Search results for: carbon nanotubes functionalization
3126 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process
Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy
Abstract:
In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.Keywords: hydrogen production, water splitting, photocatalysts, Graphene
Procedia PDF Downloads 1883125 Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon
Authors: Hamza Simsir, Nurettin Eltugral, Selhan Karagöz
Abstract:
Surface modification and functionalization has been an important tool for scientists in order to open new frontiers in nano science and nanotechnology. Desired surface characteristics for the intended applications can be achieved with surface functionalization. In this work, the effect of water soluble ligands on the adsorption capabilities of silver nanoparticles onto AC which was synthesized from German beech wood, was investigated. Sodium borohydride (NaBH4) and polyvinyl alcohol (PVA) were used as the ligands. Silver nanoparticles with different surface coatings have average sizes range from 10 to 13 nm. They were synthesized in aqueous media by reducing Ag (I) ion in the presence of ligands. These particles displayed adsorption tendencies towards AC when they were mixed together and shaken in distilled water. Silver nanoparticles (NaBH4-AgNPs) reduced and stabilized by NaBH4 adsorbed onto AC with a homogenous dispersion of aggregates with sizes in the range of 100-400 nm. Beside, silver nanoparticles, which were prepared in the presence of both NaBH4 and PVA (NaBH4/PVA-Ag NPs), demonstrated that NaBH4/PVA-Ag NPs adsorbed and dispersed homogenously but, they aggregated with larger sizes on the AC surface (range from 300 to 600 nm). In addition, desorption resistance of Ag nanoparticles were investigated in distilled water. According to the results AgNPs were not desorbed on the AC surface in distilled water.Keywords: Silver nanoparticles, ligand, activated carbon, adsorption
Procedia PDF Downloads 3293124 Synthesis and Characterization of Silver/Graphene Oxide Co-Decorated TiO2 Nanotubular Arrays for Biomedical Applications
Authors: Alireza Rafieerad, Bushroa Abd Razak, Bahman Nasiri Tabrizi, Jamunarani Vadivelu
Abstract:
Recently, reports on the fabrication of nanotubular arrays have generated considerable scientific interest, owing to the broad range of applications of the oxide nanotubes in solar cells, orthopedic and dental implants, photocatalytic devices as well as lithium-ion batteries. A more attractive approach for the fabrication of oxide nanotubes with controllable morphology is the electrochemical anodization of substrate in a fluoride-containing electrolyte. Consequently, titanium dioxide nanotubes (TiO2 NTs) have been highly considered as an applicable material particularly in the district of artificial implants. In addition, regarding long-term efficacy and reasons of failing and infection after surgery of currently used dental implants required to enhance the cytocompatibility properties of Ti-based bone-like tissue. As well, graphene oxide (GO) with relevant biocompatibility features in tissue sites, osseointegration and drug delivery functionalization was fully understood. Besides, the boasting antibacterial ability of silver (Ag) remarkably provided for implantable devices without infection symptoms. Here, surface modification of Ti–6Al–7Nb implants (Ti67IMP) by the development of Ag/GO co-decorated TiO2 NTs was examined. Initially, the anodic TiO2 nanotubes obtained at a constant potential of 60 V were annealed at 600 degree centigrade for 2 h to improve the adhesion of the coating. Afterward, the Ag/GO co-decorated TiO2 NTs were developed by spin coating on Ti67IM. The microstructural features, phase composition and wettability behavior of the nanostructured coating were characterized comparably. In a nutshell, the results of the present study may contribute to the development of the nanostructured Ti67IMP with improved surface properties.Keywords: anodic tio2 nanotube, biomedical applications, graphene oxide, silver, spin coating
Procedia PDF Downloads 3253123 Comparison of Physico-Mechanical Properties of Superplasticizer Stabilized Graphene Oxide and Carbon Nanotubes Reinforced Cement Nanocomposites
Authors: Ramanjit Kaur, N. C. Kothiyal
Abstract:
The present study compares the improved mechanical strength of cement mortar nanocomposites (CNCs) using polycarboxylate superplasticizer (PCE-SP) stabilized graphene oxide or functionalized carbon nanotubes (SP-GO and SP-FCNT) as reinforcing agents. So, in the present study, GO, and FCNT have been sterically stabilized via superplasticizer. The obtained results have shown that a dosage of 0.02 wt% of SP-GO and 0.08 wt% of SP-FCNTs showed an improvement in compressive strength by 23.2% and 16.5%, respectively. On the other hand, incorporation of 0.04% SP-GO and SP-FCNT resulted in an enhanced split tensile strength of 38.5% and 35.8%, respectively, as compared to the control sample at 90 days of curing. Mercury Intrusion Porosimetry (MIP) observations presented a decline in the porosity of 0.02% SP-GO-CNCs and 0.08% SP-FCNT-CNCs by 25% and 31% in comparison to the control sample. The improved hydration of CNCs contributing to the enhancement of physicomechanical strength has also been shown by SEM and XRD studies.Keywords: graphene oxide, functionalized CNTs, steric stabilization, microstructure, crystalline behavior, pore structure refinement
Procedia PDF Downloads 1073122 NiSe-Ni₃Se₂/Multiwalled Carbon Nanotubes as Efficient Electrocatalysts for the Oxygen Evolution Reaction in Alkaline Media
Authors: Oluwaseun A. Oyetade, Roelof J. Kriek
