Search results for: Ester B. Onag
74 Bioactive Compounds Characterization of Cereal-Based Porridge Enriched with Cirina forda
Authors: Kunle Oni
Abstract:
This study investigated the bioactivity potentials of porridge from yellow maize and malted sorghum enriched with Cirinaforda.All the samples were analyzed using standard methods.Results showed that the highest value 217.03μmolTEAC/100g, 43.3 mmol Fe2+ /100g, and 35.56% for DPPH, FRAP and TBARS respectively were reported in sample 50FYM+20MS+30CF, while the lowest value 146.10μmolTEAC/100, 20.18±0.11 mmol Fe2+/100g and 13.25% for DPPH, FRAP and TBARS were reported in the control sample.The oxalate and tannin contents were lowest in sample 50FYM+20MS+30CFbutOxalate was highest in the control sample while tannin was highest in sample 60FYM+20MS+20CF.The phytate content was highest in the 60FYM+20MS+20CF mixture (2.32 mg/100g) and lowest in the control (100% FYM) porridge (2.20 mg/100g).The result also showed that the total phenolic content was highest in the 60FYM+20MS+20CF mixture (318.28 mg GAE/100g) and lowest in the50FYM+30MS+20CF mixture (264.18mg GAE/100g).The total flavonoid content had the50FYM+20MS+30CFmixture having the highest content (189.31mg RE/100g) and the 60FYM+20MS+20CF mixture having the lowest (90.10mg RE/100g). The enrichment of the porridge with C. fordaincreased the concentration of various bioactive compounds compared to the control sample. The identified compounds cinnamic acid, methyl ester, 10-Methyl-E-11-tridecen-1-ol propionate, methaqualone,3-(2-Hydroxy-6-methylphenyl)-4(3H)-quinazolinone, and oleic acidKeywords: bioactive compounds, characterization, cereal-based porridge, Cirina forda
Procedia PDF Downloads 6073 Identification and Characterization of Inhibitors of Epoxide Hydrolase from Trichoderma reesei
Authors: Gabriel S. De Oliveira, Patricia P. Adriani, Christophe Moriseau, Bruce D. Hammock, Felipe S. Chambergo
Abstract:
Epoxide hydrolases (EHs) are enzymes that are present in all living organisms and catalyze the hydrolysis of epoxides to the corresponding vicinal diols. EHs have high biotechnological interest for the drug design and chemistry transformation for industries. In this study, we describe the identification of substrates and inhibitors of epoxide hydrolase enzyme from the filamentous fungus Trichoderma reesei (TrEH), and these inhibitors showed the fungal growth inhibitory activity. We have used the cloned enzyme and expressed in E. coli to develop the screening in the library of fluorescent substrates with the objective of finding the best substrate to be used in the identification of good inhibitors for the enzyme TrEH. The substrate (3-phenyloxiranyl)-acetic acid cyano-(6-methoxy-naphthalen-2-yl)-methyl ester showed the highest specific activity and was chosen for the next steps of the study. The inhibitors screening was performed in the library with more than three thousand molecules and we could identify the 6 best inhibitors. The IC50 of these molecules were determined in nM and all the best inhibitors have urea or amide in their structure, because It has been recognized that these groups fit well in the hydrolase catalytic pocket of the epoxide hydrolases. Then the growth of T. reesei in PDA medium containing these TrEH inhibitors was tested, and fungal growth inhibition activity was demonstrated with more than 60% of inhibition of fungus growth in the assay with the TrEH inhibitor with the lowest IC50. Understanding how this EH enzyme from T. reesei responds to inhibitors may contribute for the study of fungal metabolism and drug design against pathogenic fungi.Keywords: epoxide hydrolases, fungal growth inhibition, inhibitor, Trichoderma reesei
Procedia PDF Downloads 19972 Development of Orthogonally Protected 2,1':4,6-Di-O-Diisopropylidene Sucrose as the Versatile Intermediate for Diverse Synthesis of Phenylpropanoid Sucrose Esters
Authors: Li Lin Ong, Duc Thinh Khong, Zaher M. A. Judeh
Abstract:
Phenylpropanoid sucrose esters (PSEs) are natural compounds found in various medicinal plants which exhibit important biological activities such as antiproliferation and α- and β-glucosidase inhibitory activities. Despite their potential as new therapeutics, total synthesis of PSEs has been very limited as their inherent structures contain one or more (substituted) cinnamoyl groups randomly allocated on the sucrose core via ester linkage. Since direct acylation of unprotected sucrose would be complex and tedious due to the presence of eight free hydroxyl groups, partially protected 2,1’:4,6-di-O-diisopropylidene sucrose was used as the starting material instead. However, similar reactivity between the remaining four hydroxyl groups still pose a challenge in the total synthesis of PSEs as the lack of selectivity can restrict customisation where acylation at specific OH is desired. To overcome this problem, a 4-step orthogonal protection scheme was developed. In this scheme, the remaining four hydroxyl groups on 2,1’:4,6-di-O-diisopropylidene sucrose, 6’-OH, 3’-OH, 4’-OH, and 3-OH, were protected with different protecting groups with an overall yield of > 40%. This orthogonally protected intermediate would provide a convenient and divergent access to a wider range of natural and synthetic PSEs as (substituted) cinnamoyl groups can be selectively introduced at desired positions. Using this scheme, three different series of monosubstituted PSEs were successfully synthesized where (substituted) cinnamoyl groups were introduced selectively at O-3, O-3’, and O-4’ positions, respectively. The expanded library of PSEs would aid in structural-activity relationship study of PSEs for identifying key components responsible for their biological activities.Keywords: orthogonal protection, phenylpropanoid sucrose esters, selectivity, sucrose
Procedia PDF Downloads 15871 Sustainable Radiation Curable Palm Oil-Based Products for Advanced Materials Applications
Authors: R. Tajau, R. Rohani, M. S. Alias, N. H. Mudri, K. A. Abdul Halim, M. H. Harun, N. Mat Isa, R. Che Ismail, S. Muhammad Faisal, M. Talib, M. R. Mohamed Zin
Abstract:
