Search results for: home energy management system (HEMS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 30440

Search results for: home energy management system (HEMS)

14870 A Study of Preliminary Findings of Behavioral Patterns under Captive Conditions in Chinkara (Gazella bennettii) with Prospects for Future Conservation

Authors: Muhammad Idnan, Arshad Javid, Muhammad Nadeem

Abstract:

The present study was conducted from April 2013 to March 2014 to observe the behavioral parameters of Chinkara (Gazella bennettii) under captive conditions by comparing the captive-born and wild-caught animals for conservation strategies. Understanding the behavioral conformations plays a significant role in captive management. Due to human population explosion and mechanized hunting, the captive breeding seems to be the best way for sports hunting, bush meat, for leather industry and horns for traditional medicinal usage. Primarily, captive management has been used on trial and error basis due to deficiency of ethology of this least concerned species. Behavior of [(20 wild-caught (WC) and 10 captive-bred (CB)] adult Chinkara was observed at captive breeding facilities for ungulates at Ravi Campus, University of Veterinary and Animal Sciences at Kasur district which is situated on southeast side of Lahore. The average annual rainfall is about 650 mm, with frequent raining during monsoon. A focal sample was used to observe the various behavioral patterns for CB and WC chinkara. A similarity was observed in behavioral parameters in WC and CB animals, however, when the differences were considered, WC male deer showed a significantly higher degree of agonistic interaction as compared to the CB male chinkara. These findings suggest that there is no immediate impact of captivity on behavior of chinkara nevertheless 10 generations of captivity. It is suggested that the Chinkara is not suitable for domestication and for successful deer farming, a further study is recommended for ethology of chinkara.

Keywords: Chinkara (Gazella bennettii), domestication, deer farming, ex-situ conservation

Procedia PDF Downloads 154
14869 Comparison of Two Maintenance Policies for a Two-Unit Series System Considering General Repair

Authors: Seyedvahid Najafi, Viliam Makis

Abstract:

In recent years, maintenance optimization has attracted special attention due to the growth of industrial systems complexity. Maintenance costs are high for many systems, and preventive maintenance is effective when it increases operations' reliability and safety at a reduced cost. The novelty of this research is to consider general repair in the modeling of multi-unit series systems and solve the maintenance problem for such systems using the semi-Markov decision process (SMDP) framework. We propose an opportunistic maintenance policy for a series system composed of two main units. Unit 1, which is more expensive than unit 2, is subjected to condition monitoring, and its deterioration is modeled using a gamma process. Unit 1 hazard rate is estimated by the proportional hazards model (PHM), and two hazard rate control limits are considered as the thresholds of maintenance interventions for unit 1. Maintenance is performed on unit 2, considering an age control limit. The objective is to find the optimal control limits and minimize the long-run expected average cost per unit time. The proposed algorithm is applied to a numerical example to compare the effectiveness of the proposed policy (policy Ⅰ) with policy Ⅱ, which is similar to policy Ⅰ, but instead of general repair, replacement is performed. Results show that policy Ⅰ leads to lower average cost compared with policy Ⅱ. 

Keywords: condition-based maintenance, proportional hazards model, semi-Markov decision process, two-unit series systems

Procedia PDF Downloads 112
14868 The Role of Specificity in Mastering the English Article System

Authors: Sugene Kim

Abstract:

The English articles are taught as a binary system based on nominal countability and definiteness. Despite the detailed rules of prescriptive grammar, it has been consistently reported in the literature that their correct usage is extremely difficult to master even for advanced learners of English as a second language (ESL) or a foreign language (EFL). Given that an English sentence (except for an imperative) cannot be constructed without a noun, which is always paired with one of the indefinite, definite, and zero articles; it is essential to understand specifically what causes ESL/EFL learners to misuse them. To that end, this study examined EFL learners’ article use employing a one-group pre–post-test design. Forty-three Korean college students received instruction on correct English article usage for two 75-minute classes employing the binary schema set up for the study. They also practiced in class how to apply the rules as instructed. Then, the participants were assigned a forced-choice elicitation task, which was also used as a pre-test administered three months prior to the instruction. Unlike the pre-test on which they only chose the correct article for each of the 40 items, the post-instruction task additionally asked them to give written accounts of their decision-making procedure to choose the article as they did. The participants’ performance was scored manually by checking whether the answer given is correct or incorrect, and their written comments were first categorized using thematic analysis and then ranked by frequency. The analyses of the performance on the two tasks and the written think-aloud data suggested that EFL learners exhibit fluctuation between specificity and definiteness, overgeneralizing the use of the definite article for almost all cataphoric references. It was apparent that they have trouble distinguishing from the two concepts possibly because the former is almost never introduced in the grammar books or classes designed for ESL/EFL learners. Particularly, most participants were found to be ignorant of the possibility of using nouns as [+specific, –definite]. Not surprisingly, the correct answer rates for such nouns averaged out at 33% and 46% on the pre- and post-tests, respectively, which narrowly reach half the overall mean correct answer rates of 65% on the pre-test and 81% on the post-test. In addition, correct article use for specific indefinites was most impermeable to instruction when compared with nouns used as [–specific, –definite] or [± specific, +definite]. Such findings underline the necessity for expanding the binary schema to a ternary form that incorporates the specificity feature, albeit not morphologically marked in the English language.

Keywords: countability, definiteness, English articles, specificity, ternary system

Procedia PDF Downloads 117
14867 Breakthrough Innovation Thinking Technology of a Conglomerate for Next Generation Plan

Authors: Dongkyu Lee, Doan-Quoc Hoan, Soomi Shin

Abstract:

The purpose of this study is to suggest the Value Innovation type Breakthrough Innovation which is a Big Thinking Process that realizes a creative idea for the next generation innovation Master Plan of a company. The BI based on the PVI methodology is believed to contribute to the launching of a new business, the acquisition of new markets, and the development of an innovative management process.

