Search results for: chemical%20reaction%20optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4418

Search results for: chemical%20reaction%20optimization

2948 Insecticidal Effects of the Wettable Powder Formulations of Plant Extracts on Cotton Bollworm, Helicoverpa armigera (Lep. Noctuidae)

Authors: Reza Sadeghi, Maryam Nazarahari

Abstract:

Due to the numerous side effects of chemical pesticides, in this research, to provide the practical use of herbal compounds, the extracts of the two plants of thyme and eucalyptus were extracted by using water, 70% ethanol, and n-hexane solvents via percolation method and then formulated as wettable powders. The mortality rates of cotton bollworm (Helicoverpa armigera) were investigated under different concentrations of ethanolic, hexanic, and aqueous extracts of thyme and eucalyptus and their formulations in laboratory conditions. The results showed that the used concentrations, types of solvents, and sorts of formulations significantly affected the mortality rates of cotton bollworm larvae during the exposure period of 24 h.

Keywords: cotton bollworm, eucalyptus, formulation, thyme, toxicity

Procedia PDF Downloads 66
2947 Deformulation and Comparative Analysis of Apparently Similar Polymers Using Multiple Modes of Pyrolysis-Gc/Ms

Authors: Athena Nguyen, Rojin Belganeh

Abstract:

Detecting and identifying differences in like polymer materials are key factors in deformulation, comparative analysis as well as reverse engineering. Pyrolysis-GC/MS is an easy solid sample introduction technique which expands the application areas of gas chromatography and mass spectrometry. The Micro-furnace pyrolyzer is directly interfaced with the GC injector preventing any potential of cold spot, carryover, and cross contamination. This presentation demonstrates the study of two similar polymers by performing different mode of operations in the same system: Evolve gas analysis (EGA), Flash pyrolysis, Thermal desorption analysis, and Heart-cutting analysis. Unknown polymer materials and their chemical compositions are identified.

Keywords: gas chromatography/mass spectrometry, pyrolysis, pyrolyzer, thermal desorption-GC/MS

Procedia PDF Downloads 241
2946 Groundwater Quality Monitoring in the Shoush Suburbs, Khouzestan Province, Iran

Authors: Mohammad Tahsin Karimi Nezhad, Zaynab Shadbahr, Ali Gholami

Abstract:

In recent years many attempts have been made to assess groundwater contamination by nitrates worldwide. The assessment of spatial and temporal variations of physico-chemical parameters of water is necessary to mange water quality. The objectives of the study were to evaluate spatial variability and temporal changes of hydrochemical factors by water sampling from 24 wells in the Shoush City suburb. The analysis was conducted for the whole area and for different land use and geological classes. In addition, nitrate concentration variability with descriptive parameters such as sampling depth, dissolved oxygen, and on ground nitrogen loadings was also investigated The results showed that nitrate concentrations did not exceed the standard limit (50 mg/l). EC of water samples, ranged from 900 to 1200 µs/cm, TDS from 775 to 830 mg/l and pH from 5.6 to 9.

Keywords: groundwater, GIS, water quality, Iran

Procedia PDF Downloads 414
2945 Electrochemical Synthesis and Morphostructural Study of the Cuprite Thin Film

Authors: M. El Hajji, A. Hallaoui, L. Bazzi, A. Benlhachemi, Lh. Bazzi, M. Hilali, O. Jbara, A. Tara, B. Bakiz

Abstract:

The cathodic electro deposition of the cuprite Cu2O by chrono potentiometry is performed on two types of electrodes "titanium and stainless steel", in a basic medium containing the precursor of copper. The plot produced vs SCE, shows the formation of a brown layer on the electrode surface. The chrono potentiometric recording made between - 0.2 and - 1 mA/cm2, has allowed us to have a deposit having different morphologies and structural orientation obtained as a function of the variation of many parameters. The morphology, the size of crystals, and the phase of the deposits produced were studied by conventional techniques of analysis of the solid, particularly the X-ray diffraction (XRD), scanning electron microscopy analysis (SEM) and quantitative chemical analysis (EDS). The results will be presented and discussed, they show that the majority of deposits are pure and uniform.

Keywords: cathodic electrodeposition, cuprite Cu2O, XRD, SEM, EDS analysis

Procedia PDF Downloads 406
2944 Modelling the Behavior of Commercial and Test Textiles against Laundering Process by Statistical Assessment of Their Performance

Authors: M. H. Arslan, U. K. Sahin, H. Acikgoz-Tufan, I. Gocek, I. Erdem

Abstract:

Various exterior factors have perpetual effects on textile materials during wear, use and laundering in everyday life. In accordance with their frequency of use, textile materials are required to be laundered at certain intervals. The medium in which the laundering process takes place have inevitable detrimental physical and chemical effects on textile materials caused by the unique parameters of the process inherently existing. Connatural structures of various textile materials result in many different physical, chemical and mechanical characteristics. Because of their specific structures, these materials have different behaviors against several exterior factors. By modeling the behavior of commercial and test textiles as group-wise against laundering process, it is possible to disclose the relation in between these two groups of materials, which will lead to better understanding of their behaviors in terms of similarities and differences against the washing parameters of the laundering. Thus, the goal of the current research is to examine the behavior of two groups of textile materials as commercial textiles and as test textiles towards the main washing machine parameters during laundering process such as temperature, load quantity, mechanical action and level of water amount by concentrating on shrinkage, pilling, sewing defects, collar abrasion, the other defects other than sewing, whitening and overall properties of textiles. In this study, cotton fabrics were preferred as commercial textiles due to the fact that garments made of cotton are the most demanded products in the market by the textile consumers in daily life. Full factorial experimental set-up was used to design the experimental procedure. All profiles always including all of the commercial and the test textiles were laundered for 20 cycles by commercial home laundering machine to investigate the effects of the chosen parameters. For the laundering process, a modified version of ‘‘IEC 60456 Test Method’’ was utilized. The amount of detergent was altered as 0.5% gram per liter depending on varying load quantity levels. Datacolor 650®, EMPA Photographic Standards for Pilling Test and visual examination were utilized to test and characterize the textiles. Furthermore, in the current study the relation in between commercial and test textiles in terms of their performance was deeply investigated by the help of statistical analysis performed by MINITAB® package program modeling their behavior against the parameters of the laundering process. In the experimental work, the behaviors of both groups of textiles towards washing machine parameters were visually and quantitatively assessed in dry state.