Abstract:
The development of effective catalysts for the oxygen evolution reaction (OER) is of great importance to combat energy-related concerns in the environment. Herein, we report a one-step solvothermal method employed for the fabrication of nickel selenide hybrids (NiSe-Ni₃Se₂) and a series of nickel selenide hybrid/multiwalled carbon nanotube composites (NiSe-Ni₃Se₂/MWCNT) as electrocatalysts for OER in alkaline media. The catalytic activities of these catalysts were investigated via several electrochemical characterization techniques, such as linear sweep voltammetry, chronoamperometric studies at constant potential, electrochemical surface area determination, and Tafel slope calculation, under alkaline conditions. Morphological observations demonstrated the agglomeration of non-uniform NiSe-Ni₃Se₂ microspheres around carbon nanotubes (CNTs), demonstrating the successful synthesis of NiSe-Ni₃Se₂/MWCNT nanocomposites. Among the tested electrocatalysts, the 20% NiSe-Ni₃Se₂/MWCNT nanocomposite demonstrated the highest activity, exhibiting an overpotential of 325 mV to achieve a current density of 10 mA.cm⁻² in 0.1 mol.dm⁻³ KOH solution. The NiSe-Ni₃Se₂/MWCNT nanocomposites showed improved activity toward OER compared to bare NiSe-Ni₃Se₂ hybrids and MWCNTs, exhibiting an overpotential of 528, 392 and 434 mV for 10%, 30% and 50% NiSe-Ni₃Se₂/MWCNT nanocomposites, respectively. These results compare favourably to the overpotential of noble catalysts, such as RuO₂ and IrO₂. Our results imply that the addition of MWCNTs increased the activity of NiSe-Ni₃Se₂ hybrids due to an increased number of catalytic sites, dispersion of NiSe-Ni₃Se₂ hybrid nanoparticles, and electronic conductivity of the nanocomposites. These nanocomposites also demonstrated better long-term stability compared to NiSe-Ni₃Se₂ hybrids and MWCNTs. Hence, NiSe-Ni₃Se₂/MWCNT nanocomposites possess the potential as effective electrocatalysts for OER in alkaline media.Keywords: carbon nanotubes, electrocatalysts, nanocomposites, nickel selenide hybrids, oxygen evolution reaction
Procedia PDF Downloads 1293121 One-Step Synthesis of Fluorescent Carbon Dots in a Green Way as Effective Fluorescent Probes for Detection of Iron Ions and pH Value
Authors: Mostafa Ghasemi, Andrew Urquhart
Abstract:
In this study, fluorescent carbon dots (CDs) were synthesized in a green way using a one-step hydrothermal method. Carbon dots are carbon-based nanomaterials with a size of less than 10 nm, unique structure, and excellent properties such as low toxicity, good biocompatibility, tunable fluorescence, excellent photostability, and easy functionalization. These properties make them a good candidate to use in different fields such as biological sensing, photocatalysis, photodynamic, and drug delivery. Fourier transformed infrared (FTIR) spectra approved OH/NH groups on the surface of the as-synthesized CDs, and UV-vis spectra showed excellent fluorescence quenching effect of Fe (III) ion on the as-synthesized CDs with high selectivity detection compared with other metal ions. The probe showed a linear response concentration range (0–2.0 mM) to Fe (III) ion, and the limit of detection was calculated to be about 0.50 μM. In addition, CDs also showed good sensitivity to the pH value in the range from 2 to 14, indicating great potential as a pH sensor.Keywords: carbon dots, fluorescence, pH sensing, metal ions sensor
Procedia PDF Downloads 753120 Magnetoresistance Transition from Negative to Positive in Functionalization of Carbon Nanotube and Composite with Polyaniline
Authors: Krishna Prasad Maity, Narendra Tanty, Ananya Patra, V. Prasad
Abstract:
Carbon nanotube (CNT) is a well-known material for very good electrical, thermal conductivity and high tensile strength. Because of that, it’s widely used in many fields like nanotechnology, electronics, optics, etc. In last two decades, polyaniline (PANI) with CNT and functionalized CNT (fCNT) have been promising materials in application of gas sensing, electromagnetic shielding, electrode of capacitor etc. So, the study of electrical conductivity of PANI/CNT and PANI/fCNT is important to understand the charge transport and interaction between PANI and CNT in the composite. It is observed that a transition in magnetoresistance (MR) with lowering temperature, increasing magnetic field and decreasing CNT percentage in CNT/PANI composite. Functionalization of CNT prevent the nanotube aggregation, improves interfacial interaction, dispersion and stabilized in polymer matrix. However, it shortens the length, breaks C-C sp² bonds and enhances the disorder creating defects on the side walls. We have studied electrical resistivity and MR in PANI with CNT and fCNT composites for different weight percentages down to the temperature 4.2K and up to magnetic field 5T. Resistivity increases significantly in composite at low temperature due to functionalization of CNT compared to only CNT. Interestingly a transition from negative to positive magnetoresistance has been observed when the filler is changed from pure CNT to functionalized CNT after a certain percentage (10wt%) as the effect of more disorder in fCNT/PANI composite. The transition of MR has been explained on the basis of polaron-bipolaron model. The long-range Coulomb interaction between two polarons screened by disorder in the composite of fCNT/PANI, increases the effective on-site Coulomb repulsion energy to form bipolaron which leads to change the sign of MR from negative to positive.Keywords: coulomb interaction, magnetoresistance transition, polyaniline composite, polaron-bipolaron