Keywords: value, innovation, breakthrough innovation, Korean firm

Procedia PDF Downloads 590
14866 Polysaccharide-Based Oral Delivery Systems for Site Specific Delivery in Gastro-Intestinal Tract

Authors: Kaarunya Sampathkumar, Say Chye Joachim Loo

Abstract:

Oral delivery is regarded as the facile method for the administration of active pharmaceutical ingredients (API) and drug carriers. In an initiative towards sustainable nanotechnology, an oral nano-delivery system has been developed that is made entirely of food-based materials and can also act as a site-specific delivery device depending on the stimulus encountered in different parts of the gastrointestinal tract (GIT). The delivery system has been fabricated from food grade polysaccharide materials like chitosan and starch through electrospraying technique without the use of any organic solvents. A nutraceutical extracted from an Indian medicinal plant, has been loaded into the nano carrier to test its efficacy in encapsulation and stimuli based release of the active ingredient. The release kinetics of the nutraceutical from the carrier was evaluated in simulated gastric, intestinal and colonic fluid and was found to be triggered both by the enzymes and the pH in each part of the intestinal tract depending on the polysaccharide being used. The toxicity of the nanoparticles on the intestinal epithelial cells was tested and found to be relatively safe for up to 24 hours at a concentration of 0.2 mg/mL with cellular uptake also being observed. The developed nano carrier thus serves as a promising delivery vehicle for targeted delivery to different parts of the GIT with the inherent conditions of the GIT itself acting as the stimulus. In addition, being fabricated from food grade materials, the carrier could be potentially used for the targeted delivery of nutrients through functional foods.

Keywords: bioavailability, chitosan, delivery systems, encapsulation

Procedia PDF Downloads 209
14865 Electrokinetic Regulation of Flow in Microcrack Reservoirs

Authors: Aslanova Aida Ramiz

Abstract:

One of the important aspects of rheophysical problems in oil and gas extraction is the regulation of thermohydrodynamic properties of liquid systems using physical and physicochemical methods. It is known that the constituent parts of real fluid systems in oil and gas production are practically non-conducting, non-magnetically active components. Real heterogeneous hydrocarbon systems, from the structural point of view, consist of an infinite number of microscopic local ion-electrostatic cores distributed in the volume of the dispersion medium. According to Cohen's rule, double electric layers are formed at the contact boundaries of components in contact (oil-gas, oil-water, water-condensate, etc.) in a heterogeneous system, and as a result, each real fluid system can be represented as a complex composition of a set of local electrostatic fields. The electrokinetic properties of this structure are characterized by a certain electrode potential. Prof. F.H. Valiyev called this potential the α-factor and came up with the idea that many natural and technological rheophysical processes (effects) are essentially electrokinetic in nature, and by changing the α-factor, it is possible to adjust the physical properties of real hydraulic systems, including thermohydrodynamic parameters. Based on this idea, extensive research work was conducted, and the possibility of reducing hydraulic resistances and improving rheological properties was experimentally discovered in real liquid systems by reducing the electrical potential with various physical and chemical methods.

Keywords: microcracked, electrode potential, hydraulic resistance, Newtonian fluid, rheophysical properties

Procedia PDF Downloads 73
14864 Design and Implementation of an Affordable Electronic Medical Records in a Rural Healthcare Setting: A Qualitative Intrinsic Phenomenon Case Study

Authors: Nitika Sharma, Yogesh Jain

Abstract:

Introduction: An efficient Information System helps in improving the service delivery as well provides the foundation for policy and regulation of other building blocks of Health System. Health care organizations require an integrated working of its various sub-systems. An efficient EMR software boosts the teamwork amongst the various sub-systems thereby resulting in improved service delivery. Although there has been a huge impetus to EMR under the Digital India initiative, it has still not been mandated in India. It is generally implemented in huge funded public or private healthcare organizations only. Objective: The study was conducted to understand the factors that lead to the successful adoption of an affordable EMR in the low level healthcare organization. It intended to understand the design of the EMR and address the solutions to the challenges faced in adoption of the EMR. Methodology: The study was conducted in a non-profit registered Healthcare organization that has been providing healthcare facilities to more than 2500 villages including certain areas that are difficult to access. The data was collected with help of field notes, in-depth interviews and participant observation. A total of 16 participants using the EMR from different departments were enrolled via purposive sampling technique. The participants included in the study were working in the organization before the implementation of the EMR system. The study was conducted in one month period from 25 June-20 July 2018. The Ethical approval was taken from the institute along with prior approval of the participants. Data analysis: A word document of more than 4000 words was obtained after transcribing and translating the answers of respondents. It was further analyzed by focused coding, a line by line review of the transcripts, underlining words, phrases or sentences that might suggest themes to do thematic narrative analysis. Results: Based on the answers the results were thematically grouped under four headings: 1. governance of organization, 2. architecture and design of the software, 3. features of the software, 4. challenges faced in adoption and the solutions to address them. It was inferred that the successful implementation was attributed to the easy and comprehensive design of the system which has facilitated not only easy data storage and retrieval but contributes in constructing a decision support system for the staff. Portability has lead to increased acceptance by physicians. The proper division of labor, increased efficiency of staff, incorporation of auto-correction features and facilitation of task shifting has lead to increased acceptance amongst the users of various departments. Geographical inhibitions, low computer literacy and high patient load were the major challenges faced during its implementation. Despite of dual efforts made both by the architects and administrators to combat these challenges, there are still certain ongoing challenges faced by organization. Conclusion: Whenever any new technology is adopted there are certain innovators, early adopters, late adopters and laggards. The same pattern was followed in adoption of this software. He challenges were overcome with joint efforts of organization administrators and users as well. Thereby this case study provides a framework of implementing similar systems in public sector of countries that are struggling for digitizing the healthcare in presence of crunch of human and financial resources.

Keywords: EMR, healthcare technology, e-health, EHR

Procedia PDF Downloads 97
14863 Targetting T6SS of Klebsiella pneumoniae for Assessment of Immune Response in Mice for Therapeutic Lead Development

Authors: Sweta Pandey, Samridhi Dhyani, Susmita Chaudhuri

Abstract:

Klebsiella pneumoniae bacteria is a global threat to human health due to an increase in multi-drug resistance among strains. The hypervirulent strains of Klebsiella pneumoniae is a major trouble due to their association with life-threatening infections in a healthy population. One of the major virulence factors of hyper virulent strains of Klebsiella pneumoniae is the T6SS (Type six secretary system) which is majorly involved in microbial antagonism and causes interaction with the host eukaryotic cells during infections. T6SS mediates some of the crucial factors for establishing infection by the bacteria, such as cell adherence, invasion, and subsequent in vivo colonisation. The antibacterial activity and the cell invasion property of the T6SS system is a major requirement for the establishment of K. pneumoniae infections within the gut. The T6SS can be an appropriate target for developing therapeutics. The T6SS consists of an inner tube comprising hexamers of Hcp (Haemolysin -regulated protein) protein, and at the top of this tube sits VgrG (Valine glycine repeat protein G); the tip of the machinery consists of PAAR domain containing proteins which act as a delivery system for bacterial effectors. For this study, immune response to recombinant VgrG protein was generated to establish this protein as a potential immunogen for the development of therapeutic leads. The immunogenicity of the selected protein was determined by predicting the B cell epitopes by the BCEP analysis tool. The gene sequence for multiple domains of VgrG protein (phage_base_V, T6SS_Vgr, DUF2345) was selected and cloned in pMAL vector in E. coli. The construct was subcloned and expressed as a fusion protein of 203 residue protein with mannose binding protein tag (MBP) to enhance solubility and purification of this protein. The purified recombinant VgrG fusion protein was used for mice immunisation. The antiserum showed reactivity with the recombinant VgrG in ELISA and western blot. The immunised mice were challenged with K. pneumoniae bacteria and showed bacterial clearance in immunised mice. The recombinant VgrG protein can further be used for studying downstream signalling of VgrG protein in mice during infection and for therapeutic MAb development to eradicate K. pneumoniae infections.

Keywords: immune response, Klebsiella pneumoniae, multi-drug resistance, recombinant protein expression, T6SS, VgrG

Procedia PDF Downloads 94
14862 High Frequency Sonochemistry: A New Field of Cavitation‐Free Acoustic Materials Synthesis and Manipulation

Authors: Amgad Rezk, Heba Ahmed, Leslie Yeo

Abstract:

Ultrasound presents a powerful means for material synthesis. In this talk, we showcase a new field demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (kHz and up to ~2 MHz) for crystalising and manipulating a variety of nanoscale materials. At these frequencies, cavitation—which underpins most sonochemical processes—is largely absent, suggesting that altogether fundamentally different mechanisms are at dominant. Examples include the crystallization of highly oriented structures, quasi-2D metal-organic frameworks and nanocomposites. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with high-frequency surface vibration gives rise to molecular ordering and assembly on the nano and microscale.

Keywords: high-frequency acoustics, microfluidics, crystallisation, composite nanomaterials

Procedia PDF Downloads 117
14861 Quality of Life and Renal Biomarkers in Feline Chronic Kidney Disease

Authors: Bárbara Durão, Pedro Almeida, David Ramilo, André Meneses, Rute Canejo-Teixeira

Abstract:

The importance of quality of life (QoL) assessment in veterinary medicine is an integral part of patient care. This is especially true in cases of chronic diseases, such as chronic kidney disease (CKD), where the ever more advanced treatment options prolong the patient’s life. Whether this prolongment of life comes with an acceptable quality of life remains has been called into question. The aim of this study was to evaluate the relationship between CKD disease biomarkers and QoL in cats. Thirty-seven cats diagnosed with CKD and with no known concurrent illness were enrolled in an observational study. Through the course of several evaluations, renal biomarkers were assessed in blood and urine samples, and owners retrospectively described their cat’s quality of life using a validated instrument for this disease. Correlations between QoL scores (AWIS) and the biomarkers were assessed using Spearman’s rank test. Statistical significance was set at p-value < 0.05, and every serial sample was considered independent. Thirty-seven cats met the inclusion criteria, and all owners completed the questionnaire every time their pet was evaluated, giving a total of eighty-four questionnaires, and the average-weighted-impact-score was –0.5. Results showed there was a statistically significant correlation between the quality of life and most of 17 the studied biomarkers and confirmed that CKD has a negative impact on QoL in cats especially due to the management of the disease and secondary appetite disorders. To our knowledge, this is the attempt to assess the correlation between renal biomarkers and QoL in cats. Our results reveal a strong potential of this type of approach in clinical management, mainly in situations where it is not possible to measure biomarkers. Whilst health-related QoL is a reliable predictor of mortality and morbidity in humans; our findings can help improve the clinical practice in cats with CKD.

Keywords: chronic kidney disease, biomarkers, quality of life, feline

Procedia PDF Downloads 171
14860 Mesoporous BiVO4 Thin Films as Efficient Visible Light Driven Photocatalyst

Authors: Karolina Ordon, Sandrine Coste, Malgorzata Makowska-Janusik, Abdelhadi Kassiba

Abstract:

Photocatalytic processes play key role in the production of a new source of energy (as hydrogen), design of self-cleaning surfaces or for the environment preservation. The most challenging task deals with the purification of water distinguished by high efficiency. In the mentioned process, organic pollutants in solutions are decomposed to the simple, non-toxic compounds as H2O and CO2. The most known photocatalytic materials are ZnO, CdS and TiO2 semiconductors with a particular involvement of TiO2 as an efficient photocatalysts even with a high band gap equal to 3.2 eV which exploit only UV radiation from solar emitted spectrum. However, promising material with visible light induced photoactivity was searched through the monoclinic polytype of BiVO4 which has energy gap about 2.4 eV. As required in heterogeneous photocatalysis, the high contact surface is required. Also, BiVO4 as photocatalyst can be optimized by increasing its surface area by achieving the mesoporous structure synthesize. The main goal of the present work consists in the synthesis and characterization of BiVO4 mesoporous thin film. The synthesis method based on sol-gel was carried out using a standard surfactants such as P123 and F127. The thin film was deposited by spin and dip coating method. Then, the structural analysis of the obtained material was performed thanks to X-ray diffraction (XRD) and Raman spectroscopy. The surface of resulting structure was investigated using a scanning electron microscopy (SEM). The computer simulations based on modeling the optical and electronic properties of bulk BiVO4 by using DFT (density functional theory) methodology were carried out. The semiempirical parameterized method PM6 was used to compute the physical properties of BiVO4 nanostructures. The Raman and IR absorption spectra were also measured for synthesized mesoporous material, and the results were compared with the theoretical predictions. The simulations of nanostructured BiVO4 have pointed out the occurrence of quantum confinement for nanosized clusters leading to widening of the band gap. This result overcame the relevance of nanosized objects to harvest wide part of the solar spectrum. Also, a balance was searched experimentally through the mesoporous nature of the films devoted to enhancing the contact surface as required for heterogeneous catalysis without to lower the nanocrystallite size under some critical sizes inducing an increased band gap. The present contribution will discuss the relevant features of the mesoporous films with respect to their photocatalytic responses.