Keywords: behavior against washing machine parameters, performance evaluation of textiles, statistical analysis, commercial and test textiles

Procedia PDF Downloads 336
2943 Chromatography Study of Fundamental Properties of Medical Radioisotope Astatine-211

Authors: Evgeny E. Tereshatov

Abstract:

Astatine-211 is considered one of the most promising radionuclides for Targeted Alpha Therapy. In order to develop reliable procedures to label biomolecules and utilize efficient delivery vehicle principles, one should understand the main chemical characteristics of astatine. The short half-life of 211At (~7.2 h) and absence of any stable isotopes of this element are limiting factors towards studying the behavior of astatine. Our team has developed a procedure for rapid and efficient isolation of astatine from irradiated bismuth material in nitric acid media based on 3-octanone and 1-octanol extraction chromatography resins. This process has been automated and it takes 20 min from the beginning of the target dissolution to the At-211 fraction elution. Our next step is to consider commercially available chromatography resins and their applicability in astatine purification in the same media. Results obtained along with the corresponding sorption mechanisms will be discussed.

Keywords: astatine-211, chromatography, automation, mechanism, radiopharmaceuticals

Procedia PDF Downloads 75
2942 Two Layer Photo-Thermal Deflection Model to Investigate the Electronic Properties in BGaAs/GaAs Alloys

Authors: S. Ilahi, M. Baira, F. Saidi, N. Yacoubi, L. Auvray, H. Maaref

Abstract:

Photo-thermal deflection technique (PTD) is used to study the nonradiative recombination process in BGaAs/GaAs alloy with boron composition of 3% and 8% grown by metal organic chemical vapor deposition (MOCVD). A two layer theoretical model has been developed taking into account both thermal and electronic contribution in the photothermal signal allowing to extract the electronic parameters namely electronic diffusivity, surface and interface recombination. It is found that the increase of boron composition alters the BGaAs epilayers transport properties.

Keywords: photothermal defelction technique, two layer model, BGaAs/GaAs alloys, boron composition

Procedia PDF Downloads 285
2941 Modeling of Hydrogen Production by Inductively Coupled Methane Plasma for Input Power Pin=700W

Authors: Abdelatif Gadoum, Djilali Benyoucef, Mouloudj Hadj, Alla Eddine Toubal Maamar, Mohamed Habib Allah Lahoual

Abstract:

Hydrogen occurs naturally in the form of chemical compounds, most often in water and hydrocarbons. The main objective of this study is 2D modeling of hydrogen production in inductively coupled plasma in methane at low pressure. In the present model, we include the motions and the collisions of both neutral and charged particles by considering 19 species (i.e in total ; neutrals, radicals, ions, and electrons), and more than 120 reactions (electron impact with methane, neutral-neutral, neutral-ions and surface reactions). The results show that the rate conversion of methane reach 90% and the hydrogen production is about 30%.

Keywords: hydrogen production, inductively coupled plasma, fluid model, methane plasma

Procedia PDF Downloads 140
2940 Synthesized Doped TiO2 Photocatalysts for Mineralization of Quinalphos from Aqueous Streams

Authors: Nidhi Sharotri, Dhiraj Sud

Abstract:

Water pollution by pesticides constitutes a serious ecological problem due to their potential toxicity and bioaccumulation. The widespread use of pesticides in industry and agriculture along with their resistance to natural decomposition, biodegradation, chemical and photochemical degradation under typical environmental conditions has resulted in the emergence of these chemicals and their transformed products in natural water. Among AOP’s, heterogeneous photocatalysis using TiO2 as photocatalyst appears as the most emerging destructive technology for mineralization of the pollutant in aquatic streams. Among the various semiconductors (TiO2, ZnO, CdS, FeTiO3, MnTiO3, SrTiO2 and SnO2), TiO2 has proven to be the most efficient photocatalyst for environmental applications due to its biological and chemical inertness, high photo reactivity, non-toxicity, and photo stability. Semiconductor photocatalysts are characterized by an electronic band structure in which valence band and conduction band are separated by a band gap, i.e. a region of forbidden energy. Semiconductor based photocatalysts produces e-/h+ pairs which have been employed for degradation of organic pollutants. The present paper focuses on modification of TiO2 photocatalyst in order to shift its absorption edge towards longer wavelength to make it active under natural light. Semiconductor TiO2 photocatalysts was prepared by doping with anion (N), cation (Mn) and double doped (Mn, N) using greener approach. Titanium isopropoxide is used as titania precursor and ethanedithiol, hydroxyl amine hydrochloride, manganous chloride as sulphur, nitrogen and manganese precursors respectively. Synthesized doped TiO2 nanomaterials are characterized for surface morphology (SEM, TEM), crystallinity (XRD) and optical properties (absorption spectra and band gap). EPR data confirms the substitutional incorporation of Mn2+ in TiO2 lattice. The doping influences the phase transformation of rutile and anatase phase crystal and thereby the absorption spectrum changes were observed. The effect of variation of reaction parameters such as solvent, reaction time and calcination temperature on the yield, surface morphology and optical properties was also investigated. The TEM studies show the particle size of nanomaterials varies from 10-50 nm. The calculated band gap of nanomaterials varies from 2.30-2.60 eV. The photocatalytic degradation of organic pollutant organophosphate pesticide (Quinalphos) has been investigated by studying the changes in UV absorption spectrum and the promising results were obtained under visible light. The complete mineralization of quinalphos has occurred as no intermediates were recorded after 8 hrs of degradation confirmed from the HPLC studies.