Procedia PDF Downloads 1723119 Multi-Walled Carbon Nanotubes Doped Poly (3,4 Ethylenedioxythiophene) Composites Based Electrochemical Nano-Biosensor for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
One of the most publicized and controversial issue in crop production is the use of agrichemicals- also known as pesticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. Therefore, detection of OPs is very necessary for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared PEDOT-MWCNT/FTO and AChE/PEDOT-MWCNT/FTO nano-biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Electrochemical studies were done using Cyclic Voltammetry (CV) or Differential Pulse Voltammetry (DPV) and Electrochemical Impedance Spectroscopy (EIS). Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared nano-biosensor is observed to be 30 days and seven times, respectively. The application of the developed nano-biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed nano-biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, nano-biosensor, oxime (2-PAM)
Procedia PDF Downloads 4353118 Application of Carbon Nanotubes as Cathodic Corrosion Protection of Steel Reinforcement
Authors: M. F. Perez, Ysmael Verde, B. Escobar, R. Barbosa, J. C. Cruz
Abstract:
Reinforced concrete is one of the most important materials in the construction industry. However, in recent years the durability of concrete structures has been a worrying problem, mainly due to corrosion of reinforcing steel; the consequences of corrosion in all cases lead to shortening of the life of the structure and decrease in quality of service. Since the emergence of this problem, they have implemented different methods or techniques to reduce damage by corrosion of reinforcing steel in concrete structures; as the use of polymeric materials as coatings for the steel rod, spiked inhibitors of concrete during mixing, among others, presenting different limitations in the application of these methods. Because of this, it has been used a method that has proved effective, cathodic protection. That is why due to the properties attributed to carbon nanotubes (CNT), these could act as cathodic corrosion protection. Mounting a three-electrode electrochemical cell, carbon steel as working electrode, saturated calomel electrode (SCE) as the reference electrode, and a graphite rod as a counter electrode to close the system is performed. Samples made were subjected to a cycling process in order to compare the results in the corrosion performance of a coating composed of CNT and the others based on an anticorrosive commercial painting. The samples were tested at room temperature using an electrolyte consisting NaCl and NaOH simulating the typical pH of concrete, ranging from 12.6 to 13.9. Three test samples were made of steel rod, white, with commercial anticorrosive paint and CNT based coating; delimiting the work area to a section of 0.71 cm2. Tests cyclic voltammetry and linear voltammetry electrochemical spectroscopy each impedance of the three samples were made with a window of potential vs SCE 0.7 -1.7 a scan rate of 50 mV / s and 100 mV / s. The impedance values were obtained by applying a sine wave of amplitude 50 mV in a frequency range of 100 kHz to 100 MHz. The results obtained in this study show that the CNT based coating applied to the steel rod considerably decreased the corrosion rate compared to the commercial coating of anticorrosive paint, because the Ecorr was passed increase as the cycling process. The samples tested in all three cases were observed by light microscopy throughout the cycling process and micrographic analysis was performed using scanning electron microscopy (SEM). Results from electrochemical measurements show that the application of the coating containing carbon nanotubes on the surface of the steel rod greatly increases the corrosion resistance, compared to commercial anticorrosive coating.Keywords: anticorrosive, carbon nanotubes, corrosion, steel
Procedia PDF Downloads 4773117 Multi-Walled Carbon Nanotubes as Nucleating Agents
Authors: Rabindranath Jana, Plabani Basu, Keka Rana
Abstract:
Nucleating agents are widely used to modify the properties of various polymers. The rate of crystallization and the size of the crystals have a strong impact on mechanical and optical properties of a polymer. The addition of nucleating agents to the semi-crystalline polymers provides a surface on which the crystal growth can start easily. As a consequence, fast crystal formation will result in many small crystal domains so that the cycle times for injection molding may be reduced. Moreover, the mechanical properties e.g., modulus, tensile strength, heat distortion temperature and hardness may increase. In the present work, multi-walled carbon nanotubes (MWNTs) as nucleating agents for the crystallization of poly (e-caprolactone)diol (PCL). Thus nanocomposites of PCL filled with MWNTs were prepared by solution blending. Differential scanning calorimetry (DSC) tests were carried out to study the effect of CNTs on on-isothermal crystallization of PCL. The polarizing optical microscopy (POM), and wide-angle X-ray diffraction (WAXD) were used to study the morphology and crystal structure of PCL and its nanocomposites. It is found that MWNTs act as effective nucleating agents that significantly shorten the induction period of crystallization and however, decrease the crystallization rate of PCL, exhibiting a remarkable decrease in the Avrami exponent n, surface folding energy σe and crystallization activation energy ΔE. The carbon-based fillers act as templates for hard block chains of PCL to form an ordered structure on the surface of nanoparticles during the induction period, bringing about some increase in equilibrium temperature. The melting process of PCL and its nanocomposites are also studied; the nanocomposites exhibit two melting peaks at higher crystallization temperature which mainly refer to the melting of the crystals with different crystal sizes however, PCL shows only one melting temperature.Keywords: poly(e-caprolactone)diol, multiwalled carbon nanotubes, composite materials, nonisothermal crystallization, crystal structure, nucleation