Keywords: bismuth vanadate, photocatalysis, thin film, quantum-chemical calculations

Procedia PDF Downloads 317
14859 Assessing the Nutritional Characteristics and Habitat Modeling of the Comorian’s Yam (Dioscorea comorensis) in a Fragmented Landscape

Authors: Mounir Soule, Hindatou Saidou, Razafimahefa, Mohamed Thani Ibouroi

Abstract:

High levels of habitat fragmentation and loss are the main drivers of plant species extinction. They reduce the habitat quality, which is a determining factor for the reproduction of plant species, and generate strong selective pressures for habitat selection, with impacts on the reproduction and survival of individuals. The Comorian’s yam (Dioscorea comorensis) is one of the most threatened plant species of the Comoros archipelago. The species faces one of the highest rates of habitat loss worldwide (9.3 % per year) and is classified as Endangered in the IUCN red list. Despite the nutritional potential of this tuber, the Comorian’s yam cultivation remains neglected by local populations due probably to lack of knowledge on its nutritional importance and the factors driving its spatial distribution and development. In this study, we assessed the nutritional characteristics of Dioscorea comorensis and the drivers of spatial distribution and abundance to propose conservation measures and improve crop yields. To determine the nutritional characteristics, the Kjeldahl method, the Soxhlet method, and Atwater's specific calorific coefficients methods were applied for analyzing proteins, lipids, and caloric energy respectively. In addition, atomic absorption spectrometry was used to measure mineral particles. By combining species occurrences with ecological (habitat types), climatic (temperature, rainfall, etc.), and physicochemical (soil types and quality) variables, we assessed habitat suitability and spatial distribution of the species and the factors explaining the origin, persistence, distribution and competitive capacity of a species using a Species Distribution Modeling (SDM) method. The results showed that the species contains 83.37% carbohydrates, 6.37% protein, and 0.45% lipids. In 100 grams, the quantities of Calcium, Sodium, Zinc, Iron, Copper, Potassium, Phosphorus, Magnesium, and Manganese are respectively 422.70, 599.41, 223.11, 252.32, 332.20, 780.41, 444.17, 287.71 and 220.73 mg. Its PRAL index is negative (- 9.80 mEq/100 g), and its Ca/P (0.95) and Na/K (0.77) ratios are less than 1. This species provides an energy value of 357.46 Kcal per 100 g, thanks to its carbohydrates and minerals and is distinguished from others by its high protein content, offering benefits for cardiovascular health. According to our SDM, the species has a very limited distribution, restricted to forests with higher biomass, humidity, and clay. Our findings highlight how distribution patterns are related to ecological and environmental factors. They also emphasize how the Comoros yam is beneficial in terms of nutritional quality. Our results represent a basic knowledge that will help scientists and decision-makers to develop conservation strategies and to improve crop yields.

Keywords: Dioscorea comorensis, nutritional characteristics, species distribution modeling, conservation strategies, crop yields improvement

Procedia PDF Downloads 12
14858 Improvement of Heat Pipe Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section. In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, CFD simulation

Procedia PDF Downloads 417
14857 A Pilot Epidemiological Survey of Parasitic Problems of Goats in and Around Derawar Fort Area, Cholistan, Pakistan

Authors: Muhammad Tahir Riaz, Khalid Mehmood, Ahmad Waseem Akhtar, Tariq Abbas, Sadaqat Ali, Muhammad Altaf

Abstract:

Livestock sector contributes around 55.9 and 11.8% to agriculture and GDP respectively, according to economic survey of Pakistan 2013-2014. The goats population has been estimated about 66.6 million (M). Parasitic infestation is a major health problem in goats causing loss in body weight, poor body condition, low birth weights, and difficulty in kidding. Keeping in view the utilization of these animals in the country, a pilot epidemiological survey was conducted to find out the major parasitic problems of goats in and around Derawar fort area, Cholistan. Data regarding 662 fecal samples of goats was collected from 25 tobas of Cholistan during June 2012 to June 2013. All the fecal samples were examined through Direct Smear Method and Salt Flotation Technique for the presence of helminth eggs. External parasites were taken from the various components of the carcass of goat and were conserved in 70% alcohol in hygienic, properly enclosed glass jars that were tagged thoroughly. The collected date was analyzed statistically by Chi-square test to find out the prevalence in goats. Out of 662 goats, 261 (39.42%) were found positive for parasites. 233 (35.20%) goats were found positive for gastrointestinal parasites while 28 (4.23%) were positive for external parasites including ticks 20 (3.02%) and mange 8 (1.21%). The higher prevalence of parasites in the study area may be due to pasture grazing, poor management and lack of extension work. In this regards proper management and control measures should be adopted to minimize the Parasitic Problems.

Keywords: Cholistan, goats, parasite, surveillance

Procedia PDF Downloads 555
14856 Rocket Launch Simulation for a Multi-Mode Failure Prediction Analysis

Authors: Mennatallah M. Hussein, Olivier de Weck

Abstract:

The advancement of space exploration demands a robust space launch services program capable of reliably propelling payloads into orbit. Despite rigorous testing and quality assurance, launch failures still occur, leading to significant financial losses and jeopardizing mission objectives. Traditional failure prediction methods often lack the sophistication to account for multi-mode failure scenarios, as well as the predictive capability in complex dynamic systems. Traditional approaches also rely on expert judgment, leading to variability in risk prioritization and mitigation strategies. Hence, there is a pressing need for robust approaches that enhance launch vehicle reliability from lift-off until it reaches its parking orbit through comprehensive simulation techniques. In this study, the developed model proposes a multi-mode launch vehicle simulation framework for predicting failure scenarios when incorporating new technologies, such as new propulsion systems or advanced staging separation mechanisms in the launch system. To this end, the model combined a 6-DOF system dynamics with comprehensive data analysis to simulate multiple failure modes impacting launch performance. The simulator utilizes high-fidelity physics-based simulations to capture the complex interactions between different subsystems and environmental conditions.