Keywords: quinalphos, doped-TiO2, mineralization, EPR

Procedia PDF Downloads 316
2939 Effect of Electromagnetic Fields on Protein Extraction from Shrimp By-Products for Electrospinning Process

Authors: Guido Trautmann-Sáez, Mario Pérez-Won, Vilbett Briones, María José Bugueño, Gipsy Tabilo-Munizaga, Luis Gonzáles-Cavieres

Abstract:

Shrimp by-products are a valuable source of protein. However, traditional protein extraction methods have limitations in terms of their efficiency. Protein extraction from shrimp (Pleuroncodes monodon) industrial by-products assisted with ohmic heating (OH), microwave (MW) and pulsed electric field (PEF). It was performed by chemical method (using NaOH and HCl 2M) assisted with OH, MW and PEF in a continuous flow system (5 ml/s). Protein determination, differential scanning calorimetry (DSC) and Fourier-transform infrared (FTIR). Results indicate a 19.25% (PEF) 3.65% (OH) and 28.19% (MW) improvement in protein extraction efficiency. The most efficient method was selected for the electrospinning process and obtaining fiber.

Keywords: electrospinning process, emerging technology, protein extraction, shrimp by-products

Procedia PDF Downloads 64
2938 Preparation of Protective Coating Film on Metal Alloy

Authors: Rana Th. A. Al-rubaye

Abstract:

A novel chromium-free protective coating films based on a zeolite coating was growing onto a FeCrAlloy metal using in –situ hydrothermal method. The zeolite film was obtained using in-situ crystallization process that is capable of coating large surfaces with complex shape and in confined spaces has been developed. The zeolite coating offers an advantage of a high mechanical stability and thermal stability. The physico-chemical properties were investigated using X-ray diffraction (XRD), Electron microscopy (SEM), Energy Dispersive X–ray analysis (EDX) and Thermogravimetric Analysis (TGA). The transition from oxide-on-alloy wires to hydrothermally synthesised uniformly zeolite coated surfaces was followed using SEM and XRD. In addition, the robustness of the prepared coating was confirmed by subjecting these to thermal cycling (ambient to 550°C).

Keywords: fecralloy, zsm-5 zeolite, zeolite coatings, hydrothermal method

Procedia PDF Downloads 376
2937 Ni-W alloy Coatings: A Promising Electrode Material

Authors: Mr. Liju Elias, A. Chitharanjan Hegde

Abstract:

Ni-W alloy coatings have been developed galvanostatically on copper substrate from tri-sodium citrate bath, using glycerol as the additive. The deposition conditions for production of Ni-W coatings have been optimized for peak performance of their electrocatalytic activity, namely hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The corrosion behavior of the coatings were tested under working conditions of electrocatalysis (1M KOH). Electrocatalytic behaviours were tested by cyclic voltammetry and chrono-potentiometry techniques. Experimental results demonstrated that Ni-W coatings at low and high current densities (c. d.) showing superior performance for OER and HER respectively. The increased electrocatalytic activity for HER with increase of deposition c. d. was attributed to the phase structure, surface morphology and chemical composition of the coatings, confirmed by XRD, SEM and EDX analysis, respectively. The dependency of hardness and thickness of the coatings on HER and OER were examined, and results were discussed.

Keywords: electrocatalytic behavior, HER, Ni-W alloy, OER

Procedia PDF Downloads 396
2936 High Rate Bio-Methane Generation from Petrochemical Wastewater Using Improved CSTR

Authors: Md. Nurul Islam Siddique, A. W. Zularisam

Abstract:

The effect of gradual increase in organic loading rate (OLR) and temperature on biomethanation from petrochemical wastewater treatment was investigated using CSTR. The digester performance was measured at hydraulic retention time (HRT) of 4 to 2d, and start up procedure of the reactor was monitored for 60 days via chemical oxygen demand (COD) removal, biogas and methane production. By enhancing the temperature from 30 to 55 ˚C Thermophilic condition was attained, and pH was adjusted at 7 ± 0.5 during the experiment. Supreme COD removal competence was 98±0.5% (r = 0.84) at an OLR of 7.5 g-COD/Ld and 4d HRT. Biogas and methane yield were logged to an extreme of 0.80 L/g-CODremoved d (r = 0.81), 0.60 L/g-CODremoved d (r = 0.83), and mean methane content of biogas was 65.49%. The full acclimatization was established at 55 ˚C with high COD removal efficiency and biogas production. An OLR of 7.5 g-COD/L d and HRT of 4 days were apposite for petrochemical wastewater treatment.

Keywords: anaerobic digestion, petrochemical wastewater, CSTR, methane

Procedia PDF Downloads 339
2935 Investigating Water-Oxidation Using a Ru(III) Carboxamide Water Coordinated Complex

Authors: Yosra M. Badiei, Evelyn Ortiz, Marisa Portenti, David Szalda

Abstract:

Water-oxidation half-reaction is a critical reaction that can be driven by a sustainable energy source (e.g., solar or wind) and be coupled with a chemical fuel making reaction which stores the released electrons and protons from water (e.g., H₂ or methanol). The use of molecular water-oxidation catalysts (WOC) allow the rationale design of redox active metal centers and provides a better understanding of their structure-activity-relationship. Herein, the structure of a Ru(III) complex bearing a doubly deprotonated N,N'-bis(aryl)pyridine-2,6-dicarboxamide ligand which contains a water molecule in its primary coordination sphere was elucidated by single-crystal X-ray diffraction. Further spectroscopic experimental data and pH-dependent electrochemical studies reveal its water-oxidation reactivity. Emphasis on mechanistic details for O₂ formation of this complex will be addressed.