Procedia PDF Downloads 4963116 Investigating Concentration of Multi-Walled Carbon Nanotubes on Electrochemical Sensors
Authors: Mohsen Adabi, Mahdi Adabi, Reza Saber
Abstract:
The recent advancements in nanomaterials have provided a platform to develop efficient transduction matrices for sensors. Modified electrodes allow to electrochemists to enhance the property of electrode surface and provide desired properties such as improved sensing capabilities, higher electron transfer rate and prevention of undesirable reactions competing kinetically with desired electrode process. Nanostructured electrodes including arrays of carbon nanotubes have demonstrated great potential for the development of electrochemical sensors and biosensors. The aim of this work is to evaluate the concentration of multi-walled carbon nanotubes (MWCNTs) on the conductivity of gold electrode. For this work, raw MWCNTs was functionalized and shortened. Raw and shorten MWCNTs were characterized using transfer electron microscopy (TEM). Next, 0.5, 2 and 3.5 mg of Shortened and functionalized MWCNTs were dispersed in 2 mL Dimethyl formamide (DMF) and cysteamine modified gold electrodes were incubated in the different concentrations of MWCNTs for 8 hours. Then, the immobilization of MWCNTs on cysteamine modified gold electrode was characterized by scanning electron microscopy (SEM) and the effect of MWCNT concentrations on electron transfer of modified electrodes was investigated by cyclic voltammetry (CV). The results demonstrated that CV response of ferricyanide redox at modified gold electrodes increased as concentration of MWCNTs enhanced from 0.5 to 2 mg in 2 mL DMF. This increase can be attributed to the number of MWCNTs which enhance on the surface of cysteamine modified gold electrode as the MWCNTs concentration increased whereas CV response of ferricyanide redox at modified gold electrodes did not changed significantly as the MWCNTs concentration increased from 2 to 3.5 mg in 2 mL DMF. The reason may be that amine groups of cysteamine modified gold electrodes are limited to a given number which can interact with the given number of carboxylic groups of MWCNTs and CV response of ferricyanide redox at modified gold do not enhance after amine groups of cysteamine are saturated with carboxylic groups of MWCNTs.Keywords: carbon nanotube, cysteamine, electrochemical sensor, gold electrode
Procedia PDF Downloads 4673115 An Empirical Approach to NO2 Gas Sensing Properties of Carbon Films Fabricated by Arc Discharge Methane Decomposition Technique
Authors: Elnaz Akbari, Zolkafle Buntat
Abstract:
Today, the use of carbon-based materials such as graphene, carbon nanotubes, etc. in various applications is being extensively studied by researchers in the field. One of such applications is using them in gas sensors. While analytical investigations on the physical and chemical properties of carbon nanomaterials are the focal points in the studies, the need for experimental measurements on various physical characteristics of these materials is deeply felt. In this work, a set of experiments has been conducted using arc discharge Methane decomposition attempting to obtain carbonaceous materials (C-strands) formed between graphite electrodes. The current-voltage (I-V) characteristics of the fabricated C-strands have been investigated in the presence and absence of two different gases, NO2 and CO2. The results reveal that the current passing through the carbon films increases when the concentrations of gases are increased from 200 to 800 ppm. This phenomenon is a result of conductance changes and can be employed in sensing applications such as gas sensors.Keywords: carbonaceous materials, gas sensing, methane arc discharge decomposition, I-V characteristics
Procedia PDF Downloads 2163114 TiO2 Formation after Nanotubes Growth on Ti-15Mo Alloy Surface for Different Annealing Temperatures
Authors: A. L. R. Rangel, J. A. M. Chaves, A. P. R. Alves Claro
Abstract:
Surface modification of titanium and its alloys using TiO2 nanotube growth has been widely studied for biomedical field due to excellent interaction between implant and biological environment. The success of this treatment is directly related to anatase phase formation (TiO2 phase) which affects the cells growth. The aim of this study was to evaluate the phases formed in the nanotubes growth on the Ti-15Mo surface. Nanotubes were grown by electrochemical anodization of the alloy in ammonium fluoride based glycerol electrolyte for 24 hours at 20V. Then, the samples were annealed at 200°,400°, 450°, 500°, 600°, and 800° C for 1 hour. Contact angles measurements, scanning electron microscopy images and X rays diffraction analysis (XRD) were carried out for all samples. Raman Spectroscopy was used to evaluate TiO2 phases transformation in nanotubes samples as well. The results of XRD showed anatase formation for lower temperatures, while at 800 ° C the rutile phase was observed all over the surface. Raman spectra indicate that this phase transition occurs between 500 and 600 °C. The different phases formed have influenced the nanotubes morphologies, since higher annealing temperatures induced agglutination of the TiO2 layer, disrupting the tubular structure. On the other hand, the nanotubes drastically reduced the contact angle, regardless the annealing temperature.Keywords: nanotubes, TiO2, titanium alloys, Ti-15Mo