Bio-based polymeric materials are increasingly used for a variety of applications, including surface coating, drug delivery systems, and tissue engineering. These polymeric materials are ideal for the aforementioned applications because they are derived from natural resources, non-toxic, low-cost, biocompatible, and biodegradable, and have promising thermal and mechanical properties. The nature of hydrocarbon chains, carbon double bonds, and ester bonds allows various sources of oil (edible), such as soy, sunflower, olive, and oil palm, to fine-tune their particular structures in the development of innovative materials. Palm oil can be the most eminent raw material used for manufacturing new and advanced natural polymeric materials involving radiation techniques, such as coating resins, nanoparticles, scaffold, nanotubes, nanocomposites, and lithography for different branches of the industry in countries where oil palm is abundant. The radiation technique is among the most versatile, cost-effective, simple, and effective methods. Crosslinking, reversible addition-fragmentation chain transfer (RAFT), polymerisation, grafting, and degradation are among the radiation mechanisms. Exposure to gamma, EB, UV, or laser irradiation, which are commonly used in the development of polymeric materials, is used in these mechanisms. Therefore, this review focuses on current radiation processing technologies for the development of various radiation-curable bio-based polymeric materials with a promising future in biomedical and industrial applications. The key focus of this review is on radiation curable palm oil-based products, which have been published frequently in recent studies.Keywords: palm oil, radiation processing, surface coatings, VOC
Procedia PDF Downloads 18370 Fatty Acids and Inflammatory Protein Biomarkers in Freshly Frozen Plasma Samples from Patients with and without COVID-19
Authors: Alaa Hamed Habib
Abstract:
The Coronavirus disease 2019 (COVID-19) is a viral infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and associated with systemic inflammation. Inflammation is an important process that follows infection and facilitates the repair of damaged tissue. Polyunsaturated fatty acids play an important role in the inflammatory process. These lipids can target transcription factors to modulate gene expression and protein function. Here, we evaluated whether differences in basal levels of different types of biomarkers can be detected in freshly frozen plasma samples from patients with and without COVID19. Fatty acid methyl ester (FAME) analysis showed a decrease in arachidic acid and myristic acid, but an increase in caprylic acid, palmitic acid, and eicosenoic acid in the plasma of COVID-19 patients compared to non-COVID19 patients. Multiple chemokines, including IP-10, MCP-1, and MIP-1 beta, were increased in the COVID-19 group compared to the non-COVID-19 group. Similarly, cytokines including IL-1 alpha and IL-8, and cell adhesion and inflammatory response markers including ICAM-1 and E-selectin were greater in the plasma of COVID-19 patients compared to non-COVID-19 patients. A baseline signature of specific polyunsaturated fatty acids, cytokines, and chemokines present in the plasma after COVID-19 viral infection may serve as biomarkers that can be useful in various applications, including determination of the severity of infection, an indication of disease prognosis and consideration for therapeutic options.Keywords: MARKS, COVID 19, UEVS NON COVIDS, kidneys, nanoparticles
Procedia PDF Downloads 669 From Bureaucracy to Organizational Learning Model: An Organizational Change Process Study
Authors: Vania Helena Tonussi Vidal, Ester Eliane Jeunon
Abstract:
This article aims to analyze the change processes of management related bureaucracy and learning organization model. The theoretical framework was based on Beer and Nohria (2001) model, identified as E and O Theory. Based on this theory the empirical research was conducted in connection with six key dimensions: goal, leadership, focus, process, reward systems and consulting. We used a case study of an educational Institution located in Barbacena, Minas Gerais. This traditional center of technical knowledge for long time adopted the bureaucratic way of management. After many changes in a business model, as the creation of graduate and undergraduate courses they decided to make a deep change in management model that is our research focus. The data were collected through semi-structured interviews with director, managers and courses supervisors. The analysis were processed by the procedures of Collective Subject Discourse (CSD) method, develop by Lefèvre & Lefèvre (2000), Results showed the incremental growing of management model toward a learning organization. Many impacts could be seeing. As negative factors we have: people resistance; poor information about the planning and implementation process; old politics inside the new model and so on. Positive impacts are: new procedures in human resources, mainly related to manager skills and empowerment; structure downsizing, open discussions channel; integrated information system. The process is still under construction and now great stimulus is done to managers and employee commitment in the process.Keywords: bureaucracy, organizational learning, organizational change, E and O theory
Procedia PDF Downloads 43468 Hyaluronan and Hyaluronan-Associated Genes in Human CD8 T Cells
Authors: Emily Schlebes, Christian Hundhausen, Jens W. Fischer
Abstract:
The glycosaminoglycan hyaluronan (HA) is a major component of the extracellular matrix, typically produced by fibroblasts of the connective tissue but also by immune cells. Here, we investigated the capacity of human peripheral blood CD8 T cells from healthy donors to produce HA and to express HA receptors as well as HA degrading enzymes. Further, we evaluated the effect of pharmacological HA inhibition on CD8 T cell function. Using immunocytochemistry together with quantitative PCR analysis, we found that HA synthesis is rapidly induced upon antibody-induced T cell receptor (TCR) activation and almost exclusively mediated by HA synthase 3 (HAS3). TCR activation also resulted in the upregulation of HA receptors CD44, hyaluronan-mediated motility receptor (HMMR), and layilin (LAYN), although kinetics and strength of expression varied greatly between subjects. The HA-degrading enzymes HYAL1 and HYAL2 were detected at low levels and induced by cell activation in some individuals. Interestingly, expression of HAS3, HA receptors, and hyaluronidases were modulated by the proinflammatory cytokines IL-6 and IL-1bβ in most subjects. To assess the functional role of HA in CD8 T cells, we performed carboxyfluorescein succinimidyl ester (CFSE) based proliferation assays and cytokine analysis in the presence of the HA inhibitor 4- Methylumbelliferone (4-MU). Despite significant inter-individual variation with regard to the effective dose, 4-MU resulted in the inhibition of CD8 T cell proliferation and reduced release of TNF-α and IFN-γ. Collectively, these data demonstrate that human CD8 T cells respond to TCR stimulation with a synthesis of HA and expression of HA-related genes. They further suggest that HA inhibition may be helpful in interfering with pathogenic T cell activation in human disease.Keywords: CD8 T cells, extracellular matrix, hyaluronan, hyaluronan synthase 3
Procedia PDF Downloads 9967 Luminescent and Conductive Cathode Buffer Layer for Enhanced Power Conversion Efficiency of Bulk-Heterojunction Solar Cells
Authors: Swati Bishnoi, D. Haranath, Vinay Gupta
Abstract:
In this work, we demonstrate that the power conversion efficiency (PCE) of organic solar cells (OSCs) could be improved significantly by using ZnO doped with Aluminum (Al) and Europium (Eu) as cathode buffer layer (CBL). The ZnO:Al,Eu nanoparticle layer has broadband absorption in the ultraviolet (300-400 nm) region. The Al doping contributes to the enhancement in the conductivity whereas Eu doping significantly improves emission in the visible region. Moreover, this emission overlaps with the absorption range of polymer poly [N -9′-heptadecanyl-2,7-carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′- benzothiadiazole)] (PCDTBT) significantly and results in an enhanced absorption by the active layer and hence high photocurrent. An increase in the power conversion efficiency (PCE) of 6.8% has been obtained for ZnO: Al,Eu CBL as compared to 5.9% for pristine ZnO, in the inverted device configuration ITO/CBL/active layer/MoOx/Al. The active layer comprises of a blend of PCDTBT donor and [6-6]-phenyl C71 butyric acid methyl ester (PC71BM) acceptor. In the reference device pristine ZnO has been used as CBL, whereas in the other one ZnO:Al,Eu has been used as CBL. The role of the luminescent CBL layer is to down-shift the UV light into visible range which overlaps with the absorption of PCDTBT polymer, resulting in an energy transfer from ZnO:Al,Eu to PCDTBT polymer and the absorption by active layer is enhanced as revealed by transient spectroscopy. This enhancement resulted in an increase in the short circuit current which contributes in an increased PCE in the device employing ZnO: Al,Eu CBL. Thus, the luminescent ZnO: Al, Eu nanoparticle CBL has great potential in organic solar cells.Keywords: cathode buffer layer, energy transfer, organic solar cell, power conversion efficiency
Procedia PDF Downloads 25566 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters
Authors: Komal Kumar, Sreedevi Upadhyayula
Abstract:
In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester
Procedia PDF Downloads 25165 Relation Between Marital Adjustment and Parenting: The Moderating Effect of Children´s Temperament
Authors: Ester Ato, Maria Angeles Fernández-Vilar, Maria Dolores Galián
Abstract:
The aim of this work was to analyze the relation between children´s effortful control, marital adjustment and parenting practices in a sample of 345 Spanish children aged between 6 and 8 years. Traditionally, the literature confirms that a higher level of marital conflict has been associated with less effective and less positive parenting, but there are few studies that include the effect that children´s effortful control exert to this relation. To measure marital adjustment, parenting practices and children’s temperament, parents were given the Marital Adjustment Test (MAT), the Spanish version of the PCRI (Parent-Child Relationship Inventory), and the TMCQ (Temperament in Middle Childhood Questionnaire). The results confirmed that higher marital satisfaction predicted more positive parenting practices, whereas lower marital adjustment scores predicted less parenting support and control. Using a statistical modeling approach, we tested a moderation model that revealed the moderating role of effortful control in the relation between marital adjustment and parenting. Concretely, higher marital satisfaction predicts higher parenting communication and involvement, but only in children with low levels of effortful control. Therefore, a difficult temperament interferes in a less negative way in the family system when parents are satisfied and united. And a better self-regulated child predicts more effective parenting practice regardless of the parents´ marital satisfaction. The clinical implications of the present findings should be considered. Specifically, difficult children must be detected and evaluated in community settings, such as school or community programs, in order to take into account the marital adjustment and parenting practices of their parents, and to be able to design adequate family interventions and prevent future pathologizing patterns.Keywords: effortful control, marital adjustment, parenting, moderation
Procedia PDF Downloads 40564 Screening of Potential Cytotoxic Activities of Some Medicinal Plants of Saudi Arabia
Authors: Syed Farooq Adil, Merajuddinkhan, Mujeeb Khan, Hamad Z. Alkhathlan
Abstract:
Phytochemicals from plant extracts belong to an important source of natural products which have demonstrated excellent cytotoxic activities. However, plants of different origins exhibit diverse chemical compositions and bioactivities. Therefore, the discovery of plants based new anticancer agents from different parts of the world is always challenging. In this study, methanolic extracts of different parts of 11 plants from Saudi Arabia have been tested in vitro for their anticancer potential on human liver cancer cell line (HepG2). Particularly, for this study, plants from Asteraceae, Resedaceae, and Polygonaceae families were chosen on the basis of locally available ethnobotanical data and their medicinal properties. Among 12 tested extract samples, three samples obtained from Artemisia monosperma stem, Ochradenus baccatus aerial parts, and Pulicaria glutinosa stem have demonstrated interesting cytotoxic activities with a cell viability of 29.3%, 28.4% and 24.2%, respectively. Whereas, four plant extracts including Calendula arvensis aerial parts, Scorzonera musilii whole plant, A. monosperma leaves show moderate anticancer properties bearing a cell viability ranging from 11.9 to 16.7%. The remaining extracts have shown poor cytotoxic activities. Subsequently, GC-MS analysis of methanolic extracts of the four most active plants extracts such as C. comosum, O. baccatus, P. glutinosa and A. monosperma detected the presence of 41 phytomolecules. Among which 3-(4-hydroxyphenyl) propionitrile (1), 8,11-octadecadiynoic acid methyl ester (2), 6,7-dimethoxycoumarin (3), and 1-(2-hydroxyphenyl) ethenone (4) were found to be the lead compounds of C. comosum, O. baccatus P. glutinosa and A. monosperma, respectively.Keywords: medicinal plants, asteraceae, polygonaceae, hepg2
Procedia PDF Downloads 12763 Motivation for Work and Organizational Commitment in an Engineering Public Faculty: A Perception of Technical and Administrative Employees
Authors: Fátima Aparecida de Carvalho, Ester Eliane Jeunon
Abstract:
This study addresses issues in the public service: motivation to work and organizational commitment. The goal of this research was to examine how it configures the motivation to work and organizational commitment of the technical and administrative effective staff of the School of Engineering at UFMG. For this purpose a descriptive research under a quantitative and qualitative approach has been performed. In the quantitative research it has been applied a questionnaire to all 146 technical and administrative institution effective staff, that configures a census research. This questionnaire was divided into three parts, the first one aimed at performing a socio-demographic survey of participants, the second one aimed to measure motivation and the third one aimed at measuring organizational commitment. The Bases Organizational Commitment Scale (EBACO) was used in the analysis of data obtained in the third part of the questionnaire. The qualitative research was conducted through interviews with 08 managers, with open-ended questions structured in an analysis category, thus contemplating the administrative structure of the School of Engineering. The results of the research revealed that there is no relevant difference between the hygiene and motivational indices, related to the staff´s gender and area of work. Nonetheless, it was observed higher motivational indices for staff with shorter duration of employment in the institution. Also, the results shown high organizational commitment of the staff with the institution, with a predominance of the component “Requirement for performance”, followed by commitments “Consistent line of activity”, “Affiliative” and “Affective”, which reached almost tge some average in this study. Finally the results showed that all commitment indices have positive moderated correlation to the motivational indices, except the “shortage of alternative” index.Keywords: motivation to work, organizational commitment, public service, human resources
Procedia PDF Downloads 41062 Carbon Blacks: A Broad Type of Carbon Materials with Different Electrocatalytic Activity to Produce H₂O₂
Authors: Alvaro Ramírez, Martín Muñoz-Morales, Ester López- Fernández, Javier Llanos, C. Ania
Abstract:
Carbon blacks are value-added materials typically produced through the incomplete combustion or thermal decomposition of hydrocarbons. Traditionally, they have been used as catalysts in many different applications, but in the last decade, their potential in green chemistry has gained significant attention. Among them, the electrochemical production of H₂O₂ has attracted interest because of their properties as high oxidant capacity or their industrial interest as a bleaching agent. Carbon blacks are commonly used in this application in a catalytic ink that is drop-casted on supporting electrodes and acts as catalysts for the electrochemical production of H₂O₂ through oxygen reduction reaction (ORR). However, the different structural and electrochemical behaviors of each type of carbon black influence their applications. In this line, the term ‘carbon black’, has to be considered as a generic name that does not guarantee any physicochemical properties if any further description is mentioned. In fact, different specific surface area (SSA), surface functional groups, porous structure, and electro catalysts effect seem very important for electrochemical applications, and considerable differences were found during the analysis of four types of carbon blacks. Thus, the aim of this work is to evaluate the influence of SSA, porous structure, oxygen functional groups, and structural defects to differentiate among these carbon blacks (e.g. Vulcan XC72, Superior Graphite Co, Printex XE2, and Prolabo) for H₂O₂ production via ORR, using carbon paper as electrode support with improved selectivity and efficiency. Results indicate that the number and size of pores, along with surface functional groups, are key parameters that significantly affect the overall process efficiency.Keywords: carbon blacks, oxygen reduction reaction, hydrogen peroxide, porosity, surface functional groups
Procedia PDF Downloads 4361 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico
Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez
Abstract:
Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes
Procedia PDF Downloads 13360 Exploring the Use of Drones for Corn Borer Management: A Case Study in Central Italy