Keywords: water-oxidation, catalysis, ruthenium, artificial photosynthesis

Procedia PDF Downloads 182
2934 Lithium Oxide Effect on the Thermal and Physical Properties of the Ternary System Glasses (Li2O3-B2O3-Al2O3)

Authors: D. Aboutaleb, B. Safi

Abstract:

The borate glasses are known by their structural characterized by existence of unit’s structural composed by triangles and tetrahedrons boron in different configurations depending on the percentage of B2O3 in the glass chemical composition. In this paper, effect of lithium oxide addition on the thermal and physical properties of an alumina borate glass, was investigated. It was found that the boron abnormality has a significant effect in the change of glass properties according to the addition rate of lithium oxide.

Keywords: borate glasses, triangles and tetrahedrons boron, lithium oxide, boron anomaly, thermal properties, physical properties

Procedia PDF Downloads 342
2933 Controlling the Release of Cyt C and L- Dopa from pNIPAM-AAc Nanogel Based Systems

Authors: Sulalit Bandyopadhyay, Muhammad Awais Ashfaq Alvi, Anuvansh Sharma, Wilhelm R. Glomm

Abstract:

Release of drugs from nanogels and nanogel-based systems can occur under the influence of external stimuli like temperature, pH, magnetic fields and so on. pNIPAm-AAc nanogels respond to the combined action of both temperature and pH, the former being mostly determined by hydrophilic-to-hydrophobic transitions above the volume phase transition temperature (VPTT), while the latter is controlled by the degree of protonation of the carboxylic acid groups. These nanogels based systems are promising candidates in the field of drug delivery. Combining nanogels with magneto-plasmonic nanoparticles (NPs) introduce imaging and targeting modalities along with stimuli-response in one hybrid system, thereby incorporating multifunctionality. Fe@Au core-shell NPs possess optical signature in the visible spectrum owing to localized surface plasmon resonance (LSPR) of the Au shell, and superparamagnetic properties stemming from the Fe core. Although there exist several synthesis methods to control the size and physico-chemical properties of pNIPAm-AAc nanogels, yet, there is no comprehensive study that highlights the dependence of incorporation of one or more layers of NPs to these nanogels. In addition, effective determination of volume phase transition temperature (VPTT) of the nanogels is a challenge which complicates their uses in biological applications. Here, we have modified the swelling-collapse properties of pNIPAm-AAc nanogels, by combining with Fe@Au NPs using different solution based methods. The hydrophilic-hydrophobic transition of the nanogels above the VPTT has been confirmed to be reversible. Further, an analytical method has been developed to deduce the average VPTT which is found to be 37.3°C for the nanogels and 39.3°C for nanogel coated Fe@Au NPs. An opposite swelling –collapse behaviour is observed for the latter where the Fe@Au NPs act as bridge molecules pulling together the gelling units. Thereafter, Cyt C, a model protein drug and L-Dopa, a drug used in the clinical treatment of Parkinson’s disease were loaded separately into the nanogels and nanogel coated Fe@Au NPs, using a modified breathing-in mechanism. This gave high loading and encapsulation efficiencies (L Dopa: ~9% and 70µg/mg of nanogels, Cyt C: ~30% and 10µg/mg of nanogels respectively for both the drugs. The release kinetics of L-Dopa, monitored using UV-vis spectrophotometry was observed to be rather slow (over several hours) with highest release happening under a combination of high temperature (above VPTT) and acidic conditions. However, the release of L-Dopa from nanogel coated Fe@Au NPs was the fastest, accounting for release of almost 87% of the initially loaded drug in ~30 hours. The chemical structure of the drug, drug incorporation method, location of the drug and presence of Fe@Au NPs largely alter the drug release mechanism and the kinetics of these nanogels and Fe@Au NPs coated with nanogels.

Keywords: controlled release, nanogels, volume phase transition temperature, l-dopa

Procedia PDF Downloads 315
2932 Customized Cow’s Urine Battery Using MnO2 Depolarizer

Authors: Raj Kumar Rajak, Bharat Mishra

Abstract:

Bio-battery represents an entirely new long term, reasonable, reachable and ecofriendly approach to production of sustainable energy. Types of batteries have been developed using MnO2 in various ways. MnO2 is suitable with physical, chemical, electrochemical, and catalytic properties, serving as an effective cathodic depolarizer and may be considered as being the life blood of the battery systems. In the present experimental work, we have studied the effect of generation of power by bio-battery using different concentrations of MnO2. The tests show that it is possible to generate electricity using cow’s urine as an electrolyte. After ascertaining the optimum concentration of MnO2, various battery parameters and performance indicates that cow urine solely produces power of 695 mW, while a combination with MnO2 (40%) enhances power of bio-battery, i.e. 1377 mW. On adding more and more MnO2 to the electrolyte, the power suppressed because inflation of internal resistance. The analysis of the data produced from experiment shows that MnO2 is quite suitable to energize the bio-battery.