Procedia PDF Downloads 3843113 Optical Ignition of Nanoenergetic Materials with Tunable Explosion Reactivity
Authors: Ji Hoon Kim, Jong Man Kim, Hyung Woo Lee, Soo Hyung Kim
Abstract:
The applications of nanoenergetic materials (nEMs) could be extended by developing more convenient and reliable ignition methods. However, the underwater ignition of nEMs is a significant challenge because water perturbs the reactants prior to ignition and also quenches the subsequent combustion reaction of nEMs upon ignition. In this study, we developed flash and laser-ignitable nEMs for underwater explosion. This was achieved by adding various carbon nanotubes (CNTs) as the optical igniter into an nEM matrix, composed of Al/CuO nanoparticles. The CNTs absorb the irradiated optical energy and rapidly convert it into thermal energy, and then the thermal energy is concentrated to ignite the core catalysts and neighboring nEMs. The maximum burn rate was achieved by adding 1 wt% CNTs into the nEM matrix. The burn rate significantly decreased with increasing amount of CNTs (≥ 2 wt%), indicating that the optical ignition and controlled-explosion reactivity of nEMs are possible by incorporating an appropriate amount of CNTs.Keywords: nanoenergetic materials, carbon nanotubes, optical ignition, tunable explosion
Procedia PDF Downloads 3043112 Gas-Phase Nondestructive and Environmentally Friendly Covalent Functionalization of Graphene Oxide Paper with Amines
Authors: Natalia Alzate-Carvajal, Diego A. Acevedo-Guzman, Victor Meza-Laguna, Mario H. Farias, Luis A. Perez-Rey, Edgar Abarca-Morales, Victor A. Garcia-Ramirez, Vladimir A. Basiuk, Elena V. Basiuk
Abstract:
Direct covalent functionalization of prefabricated free-standing graphene oxide paper (GOP) is considered as the only approach suitable for systematic tuning of thermal, mechanical and electronic characteristics of this important class of carbon nanomaterials. At the same time, the traditional liquid-phase functionalization protocols can compromise physical integrity of the paper-like material up to its total disintegration. To avoid such undesirable effects, we explored the possibility of employing an alternative, solvent-free strategy for facile and nondestructive functionalization of GOP with two representative aliphatic amines, 1-octadecylamine (ODA) and 1,12-diaminododecane (DAD), as well as with two aromatic amines, 1-aminopyrene (AP) and 1,5-diaminonaphthalene (DAN). The functionalization was performed under moderate heating at 150-180 °C in vacuum. Under such conditions, it proceeds through both amidation and epoxy ring opening reactions. Comparative characterization of pristine and amine-functionalized GOP mats was carried out by using Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopy (XPS), thermogravimetric (TGA) and differential thermal analysis, scanning electron and atomic force microscopy (SEM and AFM, respectively). Besides that, we compared the stability in water, wettability, electrical conductivity and elastic (Young's) modulus of GOP mats before and after amine functionalization. The highest content of organic species was obtained in the case of GOP-ODA, followed by GOP-DAD, GOP-AP and GOP-DAN samples. The covalent functionalization increased mechanical and thermal stability of GOP, as well as its electrical conductivity. The magnitude of each effect depends on the particular chemical structure of amine employed, which allows for tuning a given GOP property. Morphological characterization by using SEM showed that, compared to pristine graphene oxide paper, amine-modified GOP mats become relatively ordered layered assemblies, in which individual GO sheets are organized in a near-parallel pattern. Financial support from the National Autonomous University of Mexico (grants DGAPA-IN101118 and IN200516) and from the National Council of Science and Technology of Mexico (CONACYT, grant 250655) is greatly appreciated. The authors also thank David A. Domínguez (CNyN of UNAM) for XPS measurements and Dr. Edgar Alvarez-Zauco (Faculty of Science of UNAM) for the opportunity to use TGA equipment.Keywords: amines, covalent functionalization, gas-phase, graphene oxide paper
Procedia PDF Downloads 1813111 Some Conjectures and Programs about Computing the Detour Index of Molecular Graphs of Nanotubes
Authors: Shokofeh Ebrtahimi
Abstract:
Let G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G.Chemical graph theory is the topology branch of mathematical chemistry which applies graph theory to mathematical modelling of chemical phenomena.[1] The pioneers of the chemical graph theory are Alexandru Balaban, Ante Graovac, Ivan Gutman, Haruo Hosoya, Milan Randić and Nenad TrinajstićLet G be the chemical graph of a molecule. The matrix D = [dij ] is called the detour matrix of G, if dij is the length of longest path between atoms i and j. The sum of all entries above the main diagonal of D is called the detour index of G. In this paper, a new program for computing the detour index of molecular graphs of nanotubes by heptagons is determineded. Some Conjectures about detour index of Molecular graphs of nanotubes is included.Keywords: chemical graph, detour matrix, Detour index, carbon nanotube
Procedia PDF Downloads 2923110 Anodization-Assisted Synthesis of Shape-Controlled Cubic Zirconia Nanotubes
Authors: Ibrahim Dauda Muhammad, Mokhtar Awang
Abstract:
To synthesize a specific phase of zirconia (ZrO₂) nanotubes, zirconium (Zr) foil was subjected to the anodization process in a fluorine-containing electrochemical bath for a fixed duration. The resulting zirconia nanotubes (ZNTs) were then characterized using various techniques, including UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The XRD diffraction pattern confirmed that the ZNTs were crystalline, with a predominant texture along the [111] direction, indicating that the majority of the phase was cubic. TEM images revealed that most of the nanotubes were vertically aligned and self-organized, with diameters ranging from 32.9 to 38.8 nm and wall thicknesses between 3.0 and 7.3 nm. Additionally, the synthesized ZNTs had a length-to-width ratio of 235, which closely matches the ratio of 240 observed in another study where anodization was not used. This study demonstrates that a specific phase of zirconia nanotube can be successfully synthesized, with promising potential applications in catalysis and other areas.Keywords: zirconia nanotubes, anodization, characterization, cubic phase
Procedia PDF Downloads 183109 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste
Authors: Maciej Szelag
Abstract:
The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS
Procedia PDF Downloads 3563108 Easy Method of Synthesis and Functionalzation of Zno Nanoparticules With 3 Aminopropylthrimethoxysilane (APTES)
Authors: Haythem Barrak, Gaetan Laroche, Adel M’nif, Ahmed Hichem Hamzaoui
Abstract:
The use of semiconductor oxides, as chemical or biological, requires their functionalization with appropriate dependent molecules of the substance to be detected. generally, the support materials used are TiO2 and SiO2. In the present work, we used zinc oxide (ZnO) known for its interesting physical properties. The synthesis of nano scale ZnO was performed by co-precipitation at low temperature (60 ° C).To our knowledge, the obtaining of this material at this temperature was carried out for the first time. This shows the low cost of this operation. On the other hand, the surface functionalization of ZnO was performed with (3-aminopropyl) triethoxysilane (APTES) by using a specific method using ethanol for the first time. In addition, the duration of this stage is very low compared to literature. The samples obtained were analyzed by XRD, TEM, DLS, FTIR, and TGA shows that XPS that the operation of grafting of APTES on our support was carried out with success.Keywords: functionalization, nanoparticle, ZnO, APTES, caractérisation
Procedia PDF Downloads 3613107 Electrochemical Performance of Carbon Nanotube Based Supercapacitor
Authors: Jafar Khan Kasi, Ajab Khan Kasi, Muzamil Bokhari
Abstract:
Carbon nanotube is one of the most attractive materials for the potential applications of nanotechnology due to its excellent mechanical, thermal, electrical and optical properties. In this paper we report a supercapacitor made of nickel foil electrodes, coated with multiwall carbon nanotubes (MWCNTs) thin film using electrophoretic deposition (EPD) method. Chemical vapor deposition method was used for the growth of MWCNTs and ethanol was used as a hydrocarbon source. High graphitic multiwall carbon nanotube was found at 750 C analyzing by Raman spectroscopy. We observed the electrochemical performance of supercapacitor by cyclic voltammetry. The electrodes of supercapacitor fabricated from MWCNTs exhibit considerably small equivalent series resistance (ESR), and a high specific power density. Electrophoretic deposition is an easy method in fabricating MWCNT electrodes for high performance supercapacitor.Keywords: carbon nanotube, chemical vapor deposition, catalyst, charge, cyclic voltammetry
Procedia PDF Downloads 5633106 Preparation of Catalyst-Doped TiO2 Nanotubes by Single Step Anodization and Potential Shock
Authors: Hyeonseok Yoo, Kiseok Oh, Jinsub Choi
Abstract:
Titanium oxide nanotubes have attracted great attention because of its photocatalytic activity and large surface area. For enhancing electrochemical properties, catalysts should be doped into the structure because titanium oxide nanotubes themselves have low electroconductivity and catalytic activity. It has been reported that Ru and Ir doped titanium oxide electrodes exhibit high efficiency and low overpotential in the oxygen evolution reaction (OER) for water splitting. In general, titanium oxide nanotubes with high aspect ratio cannot be easily doped by conventional complex methods. Herein, two types of facile routes, namely single step anodization and potential shock, for Ru doping into high aspect ratio titanium oxide nanotubes are introduced in detail. When single step anodization was carried out, stability of electrodes were increased. However, onset potential was shifted to anodic direction. On the other hand, when high potential shock voltage was applied, a large amount of ruthenium/ruthenium oxides were doped into titanium oxide nanotubes and thick barrier oxide layers were formed simultaneously. Regardless of doping routes, ruthenium/ ruthenium oxides were homogeneously doped into titanium oxide nanotubes. In spite of doping routes, doping in aqueous solution generally led to incorporate high amount of Ru in titanium oxide nanotubes, compared to that in non-aqueous solution. The amounts of doped catalyst were analyzed by X-ray photoelectron spectroscopy (XPS). The optimum condition for water splitting was investigated in terms of the amount of doped Ru and thickness of barrier oxide layer.Keywords: doping, potential shock, single step anodization, titanium oxide nanotubes
Procedia PDF Downloads 4583105 Influences of Thermal Treatments on Dielectric Behaviors of Carbon Nanotubes-BaTiO₃ Hybrids Reinforced Polyvinylidene Fluoride Composites