Authors: Luana Centorame, Alessio Ilari, Marco Giustozzi, Ester Foppa Pedretti
Abstract:
Maize is one of the most important agricultural cash crops in the world, involving three different chains: food, feed, and bioenergy production. Nowadays, the European corn borer (ECB), Ostrinia nubilalis, to the best of the author's knowledge, is the most important pest to control for maize growers. The ECB is harmful to maize; young larvae are responsible for minor damage to the leaves, while the most serious damage is tunneling by older larvae that burrow into the stock. Soon after, larvae can affect cobs, and it was found that ECB can foster mycotoxin contamination; this is why it is crucial to control it. There are multiple control methods available: agronomic, biological, and microbiological means, agrochemicals, and genetically modified plants. Meanwhile, the European Union’s policy focuses on the transition to sustainable supply chains and translates into the goal of reducing the use of agrochemicals by 50%. The current work aims to compare the agrochemical treatment of ECB and biological control through beneficial insects released by drones. The methodology used includes field trials of both chemical and biological control, considering a farm in central Italy as a case study. To assess the mechanical and technical efficacy of drones with respect to standard machinery, the available literature was consulted. The findings are positive because drones allow them to get in the field promptly, in difficult conditions and with lower costs if compared to traditional techniques. At the same time, it is important to consider the limits of drones regarding pilot certification, no-fly zones, etc. In the future, it will be necessary to deepen the topic with the real application in the field of both systems, expanding the scenarios in which drones can be used and the type of material distributed.Keywords: beneficial insects, corn borer management, drones, precision agriculture
Procedia PDF Downloads 10359 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application
Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna
Abstract:
Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery
Procedia PDF Downloads 24558 Fatty Acid Structure and Composition Effects of Biodiesel on Its Oxidative Stability
Authors: Gelu Varghese, Khizer Saeed
Abstract:
Biodiesel is as a mixture of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats. Recent studies in the literature suggest that end property of biodiesel such as its oxidative stability (OS) is highly influenced by the structure and composition of its alkyl esters than by environmental conditions. The structure and composition of these long chain fatty acid components have been also associated with trends in Cetane number, heat of combustion, cold flow properties viscosity, and lubricity. In the present work, detailed investigation has been carried out to decouple and correlate the fatty acid structure indices of biodiesel such as degree of unsaturation, chain length, double bond orientation, and composition with its oxidative stability. Measurements were taken using the EN14214 established Rancimat oxidative stability test method (EN141120). Firstly, effects of the degree of unsaturation, chain length and bond orientation were tested for the pure fatty acids to establish their oxidative stability. Results for pure Fatty acid show that Saturated FAs are more stable than unsaturated ones to oxidation; superior oxidative stability can be achieved by blending biodiesel fuels with relatively high in saturated fatty acid contents. A lower oxidative stability is noticed when a greater quantity of double bonds is present in the methyl ester. A strong inverse relationship with the number of double bonds and the Rancimat IP values can be identified. Trans isomer Methyl elaidate shows superior stability to oxidation than its cis isomer methyl oleate (7.2 vs. 2.3). Secondly, the effects of the variation in the composition of the biodiesel were investigated and established. Finally, biodiesels with varying structure and composition were investigated and correlated.Keywords: biodiesel, fame, oxidative stability, fatty acid structure, acid composition
Procedia PDF Downloads 28657 Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques
Authors: I. Oikonomou, I. Lappa, D. Daferera, C. Kanakis, L. Kiokakis, K. Skordilis, A. Avramouli, E. Kalli, C. Pappas, P. A. Tarantilis, E. Skotti
Abstract:
Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection.Keywords: antioxidant capacity, fatty acid methyl esters, grape seed oil, GC-MS
Procedia PDF Downloads 20456 Determination of Vinpocetine in Tablets with the Vinpocetine-Selective Electrode and Possibilities of Application in Pharmaceutical Analysis
Authors: Faisal A. Salih
Abstract:
Vinpocetine (Vin) is an ethyl ester of apovincamic acid and is a semisynthetic derivative of vincamine, an alkaloid from plants of the genus Periwinkle (plant) vinca minor. It was found that this compound stimulates cerebral metabolism: it increases the uptake of glucose and oxygen, as well as the consumption of these substances by the brain tissue. Vinpocetine enhances the flow of blood in the brain and has a vasodilating, antihypertensive, and antiplatelet effect. Vinpocetine seems to improve the human ability to acquire new memories and restore memories that have been lost. This drug has been clinically used for the treatment of cerebrovascular disorders such as stroke and dementia memory disorders, as well as in ophthalmology and otorhinolaryngology. It has no side effects, and no toxicity has been reported when using vinpocetine for a long time. For the quantitative determination of Vin in dosage forms, the HPLC methods are generally used. A promising alternative is potentiometry with Vin- selective electrode, which does not require expensive equipment and materials. Another advantage of the potentiometric method is that the pills and solutions for injections can be used directly without separation from matrix components, which reduces both analysis time and cost. In this study, it was found that the choice of a good plasticizer an electrode with the following membrane composition: PVC (32.8 wt.