodic forces can be considered as a combinations of sinusoids. In this work, we present the effects of sinusoidal external cross-flow forces on the vortex-induced vibrations of an oscillating cylinder. The effects of the amplitude, as well as the frequency of these sinusoidal external force on the fluid-forces on the oscillating cylinder are carefully studied and presented. Moreover, we present the transition of the response to be dominated by the vortex-induced-vibrations to the range where it is mostly dictated by the external oscillatory forces. Furthermore, we will discuss how the external forces can affect the flow structures around a cylinder. All results are compared against free oscillations of the cylinder.

Keywords: circular cylinder, external force, vortex-shedding, VIV

Procedia PDF Downloads 261
3592 A Review on Enhancing Heat Transfer Processes by Open-Cell Metal Foams and Industrial Applications

Authors: S. Cheragh Dar, M. Saljooghi, A. Babrgir


In the last couple of decades researchers' attitudes were focused on developing and enhancing heat transfer processes by using new components or cellular solids that divide into stochastic structures and periodic structures. Open-cell metal foams are part of stochastic structures families that they can be considered as an avant-garde technology and they have unique properties, this porous media can have tremendous achievements in thermal processes. This paper argues and surveys postulating possible in industrial thermal issues which include: compact electronic cooling, heat exchanger, aerospace, fines, turbo machinery, automobiles, crygen tanks, biomechanics, high temperature filters and etc. Recently, by surveying exponential rate of publications in thermal open-cell metal foams, all can be demonstrated in a holistic view which can lead researchers to a new level of understanding in different industrial thermal sections.

Keywords: heat transfer, industrial thermal, cellular solids, open cell metal foam

Procedia PDF Downloads 166
3591 Onion Storage and the Roof Influence in the Tropics

Authors: O. B. Imoukhuede, M. O. Ale


The periodic scarcity of onion requires an urgent solution in Nigerian agro- economy. The high percentage of onion losses incurred after the harvesting period is due to non-availability of appropriate facility for its storage. Therefore, some storage structures were constructed with different roofing materials. The response of the materials to the weather parameters like temperature and relative humidity were evaluated to know their effects on the performance of the storage structures. The temperature and relative humidity were taken three times daily alongside with the weight of the onion in each of the structures; the losses as indicated by loss indices like shrinkage, rottenness, sprouting, and colour were identified and percentage loss per week determined. The highest mean percentage loss (22%) was observed in the structure with iron roofing materials while structure with thatched materials had the lowest (9.4%); The highest temperature was observed in the structure with Asbestos roofing materials and no significant difference in the temperature value in the structure with thatched and Iron materials; highest relatively humidity was found in Asbestos roofing material while the lowest in the structure with iron matetrials. It was conclusively found that the storage structure with thatched roof had the best performance in terms of losses.

Keywords: Nigeria, onion, storage structures, weather parameters, roof materials, losses

Procedia PDF Downloads 446
3590 Existence and Stability of Periodic Traveling Waves in a Bistable Excitable System

Authors: M. Osman Gani, M. Ferdows, Toshiyuki Ogawa


In this work, we proposed a modified FHN-type reaction-diffusion system for a bistable excitable system by adding a scaled function obtained from a given function. We study the existence and the stability of the periodic traveling waves (or wavetrains) for the FitzHugh-Nagumo (FHN) system and the modified one and compare the results. The stability results of the periodic traveling waves (PTWs) indicate that most of the solutions in the fast family of the PTWs are stable for the FitzHugh-Nagumo equations. The instability occurs only in the waves having smaller periods. However, the smaller period waves are always unstable. The fast family with sufficiently large periods is always stable in FHN model. We find that the oscillation of pulse widths is absent in the standard FHN model. That motivates us to study the PTWs in the proposed FHN-type reaction-diffusion system for the bistable excitable media. A good agreement is found between the solutions of the traveling wave ODEs and the corresponding whole PDE simulation.

Keywords: bistable system, Eckhaus bifurcation, excitable media, FitzHugh-Nagumo model, periodic traveling waves

Procedia PDF Downloads 99
3589 Effects of Roof Materials on Onion Storage

Authors: Imoukhuede Oladunni Bimpe, Ale Monday Olatunbosun


Periodic scarcity of onion requires urgent solution in Nigerian agro-economy. The high percentage of onion losses incurred after harvesting period is due to non-availability of appropriate facility for its storage. Therefore, some storage structures were constructed with different roofing materials. The response of the materials to the weather parameters like temperature and relative humidity were evaluated to know their effects on the performance of the storage structures. The temperature and relative humidity were taken three times daily alongside with the weight of the onion in each of the structures; the losses as indicated by loss indices like shrinkage, rottenness, sprouting and colour were identified and percentage loss per week determined. The highest mean percentage loss (22%) was observed in the structure with iron roofing materials while structure with thatched materials had the lowest (9.4%); The highest temperature was observed in the structure with Asbestos roofing materials and no significant difference in the temperature value in the structure with thatched and Iron materials; highest relatively humidity was found in Asbestos roofing material while the lowest in the structure with Iron materials. It was conclusively found that the storage structure with thatched roof had the best performance in terms of losses.

Keywords: onion, storage structures, weather parameters, roof materials, losses

Procedia PDF Downloads 509
3588 Synchronization of Traveling Waves within a Hollow-Core Vortex

Authors: H. Ait Abderrahmane, M. Fayed, H. D. Ng, G. H. Vatistas


The present paper expands details and confirms the transition mechanism between two subsequent polygonal patterns of the hollow-core vortex. Using power spectral analysis, we confirm in this work that the transition from any N-gon to (N+1)-gon pattern observed within a hollow-core vortex of shallow rotating flows occurs in two steps. The regime was quasi-periodic before the frequencies lock (synchronization). The ratios of locking frequencies were found to be equal to (N-1)/N.

Keywords: patterns, swirling, quasi-periodic, synchronization

Procedia PDF Downloads 156