Authors: Benhui Fan, Fahmi Bedoui, Jinbo Bai
Abstract:
Incorporated carbon nanotube-BaTiO₃ hybrids (H-CNT-BT) with core-shell structure, a better dispersion of CNTs can be achieved in a semi-crystalline polymeric matrix, polyvinylidene fluoride (PVDF). Carried by BT particles, CNTs are easy to mutually connect which helps to obtain an extremely low percolation threshold (fc). After thermal treatments, the dielectric constants (ε’) of samples further increase which depends on the conditions of thermal treatments such as annealing temperatures, annealing durations and cooling ways. Thus, in order to study more comprehensively about the influence of thermal treatments on composite’s dielectric behaviors, in situ synchrotron X-ray is used to detect re-crystalline behavior of PVDF. Results of wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) show that after the thermal treatment, the content of β polymorph (the polymorph with the highest ε’ among all the polymorphs of PVDF’s crystalline structure) has increased nearly double times at the interfacial region of CNT-PVDF, and the thickness of amorphous layers (La) in PVDF’s long periods (Lp) has shrunk around 10 Å. The evolution of CNT’s network possibly occurs in the procedure of La shrinkage, where the strong interfacial polarization may be aroused and increases ε’ at low frequency. Moreover, an increase in the thickness of crystalline lamella may also arouse more orientational polarization and improve ε’ at high frequency.Keywords: dielectric properties, thermal treatments, carbon nanotubes, crystalline structure
Procedia PDF Downloads 3243104 Development of a Highly Flexible, Sensitive and Stretchable Polymer Nanocomposite for Strain Sensing
Authors: Shaghayegh Shajari, Mehdi Mahmoodi, Mahmood Rajabian, Uttandaraman Sundararaj, Les J. Sudak
Abstract:
Although several strain sensors based on carbon nanotubes (CNTs) have been reported, the stretchability and sensitivity of these sensors have remained as a challenge. Highly stretchable and sensitive strain sensors are in great demand for human motion monitoring and human-machine interface. This paper reports the fabrication and characterization of a new type of strain sensors based on a stretchable fluoropolymer / CNT nanocomposite system made via melt-mixing technique. Electrical and mechanical characterizations were obtained. The results showed that this nanocomposite sensor has high stretchability up to 280% of strain at an optimum level of filler concentration. The piezoresistive properties and the strain sensing mechanism of the strain sensor were investigated using Electrochemical Impedance Spectroscopy (EIS). High sensitivity was obtained (gauge factor as large as 12000 under 120% applied strain) in particular at the concentrations above the percolation threshold. Due to the tunneling effect, a non- linear piezoresistivity was observed at high concentrations of CNT loading. The nanocomposites with good conductivity and lightweight could be a promising candidate for strain sensing applications.Keywords: carbon nanotubes, fluoropolymer, piezoresistive, strain sensor
Procedia PDF Downloads 2963103 The Fabrication and Characterization of Hierarchical Carbon Nanotube/Carbon Fiber/High-Density Polyethylene Composites via Twin-Screw Extrusion
Authors: Chao Hu, Xinwen Liao, Qing-Hua Qin, Gang Wang
Abstract:
The hierarchical carbon nanotube (CNT)/carbon fiber (CF)/high density polyethylene (HDPE) was fabricated via compound extrusion and injection molding, in which to author’s best knowledge CNT was employed as a nano-coatings on the surface of CF for the first time by spray coating technique. The CNT coatings relative to CF was set at 1 wt% and the CF content relative to the composites varied from 0 to 25 wt% to study the influence of CNT coatings and CF contents on the mechanical, thermal and morphological performance of this hierarchical composites. The results showed that with the rise of CF contents, the mechanical properties, including the tensile properties, flexural properties, and hardness of CNT/CF/HDPE composites, were effectively improved. Furthermore, the CNT-coated composites showed overall higher mechanical performance than the uncoated counterparts. It can be ascribed to the enhancement of interfacial bonding between the CF and HDPE via the incorporation of CNT, which was demonstrated by the scanning electron microscopy observation. Meanwhile, the differential scanning calorimetry data indicated that by the introduction of CNT and CF, the crystallization temperature and crystallinity of HDPE were affected while the melting temperature did not have an obvious alteration.Keywords: carbon fibers, carbon nanotubes, extrusion, high density polyethylene
Procedia PDF Downloads 1383102 Modification of Carbon-Based Gas Sensors for Boosting Selectivity
Authors: D. Zhao, Y. Wang, G. Chen
Abstract:
Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials
Procedia PDF Downloads 1273101 Impact of Locally Synthesized Carbon Nanotubes against Some Local Clinical Bacterial Isolates
Authors: Abdul Matin, Muazzama Akhtar, Shahid Nisar, Saddaf Mazzar, Umer Rashid
Abstract:
Antibiotic resistance is an increasing concern worldwide now a day. Neisseria gonorrhea and Staphylococcus aureus are known to cause major human sexually transmitted and respiratory diseases respectively. Nanotechnology is an emerging discipline and its application in various fields especially in medical sciences is gigantic. In the present study, we synthesized multi-walled carbon nanotubes (MWNTs) using acid oxidation method and solubilized MWNTs were with length predominantly >500 nm and diameters ranging from 40 to 50 nm. The locally synthesized MWNTs were used against gram positive and negative bacteria to determine their impact on bacterial growth. Clinical isolates of Neisseria gonorrhea (isolate: 4C-11) and Staphylococcus aureus (isolate: 38541) were obtained from local hospital and normally cultured in LB broth at 37°C. Both clinical strains can be obtained on request from University of Gujarat. Spectophometric assay was performed to determine the impact of MWNTs on bacterial growth in vitro. To determine the effect of MWTNs on test organisms, various concentration of MWNTs were used and recorded observation on various time intervals to understand the growth inhibition pattern. Our results demonstrated that MWNTs exhibited toxic effects to Staphylococcus aureus while showed very limited growth inhibition to Neisseria gonorrhea, which suggests the resistant potential of Neisseria against nanoparticles. Our results clearly demonstrate the gradual decrease in bacterial numbers with passage of time when compared with control. Maximum bacterial inhibition was observed at maximum concentration (50 µg/ml). Our future work will include further characterization and mode of action of our locally synthesized MWNTs. In conclusion, we investigated and reported for the first time the inhibitory potential of locally synthesized MWNTs on local clinical isolates of Staphylococcus aureus and Neisseria gonorrhea.Keywords: antibacterial activity, multi walled carbon nanotubes, Neisseria gonorrhea, spectrophotometer assay, Staphylococcus aureus
Procedia PDF Downloads 3143100 Performance Analysis of Carbon Nanotube for VLSI Interconnects and Their Comparison with Copper Interconnects
Authors: Gagnesh Kumar, Prashant Gupta
Abstract:
This paper investigates the performance of the bundle of single wall carbon nanotubes (SWCNT) for low-power and high-speed interconnects for future VLSI applications. The power dissipation, delay and power delay product (PDP) of SWCNT bundle interconnects are examined and compared with that of the Cu interconnects at 22 nm technology node for both intermediate and global interconnects. The results show that SWCNT bundle consume less power and also faster than Cu for intermediate and global interconnects. It is concluded that the metallic SWCNT has been regarded as a viable candidate for intermediate and global interconnects in future technologies.Keywords: carbon nanotube, SWCNT, low power, delay, power delay product, global and intermediate interconnects
Procedia PDF Downloads 3203099 Simulation of Carbon Nanotubes/GaAs Hybrid PV Using AMPS-1D
Authors: Nima E. Gorji
Abstract:
The performance and characteristics of a hybrid heterojunction single-walled carbon nanotube and GaAs solar cell is modelled and numerically simulated using AMPS-1D device simulation tool. The device physics and performance parameters with different junction parameters are analysed. The results suggest that the open-circuit voltage changes very slightly by changing the work function, acceptor and donor density while the other electrical parameters reach to an optimum value. Increasing the concentration of a discrete defect density in the absorber layer decreases the electrical parameters. The current-voltage characteristics, quantum efficiency, band gap and thickness variation of the photovoltaic response will be quantitatively considered.Keywords: carbon nanotube, GaAs, hybrid solar cell, AMPS-1D modelling
Procedia PDF Downloads 3303098 Functionalization of Nanomaterials for Bio-Sensing Applications: Current Progress and Future Prospective
Authors: Temesgen Geremew Tefery
Abstract:
Nanomaterials, due to their unique properties, have revolutionized the field of biosensing. Their functionalization, or modification with specific molecules, is crucial for enhancing their biocompatibility, selectivity, and sensitivity. This review explores recent advancements in nanomaterial functionalization for biosensing applications. We discuss various strategies, including covalent and non-covalent modifications, and their impact on biosensor performance. The use of biomolecules like antibodies, enzymes, and nucleic acids for targeted detection is highlighted. Furthermore, the integration of nanomaterials with different sensing modalities, such as electrochemical, optical, and mechanical, is examined. The future outlook for nanomaterial-based biosensing is promising, with potential applications in healthcare, environmental monitoring, and food safety. However, challenges related to biocompatibility, scalability, and cost-effectiveness need to be addressed. Continued research and development in this area will likely lead to even more sophisticated and versatile biosensing technologies.Keywords: biosensing, nanomaterials, biotechnology, nanotechnology
Procedia PDF Downloads 273097 Flexural Properties of Halloysite Nanotubes-Polyester Nanocomposites Exposed to Aggressive Environment
Authors: Mohd Shahneel Saharudin, Jiacheng Wei, Islam Shyha, Fawad Inam
Abstract:
This study aimed to investigate the effect of aggressive environment on the flexural properties of halloysite nanotubes-polyester nanocomposites. Results showed that the addition of halloysite nanotubes into polyester matrix was found to improve flexural properties of the nanocomposites in dry condition and after water-methanol exposure. Significant increase in surface roughness was also observed and measured by Alicona Infinite Focus optical microscope.Keywords: halloysite nanotube, composites, flexural properties, surface roughness
Procedia PDF Downloads 279