Keywords: bio-batteries, cow’s urine, manganese dioxide, non-conventional

Procedia PDF Downloads 245
2931 Hosoya Polynomials of Mycielskian Graphs

Authors: Sanju Vaidya, Aihua Li

Abstract:

Vulnerability measures and topological indices are crucial in solving various problems such as the stability of the communication networks and development of mathematical models for chemical compounds. In 1947, Harry Wiener introduced a topological index related to molecular branching. Now there are more than 100 topological indices for graphs. For example, Hosoya polynomials (also called Wiener polynomials) were introduced to derive formulas for certain vulnerability measures and topological indices for various graphs. In this paper, we will find a relation between the Hosoya polynomials of any graph and its Mycielskian graph. Additionally, using this we will compute vulnerability measures, closeness and betweenness centrality, and extended Wiener indices. It is fascinating to see how Hosoya polynomials are useful in the two diverse fields, cybersecurity and chemistry.

Keywords: hosoya polynomial, mycielskian graph, graph vulnerability measure, topological index

Procedia PDF Downloads 51
2930 Studies on the Ecology of Sea Grasses in Uppanar Estuary, South East Coast of India

Authors: N. Veerappan

Abstract:

Seasonal variations of sea grasses and physico-chemical parameters were studied from April 2011 to March 2012. Samples were collected in four different seasons, namely post monsoon (January-March), summer (April-June) premonsoon (July-September) and monsoon (October-December) from the Uppanar estuary. Three species of sea grass biomass were measured during the study period: Halophila ovalis (215.3 g/m2 - 38.5 g/m2), Halophila beccarii (75.2 g/m2 –30.1 g/m2) and Halodule pinifolia (65.4 g/m2 - 26.5 g/m2), respectively. Canonical Correspondence Analysis (CCA) showed that NO2, NO3 PO4, and SiO4 influenced Halophila ovalis biomass distribution, whereas for Halophila beccarii and Halodule pinifolia, atmospheric temperature, water temperature, salinity, pH and DO proved important.

Keywords: sea grass, species biomass, Uppanar estuary, water quality

Procedia PDF Downloads 383
2929 [Keynote Talk]: Ultrasound Assisted Synthesis of ZnO of Different Morphologies by Solvent Variation

Authors: Durata Haciu, Berti Manisa, Ozgur Birer

Abstract:

ZnO nanoparticles have been synthesized by ultrasonic irradiation from simple linear alcohols and water/ethanolic mixtures, at 50 oC. By changing the composition of the solvent, the shape could be altered. While no product was obtained from methanolic solutions, in ethanol, sheet like lamellar structures prevail.n-propanol and n-butanol resulted in needle like structures. The morphology of ZnO could be thus tailored in a simple way, by varying the solvent, under ultrasonic irradiation, in a relatively less time consuming method. Variation of the morphology and size of Zn also provides a means for modulating the band-gap. Although the chemical effects of ultrasound do not come from direct interaction with molecular species, the high energy derived from acoustic cavitation creates a unique interaction of energy and matter with great potential for synthesis.

Keywords: ultrasound, ZnO, linear alcohols, morphology

Procedia PDF Downloads 224
2928 Property of Diamond Coated Tools for Lapping Single-Crystal Sapphire Wafer

Authors: Feng Wei, Lu Wenzhuang, Cai Wenjun, Yu Yaping, Basnet Rabin, Zuo Dunwen

Abstract:

Diamond coatings were prepared on cemented carbide by hot filament chemical vapor deposition (HFCVD) method. Lapping experiment of single-crystal sapphire wafer was carried out using the prepared diamond coated tools. The diamond coatings and machined surface of the sapphire wafer were evaluated by SEM, laser confocal microscope and Raman spectrum. The results indicate that the lapping sapphire chips are small irregular debris and long thread-like debris. There is graphitization of diamond crystal during the lapping process. A low surface roughness can be obtained using a spherical grain diamond coated tool.

Keywords: lapping, nano-micro crystalline diamond coating, Raman spectrum, sapphire

Procedia PDF Downloads 471
2927 Preparation and Performance Evaluation of Green Chlorine-Free Coagulants

Authors: Huihui Zhang, Zhongzhi Zhang

Abstract:

Coagulation/flocculation is regarded a simple and effective wastewater treatment technology. Chlorine-containing coagulants may release chloride ions into the wastewater, causing corrosion. A green chlorine-free coagulant of polyaluminum ferric silicate (PSAF) was prepared by the copolymerization method to treat oily refractory wastewaters. Results showed that the highest removal efficiency of turbidity and chemical oxygen demand (COD) achieved 97.4% and 93.0% at a dosage of 700 mg/L, respectively. After PSAF coagulation, the chloride ion concentration was also almost the same as that in the raw wastewater. Thus, the chlorine-free coagulant is highly efficient and does not introduce additional chloride ions into the wastewater, avoiding corrosion.

Keywords: coagulation, chloride-free coagulant, oily refractory wastewater, coagulation performance

Procedia PDF Downloads 198
2926 Comparison of the Toxicity of Silver and Gold Nanoparticles in Murine Fibroblasts

Authors: Šárka Hradilová, Aleš Panáček, Radek Zbořil

Abstract:

Nanotechnologies are considered the most promising fields with high added value, brings new possibilities in various sectors from industry to medicine. With the growing of interest in nanomaterials and their applications, increasing nanoparticle production leads to increased exposure of people and environment with ‘human made’ nanoparticles. Nanoparticles (NPs) are clusters of atoms in the size range of 1–100 nm. Metal nanoparticles represent one of the most important and frequently used types of NPs due to their unique physical, chemical and biological properties, which significantly differ from those of bulk material. Biological properties including toxicity of metal nanoparticles are generally determined by their size, size distribution, shape, surface area, surface charge, surface chemistry, stability in the environment and ability to release metal ions. Therefore, the biological behavior of NPs and their possible adverse effect cannot be derived from the bulk form of material because nanoparticles show unique properties and interactions with biological systems just due to their nanodimensions. Silver and gold NPs are intensively studied and used. Both can be used for instance in surface enhanced Raman spectroscopy, a considerable number of applications of silver NPs is associated with antibacterial effects, while gold NPs are associated with cancer treatment and bio imaging. Antibacterial effects of silver ions are known for centuries. Silver ions and silver-based compounds are highly toxic to microorganisms. Toxic properties of silver NPs are intensively studied, but the mechanism of cytoxicity is not fully understood. While silver NPs are considered toxic, gold NPs are referred to as toxic but also innocuous for eukaryotic cells. Therefore, gold NPs are used in various biological applications without a risk of cell damaging, even when we want to suppress the growth of cancer cells. Thus, gold NPs are toxic or harmless. Because most studies comparing particles of various sizes prepared in various ways, and testing is performed on different cell lines, it is very difficult to generalize. The novelty and significance of our research is focused to the complex biological effects of silver and gold NPs prepared by the same method, have the same parameters and the same stabilizer. That is why we can compare the biological effects of pure nanometals themselves based on their chemical nature without the influence of other variable. Aim of our study therefore is to compare the cytotoxic effect of two types of noble metal NPs focusing on the mechanisms that contribute to cytotoxicity. The study was conducted on murine fibroblasts by selected common used tests. Each of these tests monitors the selected area related to toxicity and together provides a comprehensive view on the issue of interactions of nanoparticles and living cells.

Keywords: cytotoxicity, gold nanoparticles, mechanism of cytotoxicity, silver nanoparticles

Procedia PDF Downloads 234
2925 Pretreatment of Cattail (Typha domingensis) Fibers to Obtain Cellulose Nanocrystals

Authors: Marivane Turim Koschevic, Maycon dos Santos, Marcello Lima Bertuci, Farayde Matta Fakhouri, Silvia Maria Martelli

Abstract:

Natural fibers are rich raw materials in cellulose and abundant in the world, its use for the cellulose nanocrystals extraction is promising as an example cited is the cattail, macrophyte native weed in South America. This study deals with the pre-treatment cattail of crushed fibers, at six different methods of mercerization, followed by the use of bleaching. As a result, have found The positive effects of treating fibers by means of optical microscopy and spectroscopy, Fourier transform (FTIR). The sample selected for future testing of cellulose nanocrystals extraction was treated in 2.5% NaOH for 2 h, 60 °C in the first stage and 30vol H2O2, NaOH 5% in the proportion 30/70% (v/v) for 1 hour 60 °C, followed by treatment at 50/50% (v/v) 15 minutes, 50°C, with the same constituents of the solution.

Keywords: cellulose nanocrystal, chemical treatment, mercerization, natural fibers

Procedia PDF Downloads 269
2924 Prediction of Time to Crack Reinforced Concrete by Chloride Induced Corrosion

Authors: Anuruddha Jayasuriya, Thanakorn Pheeraphan

Abstract:

In this paper, a review of different mathematical models which can be used as prediction tools to assess the time to crack reinforced concrete (RC) due to corrosion is investigated. This investigation leads to an experimental study to validate a selected prediction model. Most of these mathematical models depend upon the mechanical behaviors, chemical behaviors, electrochemical behaviors or geometric aspects of the RC members during a corrosion process. The experimental program is designed to verify the accuracy of a well-selected mathematical model from a rigorous literature study. Fundamentally, the experimental program exemplifies both one-dimensional chloride diffusion using RC squared slab elements of 500 mm by 500 mm and two-dimensional chloride diffusion using RC squared column elements of 225 mm by 225 mm by 500 mm. Each set consists of three water-to-cement ratios (w/c); 0.4, 0.5, 0.6 and two cover depths; 25 mm and 50 mm. 12 mm bars are used for column elements and 16 mm bars are used for slab elements. All the samples are subjected to accelerated chloride corrosion in a chloride bath of 5% (w/w) sodium chloride (NaCl) solution. Based on a pre-screening of different models, it is clear that the well-selected mathematical model had included mechanical properties, chemical and electrochemical properties, nature of corrosion whether it is accelerated or natural, and the amount of porous area that rust products can accommodate before exerting expansive pressure on the surrounding concrete. The experimental results have shown that the selected model for both one-dimensional and two-dimensional chloride diffusion had ±20% and ±10% respective accuracies compared to the experimental output. The half-cell potential readings are also used to see the corrosion probability, and experimental results have shown that the mass loss is proportional to the negative half-cell potential readings that are obtained. Additionally, a statistical analysis is carried out in order to determine the most influential factor that affects the time to corrode the reinforcement in the concrete due to chloride diffusion. The factors considered for this analysis are w/c, bar diameter, and cover depth. The analysis is accomplished by using Minitab statistical software, and it showed that cover depth is the significant effect on the time to crack the concrete from chloride induced corrosion than other factors considered. Thus, the time predictions can be illustrated through the selected mathematical model as it covers a wide range of factors affecting the corrosion process, and it can be used to predetermine the durability concern of RC structures that are vulnerable to chloride exposure. And eventually, it is further concluded that cover thickness plays a vital role in durability in terms of chloride diffusion.