%), ortho-nitrophenyl octyl ether (66.6 wt.%), tetrakis-4-chlorophenyl borate (0.6 wt.%) exhibits excellent analytical performance: lower detection limit (LDL) 1.2•10⁻⁷ M, linear response range (LRR) 1∙10⁻³–3.9∙10⁻⁶ M, the slope of the electrode function 56.2±0.2 mV/decade). Vin masses per average tablet weight determined by direct potentiometry (DP) and potentiometric titration (PT) methods for the two different sets of 10 tablets were (100.35±0.2–100.36±0.1) mg for two sets of blister packs. The mass fraction of Vin in individual tablets, determined using DP, was (9.87 ± 0.02–10.16 ±0.02) mg, while the RSD was (0.13–0.35%). The procedure has very good reproducibility, and excellent compliance with the declared amounts was observed.Keywords: vinpocetine, potentiometry, ion selective electrode, pharmaceutical analysis
Procedia PDF Downloads 7255 Synthesis of (S)-Naproxen Based Amide Bond Forming Chiral Reagent and Application for Liquid Chromatographic Resolution of (RS)-Salbutamol
Authors: Poonam Malik, Ravi Bhushan
Abstract:
This work describes a very efficient approach for synthesis of activated ester of (S)-naproxen which was characterized by UV, IR, ¹HNMR, elemental analysis and polarimetric studies. It was used as a C-N bond forming chiral derivatizing reagent for further synthesis of diastereomeric amides of (RS)-salbutamol (a β₂ agonist that belongs to the group β-adrenolytic and is marketed as racamate) under microwave irradiation. The diastereomeric pair was separated by achiral phase HPLC, using mobile phase in gradient mode containing methanol and aqueous triethylaminephosphate (TEAP); separation conditions were optimized with respect to pH, flow rate, and buffer concentration and the method of separation was validated as per International Council for Harmonisation (ICH) guidelines. The reagent proved to be very effective for on-line sensitive detection of the diastereomers with very low limit of detection (LOD) values of 0.69 and 0.57 ng mL⁻¹ for diastereomeric derivatives of (S)- and (R)-salbutamol, respectively. The retention times were greatly reduced (2.7 min) with less consumption of organic solvents and large (α) as compared to literature reports. Besides, the diastereomeric derivatives were separated and isolated by preparative HPLC; these were characterized and were used as standard reference samples for recording ¹HNMR and IR spectra for determining absolute configuration and elution order; it ensured the success of diastereomeric synthesis and established the reliability of enantioseparation and eliminated the requirement of pure enantiomer of the analyte which is generally not available. The newly developed reagent can suitably be applied to several other amino group containing compounds either from organic syntheses or pharmaceutical industries because the presence of (S)-Npx as a strong chromophore would allow sensitive detection.This work is significant not only in the area of enantioseparation and determination of absolute configuration of diastereomeric derivatives but also in the area of developing new chiral derivatizing reagents (CDRs).Keywords: chiral derivatizing reagent, naproxen, salbutamol, synthesis
Procedia PDF Downloads 15554 Effect of Volcanic Ash and Recycled Aggregates in Concrete
Authors: Viviana Letelier, Ester Tarela, Giacomo Moriconi
Abstract:
The cement industry is responsible for around a 5% of the CO2 emissions worldwide and considering that concrete is one of the most used materials in construction its total effect is important. An alternative to reduce the environmental impact of concrete production is to incorporate certain amount of residuals in the dosing, limiting the replacement percentages to avoid significant losses in the mechanical properties of the final material. This study analyses the variation in the mechanical properties of structural concretes with recycled aggregates and volcanic ash as cement replacement to test the effect of the simultaneous use of different residuals in the same material. Analyzed concretes are dosed for a compressive strength of 30MPa. The recycled aggregates are obtained from prefabricated pipe debris with a compressive strength of 20MPa. The volcanic ash was obtained from the Ensenada (Chile) area after the Calbuco eruption in April 2015. The percentages of natural course aggregates that are replaced by recycled aggregates are of 0% and 30% and the percentages of cement replaced by volcanic ash are of 0%, 5%, 10% and 15%. The combined effect of both residuals in the mechanical properties of the concrete is evaluated through compressive strength tests after, 28 curing days, flexural strength tests after 28 days, and the elasticity modulus after 28 curing days. Results show that increasing the amount of volcanic ash used increases the losses in compressive strength. However, the use of up to a 5% of volcanic ash allows obtaining concretes with similar compressive strength to the control concrete, whether recycled aggregates are used or not. Furthermore, the pozzolanic reaction that occurs between the amorphous silica and the calcium hydroxide (Ca(OH)2) provokes an increase of a 10% in the compressive strength when a 5% of volcanic ash is combined with a 30% of recycled aggregates. Flexural strength does not show significant changes with neither of the residues. On the other hand, decreases between a 14% and a 25% in the elasticity modulus have been found. Concretes with up to a 30% of recycled aggregates and a 5% of volcanic ash as cement replacement can be produced without significant losses in their mechanical properties, reducing considerably the environmental impact of the final material.Keywords: compressive strength of recycled concrete, mechanical properties of recycled concrete, recycled aggregates, volcanic ash as cement replacement
Procedia PDF Downloads 30253 S. cerevisiae Strains Co-Cultured with Isochrysis Galbana Create Greater Biomass for Biofuel Production than Nannochloropsis sp.