Keywords: launch vehicle, failure prediction, propulsion anomalies, rocket launch simulation, rocket dynamics

Procedia PDF Downloads 18
14855 Improvement of Heat Pipes Thermal Performance in H-VAC Systems Using CFD Modeling

Authors: H. Shokouhmand, A. Ghanami

Abstract:

Heat pipe is simple heat transfer device which combines the conduction and phase change phenomena to control the heat transfer without any need for external power source. At hot surface of heat pipe, the liquid phase absorbs heat and changes to vapor phase. The vapor phase flows to condenser region and with the loss of heat changes to liquid phase. Due to gravitational force the liquid phase flows to evaporator section.In HVAC systems the working fluid is chosen based on the operating temperature. The heat pipe has significant capability to reduce the humidity in HVAC systems. Each HVAC system which uses heater, humidifier or dryer is a suitable nominate for the utilization of heat pipes. Generally heat pipes have three main sections: condenser, adiabatic region and evaporator.Performance investigation and optimization of heat pipes operation in order to increase their efficiency is crucial. In present article, a parametric study is performed to improve the heat pipe performance. Therefore, the heat capacity of heat pipe with respect to geometrical and confining parameters is investigated. For the better observation of heat pipe operation in HVAC systems, a CFD simulation in Eulerian- Eulerian multiphase approach is also performed. The results show that heat pipe heat transfer capacity is higher for water as working fluid with the operating temperature of 340 K. It is also showed that the vertical orientation of heat pipe enhances it’s heat transfer capacity used in the abstract.

Keywords: heat pipe, HVAC system, grooved heat pipe, heat pipe limits

Procedia PDF Downloads 357
14854 2,7-Diazaindole as a Photophysical Probe for Excited State Hydrogen/Proton Transfer

Authors: Simran Baweja, Bhavika Kalal, Surajit Maity

Abstract:

Photoinduced tautomerization reactions have been the centre of attention among the scientific community over the past several decades because of their significance in various biological systems. 7-azaindole (7AI) is considered a model system for DNA base pairing and to understand the role of such tautomerization reactions in mutations. To the best of our knowledge, extensive studies have been carried out on 7-azaindole and its solvent clusters exhibiting proton/ hydrogen transfer in both solution as well as gas phases. Derivatives of the above molecule, like 2,7- and 2,6-diazaindoles are proposed to have even better photophysical properties due to the presence of -aza group on the 2nd position. However, there are studies in the solution phase that suggest the relevance of these molecules, but there are no experimental studies reported in the gas phase yet. In our current investigation, we present the first gas phase spectroscopic data of 2,7-diazaindole (2,7-DAI) and its solvent cluster (2,7-DAI-H2O). In this, we have employed state-of-the-art laser spectroscopic methods such as fluorescence excitation (LIF), dispersed fluorescence (DF), resonant two-photon ionization-time of flight mass spectrometry (2C-R2PI), photoionization efficiency spectroscopy (PIE), IR-UV double resonance spectroscopy, i.e., fluorescence-dip infrared spectroscopy (FDIR) and resonant ion-dip infrared spectroscopy (IDIR) to understand the electronic structure of the molecule. The origin band corresponding to the S1 ← S0 transition of the bare 2,7-DAI is found to be positioned at 33910 cm-1, whereas the origin band corresponding to S1 ← S0 transition of the 2,7-DAI-H2O is positioned at 33074 cm-1. The red-shifted transition in the case of solvent cluster suggests the enhanced feasibility of excited state hydrogen/ proton transfer. The ionization potential for the 2,7-DAI molecule is found to be 8.92 eV which is significantly higher than the previously reported 7AI (8.11 eV) molecule, making it a comparatively complex molecule to study. The ionization potential is reduced by 0.14 eV in the case of 2,7-DAI-H2O (8.78 eV) cluster compared to that of 2,7-DAI. Moreover, on comparison with the available literature values of 7AI, we found the origin band of 2,7-DAI and 2,7-DAI-H2O to be red-shifted by -729 and -280 cm-1 respectively. The ground and excited state N-H stretching frequencies of the 27DAI molecule were determined using fluorescence-dip infrared spectra (FDIR) and resonant ion dip infrared spectroscopy (IDIR), obtained at 3523 and 3467 cm-1, respectively. The lower value of vNH in the electronically excited state of 27DAI implies the higher acidity of the group compared to the ground state. Moreover, we have done extensive computational analysis, which suggests that the energy barrier in the excited state reduces significantly as we increase the number of catalytic solvent molecules (S= H2O, NH3) as well as the polarity of solvent molecules. We found that the ammonia molecule is a better candidate for hydrogen transfer compared to water because of its higher gas-phase basicity. Further studies are underway to understand the excited state dynamics and photochemistry of such N-rich chromophores.

Keywords: excited state hydrogen transfer, supersonic expansion, gas phase spectroscopy, IR-UV double resonance spectroscopy, laser induced fluorescence, photoionization efficiency spectroscopy

Procedia PDF Downloads 68
14853 Friction Behavior of Wood-Plastic Composites against Uncoated Cemented Carbide

Authors: Almontas Vilutis, Vytenis Jankauskas

Abstract:

The paper presents the results of the investigation of the dry sliding friction of wood-plastic composites (WPCs) against WC-Co cemented carbide. The dependence of the dynamic coefficient of friction on the main influencing factors (vertical load, temperature, and sliding distance) was investigated by evaluating their mutual interaction. Multiple regression analysis showed a high polynomial dependence (adjusted R2 > 0.98). The resistance of the composite to thermo-mechanical effects determines how temperature and force factors affect the magnitude of the coefficient of friction. WPC-B composite has the lowest friction and highest resistance compared to WPC-A, while composite and cemented carbide materials wear the least. Energy dispersive spectroscopy (EDS), based on elemental composition, provided important insights into the friction process.

Keywords: friction, composite, carbide, factors

Procedia PDF Downloads 76
14852 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes

Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee

Abstract:

A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.

Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation

Procedia PDF Downloads 359
14851 Use of Analytic Hierarchy Process for Plant Site Selection

Authors: Muzaffar Shaikh, Shoaib Shaikh, Mark Moyou, Gaby Hawat

Abstract:

This paper presents the use of Analytic Hierarchy Process (AHP) in evaluating the site selection of a new plant by a corporation. Due to intense competition at a global level, multinational corporations are continuously striving to minimize production and shipping costs of their products. One key factor that plays significant role in cost minimization is where the production plant is located. In the U.S. for example, labor and land costs continue to be very high while they are much cheaper in countries such as India, China, Indonesia, etc. This is why many multinational U.S. corporations (e.g. General Electric, Caterpillar Inc., Ford, General Motors, etc.), have shifted their manufacturing plants outside. The continued expansion of the Internet and its availability along with technological advances in computer hardware and software all around the globe have facilitated U.S. corporations to expand abroad as they seek to reduce production cost. In particular, management of multinational corporations is constantly engaged in concentrating on countries at a broad level, or cities within specific countries where certain or all parts of their end products or the end products themselves can be manufactured cheaper than in the U.S. AHP is based on preference ratings of a specific decision maker who can be the Chief Operating Officer of a company or his/her designated data analytics engineer. It serves as a tool to first evaluate the plant site selection criteria and second, alternate plant sites themselves against these criteria in a systematic manner. Examples of site selection criteria are: Transportation Modes, Taxes, Energy Modes, Labor Force Availability, Labor Rates, Raw Material Availability, Political Stability, Land Costs, etc. As a necessary first step under AHP, evaluation criteria and alternate plant site countries are identified. Depending upon the fidelity of analysis, specific cities within a country can also be chosen as alternative facility locations. AHP experience in this type of analysis indicates that the initial analysis can be performed at the Country-level. Once a specific country is chosen via AHP, secondary analyses can be performed by selecting specific cities or counties within a country. AHP analysis is usually based on preferred ratings of a decision-maker (e.g., 1 to 5, 1 to 7, or 1 to 9, etc., where 1 means least preferred and a 5 means most preferred). The decision-maker assigns preferred ratings first, criterion vs. criterion and creates a Criteria Matrix. Next, he/she assigns preference ratings by alternative vs. alternative against each criterion. Once this data is collected, AHP is applied to first get the rank-ordering of criteria. Next, rank-ordering of alternatives is done against each criterion resulting in an Alternative Matrix. Finally, overall rank ordering of alternative facility locations is obtained by matrix multiplication of Alternative Matrix and Criteria Matrix. The most practical aspect of AHP is the ‘what if’ analysis that the decision-maker can conduct after the initial results to provide valuable sensitivity information of specific criteria to other criteria and alternatives.

Keywords: analytic hierarchy process, multinational corporations, plant site selection, preference ratings

Procedia PDF Downloads 280
14850 Estimating Groundwater Seepage Rates: Case Study at Zegveld, Netherlands

Authors: Wondmyibza Tsegaye Bayou, Johannes C. Nonner, Joost Heijkers

Abstract:

This study aimed to identify and estimate dynamic groundwater seepage rates using four comparative methods; the Darcian approach, the water balance approach, the tracer method, and modeling. The theoretical background to these methods is put together in this study. The methodology was applied to a case study area at Zegveld following the advice of the Water Board Stichtse Rijnlanden. Data collection has been from various offices and a field campaign in the winter of 2008/09. In this complex confining layer of the study area, the location of the phreatic groundwater table is at a shallow depth compared to the piezometric water level. Data were available for the model years 1989 to 2000 and winter 2008/09. The higher groundwater table shows predominately-downward seepage in the study area. Results of the study indicated that net recharge to the groundwater table (precipitation excess) and the ditch system are the principal sources for seepage across the complex confining layer. Especially in the summer season, the contribution from the ditches is significant. Water is supplied from River Meije through a pumping system to meet the ditches' water demand. The groundwater seepage rate was distributed unevenly throughout the study area at the nature reserve averaging 0.60 mm/day for the model years 1989 to 2000 and 0.70 mm/day for winter 2008/09. Due to data restrictions, the seepage rates were mainly determined based on the Darcian method. Furthermore, the water balance approach and the tracer methods are applied to compute the flow exchange within the ditch system. The site had various validated groundwater levels and vertical flow resistance data sources. The phreatic groundwater level map compared with TNO-DINO groundwater level data values overestimated the groundwater level depth by 28 cm. The hydraulic resistance values obtained based on the 3D geological map compared with the TNO-DINO data agreed with the model values before calibration. On the other hand, the calibrated model significantly underestimated the downward seepage in the area compared with the field-based computations following the Darcian approach.

Keywords: groundwater seepage, phreatic water table, piezometric water level, nature reserve, Zegveld, The Netherlands

Procedia PDF Downloads 76
14849 Sustainable Underground Structures Through Soil-Driven Bio-Protection of Concrete

Authors: Abdurahim Abogdera, Omar Hamza, David Elliott

Abstract:

The soil bacteria can be affected by some factors such as pH, calcium ions and Electrical conductivity. Fresh concrete has high pH value, which is between 11 and 13 and these values will be prevented the bacteria to produce CO₂ to participate with Calcium ions that released from the concrete to get calcite. In this study we replaced 15% and 25% of cement with Fly ash as the fly ash reduce the value of the pH at the concrete. The main goal of this study was investigated whether bacteria can be used on the soil rather than in the concrete to avoid the challenges and limitations of containing bacteria inside the concrete. This was achieved by incubating cracked cement mortar specimens into fully saturated sterilized and non-sterilized soil. The crack sealing developed in the specimens during the incubation period in both soil conditions were evaluated and compared. Visual inspection, water absorption test, scanning electron microscopy (SEM), and Energy Dispersive X-ray (EDX) were conducted to evaluate the healing process.

Keywords: pH, calcium ions, MICP, salinity

Procedia PDF Downloads 107
14848 Optimizing Solids Control and Cuttings Dewatering for Water-Powered Percussive Drilling in Mineral Exploration

Authors: S. J. Addinell, A. F. Grabsch, P. D. Fawell, B. Evans

Abstract:

The Deep Exploration Technologies Cooperative Research Centre (DET CRC) is researching and developing a new coiled tubing based greenfields mineral exploration drilling system utilising down-hole water-powered percussive drill tooling. This new drilling system is aimed at significantly reducing the costs associated with identifying mineral resource deposits beneath deep, barren cover. This system has shown superior rates of penetration in water-rich, hard rock formations at depths exceeding 500 metres. With fluid flow rates of up to 120 litres per minute at 200 bar operating pressure to energise the bottom hole tooling, excessive quantities of high quality drilling fluid (water) would be required for a prolonged drilling campaign. As a result, drilling fluid recovery and recycling has been identified as a necessary option to minimise costs and logistical effort. While the majority of the cuttings report as coarse particles, a significant fines fraction will typically also be present. To maximise tool life longevity, the percussive bottom hole assembly requires high quality fluid with minimal solids loading and any recycled fluid needs to have a solids cut point below 40 microns and a concentration less than 400 ppm before it can be used to reenergise the system. This paper presents experimental results obtained from the research program during laboratory and field testing of the prototype drilling system. A study of the morphological aspects of the cuttings generated during the percussive drilling process shows a strong power law relationship for particle size distributions. This data is critical in optimising solids control strategies and cuttings dewatering techniques. Optimisation of deployable solids control equipment is discussed and how the required centrate clarity was achieved in the presence of pyrite-rich metasediment cuttings. Key results were the successful pre-aggregation of fines through the selection and use of high molecular weight anionic polyacrylamide flocculants and the techniques developed for optimal dosing prior to scroll decanter centrifugation, thus keeping sub 40 micron solids loading within prescribed limits. Experiments on maximising fines capture in the presence of thixotropic drilling fluid additives (e.g. Xanthan gum and other biopolymers) are also discussed. As no core is produced during the drilling process, it is intended that the particle laden returned drilling fluid is used for top-of-hole geochemical and mineralogical assessment. A discussion is therefore presented on the biasing and latency of cuttings representivity by dewatering techniques, as well as the resulting detrimental effects on depth fidelity and accuracy. Data pertaining to the sample biasing with respect to geochemical signatures due to particle size distributions is presented and shows that, depending on the solids control and dewatering techniques used, it can have unwanted influence on top-of-hole analysis. Strategies are proposed to overcome these effects, improving sample quality. Successful solids control and cuttings dewatering for water-powered percussive drilling is presented, contributing towards the successful advancement of coiled tubing based greenfields mineral exploration.