Keywords: accelerated corrosion, chloride diffusion, corrosion cracks, passivation layer, reinforcement corrosion

Procedia PDF Downloads 200
2923 Fly ash Contamination in Groundwater and its Implications on Local Climate Change

Authors: Rajkumar Ghosh

Abstract:

Fly ash, a byproduct of coal combustion, has become a prevalent environmental concern due to its potential impact on both groundwater quality and local climate change. This study aims to provide an in-depth analysis of the various mechanisms through which fly ash contaminates groundwater, as well as the possible consequences of this contamination on local climate change. The presence of fly ash in groundwater not only poses a risk to human health but also has the potential to influence local climate change through complex interactions. Although fly ash has various applications in construction and other industries, improper disposal and lack of containment measures have led to its infiltration into groundwater systems. Through a comprehensive review of existing literature and case studies, the interactions between fly ash and groundwater systems, assess the effects on hydrology, and discuss the implications for the broader climate. This section reviews the pathways through which fly ash enters groundwater, including leaching from disposal sites, infiltration through soil, and migration from surface water bodies. The physical and chemical characteristics of fly ash that contribute to its mobility and persistence in groundwater. The introduction of fly ash into groundwater can alter its chemical composition, leading to an increase in the concentration of heavy metals, metalloids, and other potentially toxic elements. The mechanisms of contaminant transport and highlight the potential risks to human health and ecosystems. Fly ash contamination in groundwater may influence the hydrological cycle through changes in groundwater recharge, discharge, and flow dynamics. This section examines the implications of altered hydrology on local water availability, aquatic habitats, and overall ecosystem health. The presence of fly ash in groundwater may have direct and indirect effects on local climate change. The role of fly ash as a potent greenhouse gas absorber and its contribution to radiative forcing. Additionally, investigation of the possible feedback mechanisms between groundwater contamination and climate change, such as altered vegetation patterns and changes in local temperature and precipitation patterns. In this section, potential mitigation and remediation techniques to minimize fly ash contamination in groundwater are analyzed. These may include improved waste management practices, engineered barriers, groundwater remediation technologies, and sustainable fly ash utilization. This paper highlights the critical link between fly ash contamination in groundwater and its potential contribution to local climate change. It emphasizes the importance of addressing this issue promptly through a combination of preventive measures, effective management strategies, and continuous monitoring. By understanding the interconnections between fly ash contamination, groundwater quality, and local climate, towards creating a more resilient and sustainable environment for future generations. The findings of this research can assist policymakers and environmental managers in formulating sustainable strategies to mitigate fly ash contamination and minimize its contribution to climate change.

Keywords: groundwater, climate, sustainable environment, fly ash contamination

Procedia PDF Downloads 63
2922 Ultrasound Assisted Alkaline Potassium Permanganate Pre-Treatment of Spent Coffee Waste

Authors: Rajeev Ravindran, Amit K. Jaiswal

Abstract:

Lignocellulose is the largest reservoir of inexpensive, renewable source of carbon. It is composed of lignin, cellulose and hemicellulose. Cellulose and hemicellulose is composed of reducing sugars glucose, xylose and several other monosaccharides which can be metabolised by microorganisms to produce several value added products such as biofuels, enzymes, aminoacids etc. Enzymatic treatment of lignocellulose leads to the release of monosaccharides such as glucose and xylose. However, factors such as the presence of lignin, crystalline cellulose, acetyl groups, pectin etc. contributes to recalcitrance restricting the effective enzymatic hydrolysis of cellulose and hemicellulose. In order to overcome these problems, pre-treatment of lignocellulose is generally carried out which essentially facilitate better degradation of lignocellulose. A range of pre-treatment strategy is commonly employed based on its mode of action viz. physical, chemical, biological and physico-chemical. However, existing pretreatment strategies result in lower sugar yield and formation of inhibitory compounds. In order to overcome these problems, we proposes a novel pre-treatment, which utilises the superior oxidising capacity of alkaline potassium permanganate assisted by ultra-sonication to break the covalent bonds in spent coffee waste to remove recalcitrant compounds such as lignin. The pre-treatment was conducted for 30 minutes using 2% (w/v) potassium permanganate at room temperature with solid to liquid ratio of 1:10. The pre-treated spent coffee waste (SCW) was subjected to enzymatic hydrolysis using enzymes cellulase and hemicellulase. Shake flask experiments were conducted with a working volume of 50mL buffer containing 1% substrate. The results showed that the novel pre-treatment strategy yielded 7 g/L of reducing sugar as compared to 3.71 g/L obtained from biomass that had undergone dilute acid hydrolysis after 24 hours. From the results obtained it is fairly certain that ultrasonication assists the oxidation of recalcitrant components in lignocellulose by potassium permanganate. Enzyme hydrolysis studies suggest that ultrasound assisted alkaline potassium permanganate pre-treatment is far superior over treatment by dilute acid. Furthermore, SEM, XRD and FTIR were carried out to analyse the effect of the new pre-treatment strategy on structure and crystallinity of pre-treated spent coffee wastes. This novel one-step pre-treatment strategy was implemented under mild conditions and exhibited high efficiency in the enzymatic hydrolysis of spent coffee waste. Further study and scale up is in progress in order to realise future industrial applications.

Keywords: spent coffee waste, alkaline potassium permanganate, ultra-sonication, physical characterisation

Procedia PDF Downloads 329
2921 Synthesis of Chitosan/Silver Nanocomposites: Antibacterial Properties and Tissue Regeneration for Thermal Burn Injury

Authors: B.L. España-Sánchez, E. Luna-Hernández, R.A. Mauricio-Sánchez, M.E. Cruz-Soto, F. Padilla-Vaca, R. Muñoz, L. Granados-López, L.R. Ovalle-Flores, J.L. Menchaca-Arredondo, G. Luna-Bárcenas

Abstract:

Treatment of burn injured has been considered an important clinical problem due to the fluid control and the presence of microorganisms during the healing process. Conventional treatment includes antiseptic techniques, topical medication and surgical removal of damaged skin, to avoid bacterial growth. In order to accelerate this process, different alternatives for tissue regeneration have been explored, including artificial skin, polymers, hydrogels and hybrid materials. Some requirements consider a nonreactive organic polymer with high biocompatibility and skin adherence, avoiding bacterial infections. Chitin-derivative biopolymer such as chitosan (CS) has been used in skin regeneration following third-degree burns. The biological interest of CS is associated with the improvement of tissue cell stimulation, biocompatibility and antibacterial properties. In particular, antimicrobial properties of CS can be significantly increased when is blended with nanostructured materials. Silver-based nanocomposites have gained attention in medicine due to their high antibacterial properties against pathogens, related to their high surface area/volume ratio at nanomolar concentrations. Silver nanocomposites can be blended or synthesized with chitin-derivative biopolymers in order to obtain a biodegradable/antimicrobial hybrid with improved physic-mechanical properties. In this study, nanocomposites based on chitosan/silver nanoparticles (CS/nAg) were synthesized by the in situ chemical reduction method, improving their antibacterial properties against pathogenic bacteria and enhancing the healing process in thermal burn injuries produced in an animal model. CS/nAg was prepared in solution by the chemical reduction method, using AgNO₃ as precursor. CS was dissolved in acetic acid and mixed with different molar concentrations of AgNO₃: 0.01, 0.025, 0.05 and 0.1 M. Solutions were stirred at 95°C during 20 hours, in order to promote the nAg formation. CS/nAg solutions were placed in Petri dishes and dried, to obtain films. Structural analyses confirm the synthesis of silver nanoparticles (nAg) by means of UV-Vis and TEM, with an average size of 7.5 nm and spherical morphology. FTIR analyses showed the complex formation by the interaction of hydroxyl and amine groups with metallic nanoparticles, and surface chemical analysis (XPS) shows low concentration of Ag⁰/Ag⁺ species. Topography surface analyses by means of AFM shown that hydrated CS form a mesh with an average diameter of 10 µm. Antibacterial activity against S. aureus and P. aeruginosa was improved in all evaluated conditions, such as nAg loading and interaction time. CS/nAg nanocomposites films did not show Ag⁰/Ag⁺ release in saline buffer and rat serum after exposition during 7 days. Healing process was significantly enhanced by the presence of CS/nAg nanocomposites, inducing the production of myofibloblasts, collagen remodelation, blood vessels neoformation and epidermis regeneration after 7 days of injury treatment, by means of histological and immunohistochemistry assays. The present work suggests that hydrated CS/nAg nanocomposites can be formed a mesh, improving the bacterial penetration and the contact with embedded nAg, producing complete growth inhibition after 1.5 hours. Furthermore, CS/nAg nanocomposites improve the cell tissue regeneration in thermal burn injuries induced in rats. Synthesis of antibacterial, non-toxic, and biocompatible nanocomposites can be an important issue in tissue engineering and health care applications.

Keywords: antibacterial, chitosan, healing process, nanocomposites, silver

Procedia PDF Downloads 268
2920 Simple and Effective Method of Lubrication and Wear Protection

Authors: Buddha Ratna Shrestha, Jimmy Faivre, Xavier Banquy

Abstract:

By precisely controlling the molecular interactions between anti-wear macromolecules and bottle-brush lubricating molecules in the solution state, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. Our results provide rational guides to design such fluids for virtually any type of surfaces. The lowest friction coefficient and the maximum pressure that it can sustain is 5*10-3 and 2.5 MPa which is close to the physiological pressure. Lubricating and protecting surfaces against wear using liquid lubricants is a great technological challenge. Until now, wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface while lubrication was provided by a lubricating fluid. Hence, we here research for a simple, effective and applicable solution to the above problem using surface force apparatus (SFA). SFA is a powerful technique with sub-angstrom resolution in distance and 10 nN/m resolution in interaction force while performing friction experiment. Thus, SFA is used to have the direct insight into interaction force, material and friction at interface. Also, we always know the exact contact area. From our experiments, we found that by precisely controlling the molecular interactions between anti-wear macromolecules and lubricating molecules, we obtained a fluid with excellent lubricating and wear protection capabilities. The reason for this synergistic behavior relies on the subtle interaction forces between the fluid components which allow the confined macromolecules to sustain high loads under shear without rupture. The lowest friction coefficient and the maximum pressure that it can sustain in our system is 5*10-3 and 2.5 GPA which is well above the physiological pressure. Our results provide rational guides to design such fluids for virtually any type of surfaces. Most importantly this process is simple, effective and applicable method of lubrication and protection as until now wear protection was usually imparted by surface coatings involving complex chemical modifications of the surface. Currently, the frictional data that are obtained while sliding the flat mica surfaces are compared and confirmed that a particular mixture of solution was found to surpass all other combination. So, further we would like to confirm that the lubricating and antiwear protection remains the same by performing the friction experiments in synthetic cartilages.

Keywords: bottle brush polymer, hyaluronic acid, lubrication, tribology

Procedia PDF Downloads 252
2919 Life Cycle Assessment of Bioethanol from Feedstocks in Thailand

Authors: Thanapat Chaireongsirikul, Apichit Svang-Ariyaskul

Abstract:

An analysis of mass balance, energy performance, and environmental impact assessment were performed to evaluate bioethanol production in Thailand. Thailand is an agricultural country. Thai government plans to increase the use of alternative energy to 20 percent by 2022. One of the primary campaigns is to promote a bioethanol production from abundant biomass resources such as bitter cassava, molasses and sugarcane. The bioethanol production is composed of three stages: cultivation, pretreatment, and bioethanol conversion. All of mass, material, fuel, and energy were calculated to determine the environmental impact of three types of bioethanol production: bioethanol production from cassava (CBP), bioethanol production from molasses (MBP), and bioethanol production from rice straw (RBP). The results showed that bioethanol production from cassava has the best environmental performance. CBP contributes less impact when compared to the other processes.

Keywords: bioethanol production, biofuel, LCA, chemical engineering

Procedia PDF Downloads 348