Keywords: cuttings, dewatering, flocculation, percussive drilling, solids control

Procedia PDF Downloads 242
14847 Design Optimization and Thermoacoustic Analysis of Pulse Tube Cryocooler Components

Authors: K. Aravinth, C. T. Vignesh

Abstract:

The usage of pulse tube cryocoolers is significantly increased mainly due to the advantage of the absence of moving parts. The underlying idea of this project is to optimize the design of pulse tube, regenerator, a resonator in cryocooler and analyzing the thermo-acoustic oscillations with respect to the design parameters. Computational Fluid Dynamic (CFD) model with time-dependent validation is done to predict its performance. The continuity, momentum, and energy equations are solved for various porous media regions. The effect of changing the geometries and orientation will be validated and investigated in performance. The pressure, temperature and velocity fields in the regenerator and pulse tube are evaluated. This optimized design performance results will be compared with the existing pulse tube cryocooler design. The sinusoidal behavior of cryocooler in acoustic streaming patterns in pulse tube cryocooler will also be evaluated.

Keywords: acoustics, cryogenics, design, optimization

Procedia PDF Downloads 166
14846 Direct Measurements of the Electrocaloric Effect in Solid Ferroelectric Materials via Thermoreflectance

Authors: Layla Farhat, Mathieu Bardoux, Stéphane Longuemart, Ziad Herro, Abdelhak Hadj Sahraoui

Abstract:

Electrocaloric (EC) effect refers to the isothermal entropy or adiabatic temperature changes of a dielectric material induced by an external electric field. This phenomenon has been largely ignored for application because only modest EC effects (2.6

Keywords: electrocaloric effect, thermoreflectance, ferroelectricity, cooling system

Procedia PDF Downloads 177
14845 Digital Joint Equivalent Channel Hybrid Precoding for Millimeterwave Massive Multiple Input Multiple Output Systems

Authors: Linyu Wang, Mingjun Zhu, Jianhong Xiang, Hanyu Jiang

Abstract:

Aiming at the problem that the spectral efficiency of hybrid precoding (HP) is too low in the current millimeter wave (mmWave) massive multiple input multiple output (MIMO) system, this paper proposes a digital joint equivalent channel hybrid precoding algorithm, which is based on the introduction of digital encoding matrix iteration. First, the objective function is expanded to obtain the relation equation, and the pseudo-inverse iterative function of the analog encoder is derived by using the pseudo-inverse method, which solves the problem of greatly increasing the amount of computation caused by the lack of rank of the digital encoding matrix and reduces the overall complexity of hybrid precoding. Secondly, the analog coding matrix and the millimeter-wave sparse channel matrix are combined into an equivalent channel, and then the equivalent channel is subjected to Singular Value Decomposition (SVD) to obtain a digital coding matrix, and then the derived pseudo-inverse iterative function is used to iteratively regenerate the simulated encoding matrix. The simulation results show that the proposed algorithm improves the system spectral efficiency by 10~20%compared with other algorithms and the stability is also improved.

Keywords: mmWave, massive MIMO, hybrid precoding, singular value decompositing, equivalent channel

Procedia PDF Downloads 85
14844 Improving Predictions of Coastal Benthic Invertebrate Occurrence and Density Using a Multi-Scalar Approach

Authors: Stephanie Watson, Fabrice Stephenson, Conrad Pilditch, Carolyn Lundquist

Abstract:

Spatial data detailing both the distribution and density of functionally important marine species are needed to inform management decisions. Species distribution models (SDMs) have proven helpful in this regard; however, models often focus only on species occurrences derived from spatially expansive datasets and lack the resolution and detail required to inform regional management decisions. Boosted regression trees (BRT) were used to produce high-resolution SDMs (250 m) at two spatial scales predicting probability of occurrence, abundance (count per sample unit), density (count per km2) and uncertainty for seven coastal seafloor taxa that vary in habitat usage and distribution to examine prediction differences and implications for coastal management. We investigated if small scale regionally focussed models (82,000 km2) can provide improved predictions compared to data-rich national scale models (4.2 million km2). We explored the variability in predictions across model type (occurrence vs abundance) and model scale to determine if specific taxa models or model types are more robust to geographical variability. National scale occurrence models correlated well with broad-scale environmental predictors, resulting in higher AUC (Area under the receiver operating curve) and deviance explained scores; however, they tended to overpredict in the coastal environment and lacked spatially differentiated detail for some taxa. Regional models had lower overall performance, but for some taxa, spatial predictions were more differentiated at a localised ecological scale. National density models were often spatially refined and highlighted areas of ecological relevance producing more useful outputs than regional-scale models. The utility of a two-scale approach aids the selection of the most optimal combination of models to create a spatially informative density model, as results contrasted for specific taxa between model type and scale. However, it is vital that robust predictions of occurrence and abundance are generated as inputs for the combined density model as areas that do not spatially align between models can be discarded. This study demonstrates the variability in SDM outputs created over different geographical scales and highlights implications and opportunities for managers utilising these tools for regional conservation, particularly in data-limited environments.

Keywords: Benthic ecology, spatial modelling, multi-scalar modelling, marine conservation.

Procedia PDF Downloads 75
14843 Primary-Color Emitting Photon Energy Storage Nanophosphors for Developing High Contrast Latent Fingerprints

Authors: G. Swati, D. Haranath

Abstract:

Commercially available long afterglow /persistent phosphors are proprietary materials and hence the exact composition and phase responsible for their luminescent characteristics such as initial intensity and afterglow luminescence time are not known. Further to generate various emission colors, commercially available persistence phosphors are physically blended with fluorescent organic dyes such as rodhamine, kiton and methylene blue etc. Blending phosphors with organic dyes results into complete color coverage in visible spectra, however with time, such phosphors undergo thermal and photo-bleaching. This results in the loss of their true emission color. Hence, the current work is dedicated studies on inorganic based thermally and chemically stable primary color emitting nanophosphors namely SrAl2O4:Eu2+, Dy3+, (CaZn)TiO3:Pr3+, and Sr2MgSi2O7:Eu2+, Dy3+. SrAl2O4: Eu2+, Dy3+ phosphor exhibits a strong excitation in UV and visible region (280-470 nm) with a broad emission peak centered at 514 nm is the characteristic emission of parity allowed 4f65d1→4f7 transitions of Eu2+ (8S7/2→2D5/2). Sunlight excitable Sr2MgSi2O7:Eu2+,Dy3+ nanophosphors emits blue color (464 nm) with Commercial international de I’Eclairage (CIE) coordinates to be (0.15, 0.13) with a color purity of 74 % with afterglow time of > 5 hours for dark adapted human eyes. (CaZn)TiO3:Pr3+ phosphor system possess high color purity (98%) which emits intense, stable and narrow red emission at 612 nm due intra 4f transitions (1D2 → 3H4) with afterglow time of 0.5 hour. Unusual property of persistence luminescence of these nanophoshphors supersedes background effects without losing sensitive information these nanophosphors offer several advantages of visible light excitation, negligible substrate interference, high contrast bifurcation of ridge pattern, non-toxic nature revealing finger ridge details of the fingerprints. Both level 1 and level 2 features from a fingerprint can be studied which are useful for used classification, indexing, comparison and personal identification. facile methodology to extract high contrast fingerprints on non-porous and porous substrates using a chemically inert, visible light excitable, and nanosized phosphorescent label in the dark has been presented. The chemistry of non-covalent physisorption interaction between the long afterglow phosphor powder and sweat residue in fingerprints has been discussed in detail. Real-time fingerprint development on porous and non-porous substrates has also been performed. To conclude, apart from conventional dark vision applications, as prepared primary color emitting afterglow phosphors are potentional candidate for developing high contrast latent fingerprints.

Keywords: fingerprints, luminescence, persistent phosphors, rare earth

Procedia PDF Downloads 205
14842 Structure and Optical Properties of Potassium Doped Zinc Oxide

Authors: Lila A. Alkhattaby, Norah A. Alsayegh, Mohammad S. Ansari, Mohammad O. Ansari

Abstract:

In this work, we doped zinc oxide ZnO with potassium K we have synthesized using the sol-gel method. Structural properties were depicted by X-ray diffractometer (XRD) and energy distribution spectroscopy, X-ray diffraction studies confirm the nanosized of the particles and favored orientations along the (100), (002), (101), (102), (110), (103), (200), and (112) planes confirm the hexagonal wurtzite structure of ZnO NPs. The optical properties study using the UV-Vis spectroscopy. The band gap decreases from 4.05 eV to 3.88 eV, the lowest band gap at 10% doped concentration. The photoluminescence (PL) spectroscopy results show two main peaks, a sharp peak at ≈ 384 nm in the UV region and a broad peak around 479 nm in the visible region. The highest intensity of the band-edge luminescence was for 2% doped concentration because of the combined effect of the decreased probability of nonradiative recombination and has better crystallinity.

Keywords: K doped ZnO, photoluminescence spectroscopy, UV-Vis spectroscopy, x-ray spectroscopy

Procedia PDF Downloads 229
14841 Iranian English as Foreign Language Teachers' Psychological Well-Being across Gender: During the Pandemic

Authors: Fatemeh Asadi Farsad, Sima Modirkhameneh

Abstract:

The purpose of this study was to explore the pattern of Psychological Well-Being (PWB) of Iranian male and female EFL teachers during the pandemic. It was intended to see if such a drastic change in the context and mode of teaching affects teachers' PWB. Furthermore, the possible difference between the six elements of PWB of Iranian EFL male vs. female teachers during the pandemic was investigated. The other purpose was to find out the EFL teachers’ perceptions of any modifications, and factors leading to such modifications in their PWB during pandemic. For the purpose of this investigation, a total of 81 EFL teachers (59 female, 22 male) with an age range of 25 to 35 were conveniently sampled from different cities in Iran. Ryff’s PWB questionnaire was sent to participant teachers through online platforms to elicit data on their PWB. As for their perceptions on the possible modifications and the factors involved in PWB during pandemic, a set of semi-structured interviews were run among both sample groups. The findings revealed that male EFL teachers had the highest mean on personal growth, followed by purpose of life, and self-acceptance and the lowest mean on environmental mastery. With a slightly similar pattern, female EFL teachers had the highest mean on personal growth, followed by purpose in life, and positive relationship with others with the lowest mean on environmental mastery. However, no significant difference was observed between the male and female groups’ overall means on elements of PWB. Additionally, participants perceived that their anxiety level in online classes altered due to factors like (1) Computer literacy skills, (2) Lack of social communications and interactions with colleagues and students, (3) Online class management, (4) Overwhelming workloads, and (5) Time management. The study ends with further suggestions as regards effective online teaching preparation considering teachers PWB, especially at severe situations such as covid-19 pandemic. The findings offer to determine the reformations of educational policies concerning enhancing EFL teachers’ PWB through computer literacy courses and stress management courses. It is also suggested that to proactively support teachers’ mental health, it is necessary to provide them with advisors and psychologists if possible for free. Limitations: One limitation is the small number of participants (81), suggesting that future replications should include more participants for reliable findings. Another limitation is the gender imbalance, which future studies should address to yield better outcomes. Furthermore, Limited data gathering tools suggest using observations, diaries, and narratives for more insights in future studies. The study focused on one model of PWB, calling for further research on other models in the literature. Considering the wide effect of the COVID-19 pandemic, future studies should consider additional variables (e.g., teaching experience, age, income) to understand Iranian EFL teachers’ vulnerabilities and strengths better.

Keywords: online teaching, psychological well-being, female and male EFL teachers, pandemic

Procedia PDF Downloads 40