Authors: Madhalasa Iyer
Abstract:
The increase in sustainable practices have encouraged the research and production of alternative fuels. New techniques of bio flocculation with the addition of yeast and bacteria strains have increased the efficiency of biofuel production. Fatty acid methyl ester (FAME) analysis in previous research has indicated that yeast can serve as a plausible enhancer for microalgal lipid production. The research hopes to identify the yeast and microalgae treatment group that produces the largest algae biomass. The mass of the dried algae is used as a proxy for TAG production correlating to the cultivation of biofuels. The study uses a model bioreactor created and built using PVC pipes, 8-port sprinkler system manifold, CO2 aquarium tank, and disposable water bottles to grow the microalgae. Nannochloropsis sp., and Isochrysis galbanawere inoculated separately in experimental group 1 and 2 with no treatments and in experimental groups 3 and 4 with each algaeco-cultured with Saccharomyces cerevisiae in the medium of standard garden stone fertilizer. S. cerevisiae was grown in a petri dish with nutrient agar medium before inoculation. A Secchi stick was used before extraction to collect data for the optical density of the microalgae. The biomass estimator was then used to measure the approximate production of biomass. The microalgae were grown and extracted with a french press to analyze secondary measurements using the dried biomass. The experimental units of Isochrysis galbana treated with the baker’s yeast strains showed an increase in the overall mass of the dried algae. S. cerevisiae proved to be an accurate and helpful addition to the solution to provide for the growth of algae. The increase in productivity of this fuel source legitimizes the possible replacement of non-renewable sources with more promising renewable alternatives. This research furthers the notion that yeast and mutants can be engineered to be employed in efficient biofuel creation.Keywords: biofuel, co-culture, S. cerevisiae, microalgae, yeast
Procedia PDF Downloads 10852 Influence of the Quality of the Recycled Aggregates in Concrete Pavement
Authors: Viviana Letelier, Ester Tarela, Bianca Lopez, Pedro Muñoz, Giacomo Moriconi
Abstract:
The environmental impact has become a global concern during the last decades. Several alternatives have been proposed and studied to minimize this impact in different areas. The reuse of aggregates from old concretes to manufacture new ones not only can reduce this impact but is also a way to optimize the resource management. The effect of the origin of the reused aggregates from two different origin materials in recycled concrete pavement is studied here. Using the dosing applied by a pavement company, coarse aggregates in the 6.3-25 mm fraction are replaced by recycled aggregates with two different origins: old concrete pavements with similar origin strength to the one of the control concrete, and precast concrete pipes with smaller strengths than the one of the control concrete. The replacement percentages tested are 30%, 40% and 50% in both cases. The compressive strength tests are performed after 7, 14, 28 and 90 curing days, the flexural strength tests and the elasticity modulus tests after 28 and 90 curing days. Results show that the influence of the quality of the origin concrete in the mechanical properties of recycled concretes is not despicable. Concretes with up to a 50% of recycled aggregates from the concrete pavement have similar compressive strengths to the ones of the control concrete and slightly smaller flexural strengths that, however, in all cases exceed the minimum of 5MPa after 28 curing days stablished by the Chilean regulation for pavement concretes. On the other hand, concretes with recycled aggregates from precast concrete pipes show significantly lower compressive strengths after 28 curing days. The differences with the compressive strength of the control concrete increase with the percentage of replacement, reaching a 13% reduction when 50% of the aggregates are replaced. The flexural strength also suffers significant reductions that increase with the percentage of replacement, only obeying the Chilean regulation when 30% of the aggregates are recycled after 28 curing days. Nevertheless, after 90 curing days, all series obey the regulation requirements. Results show, not only the importance of the quality of the origin concrete, but also the significance of the curing days, that may allow the use of less quality recycled material without important strength losses.Keywords: flexural strength of recycled concrete., mechanical properties of recycled concrete, recycled aggregates, recycled concrete pavements
Procedia PDF Downloads 24851 Effect of Injection Pressure and Fuel Injection Timing on Emission and Performance Characteristics of Karanja Biodiesel and its Blends in CI Engine
Authors: Mohan H., C. Elajchet Senni
Abstract:
In the present of high energy consumption in every sphere of life, renewable energy sources are emerging as alternative to conventional fuels for energy security, mitigating green house gas emission and climate change. There has been a world wide interest in searching for alternatives to petroleum derived fuels due to their depletion as well as due to the concern for the environment. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar, injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Vegetable oils have capability to solve this problem because they are renewable and lead to reduction in environmental pollution. But, high smoke emission and lower thermal efficiency are the main problems associated with the use of neat vegetable oils in diesel engines. In the present work, performance, combustion and emission characteristics of CI engine fuelled with 20% by vol. methyl esters mixed with Karanja seed Oil, and Fuel injection pressures of 200 bar and 240 bar ,Injection timings (21°,23° and 25° BTDC) and Proportion B20 diesel respectively. Various performance, combustion and emission characteristics such as thermal efficiency, and brake specific fuel consumption, maximum cylinder pressure, instantaneous heat release, cumulative heat release with respect to crank angle, ignition lag, combustion duration, HC, NOx, CO, exhaust temperature and smoke intensity were measured.Keywords: karanja oil, injection pressure, injection timing, karanja oil methyl ester
Procedia PDF Downloads 29050 Bio Based Agro Textiles
Authors: K. Sakthivel
Abstract:
With the continuous increase in population worldwide, stress increased among agricultural peoples, so it is necessary to increase the yield of agro-products. But it is not possible to meet fully with the traditionally adopted ways of using pesticides and herbicides. Today, agriculture and horticulture has realized the need of tomorrow and opting for various technologies to get higher overall yield, quality agro-products. Most of today’s synthetic polymers are produced from petrochemical bi-products and are not biodegradable. Persistent polymers generate significant sources of environmental pollution, harming wildlife when they are disposed in nature. The disposal of non degradable plastic bags adversely affects human and wild life. Moreover incineration of plastic waste presents environmental issues as well, since it yields toxic emissions. Material incineration is also limited due to the difficulties to find accurate and economically viable outlets. In addition plastic recycling shows a negative eco balance due to the necessity in nearly all cases to wash the plastic waste as well as the energy consumption during the recycling process phases. As plastics represent a large part of the waste collection at the local regional and national levels institutions are aware of the significant savings that compostable or biodegradable materials would generate. Polylactic acid (PLA), which is one of the most important biocompatible polyesters that are derived from annually renewable biomass such as corn and wheat, has attracted much attention for automotive parts and also can be applied in agro textiles. The manufacturing method of PLA is the ring-opening polymerization of the dimeric cyclic ester of lactic acid, lactide. For the stereo complex PLA, we developed by the four unit processes, fermentation, separation, lactide conversion, and polymerization. Then the polymer is converted into mulching film and applied in agriculture field. PLA agro textiles have better tensile strength, tearing strength and with stand from UV rays than polyester agro textile and polypropylene-based products.Keywords: biodegradation, environment, mulching film, PLA, technical textiles
Procedia PDF Downloads 38649 Detection of Autism Spectrum Disorders in Children Aged 4-6 Years by Municipal Maternal and Child Health Physicians: An Educational Intervention Study
Authors: M. Van 'T Hof, R. V. Pasma, J. T. Bailly, H. W. Hoek, W. A. Ester
Abstract:
Background: The transition into primary school can be challenging for children with an autism spectrum disorder (ASD). Due to the new demands that are made to children in this period, their limitations in social functioning and school achievements may manifest and appear faster. Detection of possible ASD signals mainly takes place by parents, teachers and during obligatory municipal maternal and child health centre visits. Physicians of municipal maternal and child health centres have limited education and instruments to detect ASD. Further education on detecting ASD is needed to optimally equip these doctors for this task. Most research aims to increase the early detection of ASD in children aged 0-3 years and shows positive results. However, there is a lack of research on educational interventions to detect ASD in children aged 4-6 years by municipal maternal and child health physicians. Aim: The aim of this study is to explore the effect of the online educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health physicians. This educational intervention is developed within The Reach-Aut Academic Centre for Autism; Transitions in education, and will be available throughout The Netherlands. Methods: Ninety-two participants will follow the educational intervention: Detection of ASD in children aged 4-6 years for municipal maternal and child health centre physicians. The educational intervention consists of three, one and a half hour sessions, which are offered through an online interactive classroom. The focus and content of the course has been developed in collaboration with three groups of stakeholders; autism scientists, clinical practitioners (municipal maternal and child health doctors and ASD experts) and parents of children with ASD. The primary outcome measure is knowledge about ASD: signals, early detection, communication with parents and referrals. The secondary outcome measures are the number of ASD related referrals, the attitude towards the mentally ill (CAMI), perceived competency about ASD knowledge and detection skills, and satisfaction about the educational intervention. Results and Conclusion: The study started in January 2016 and data collection will end mid 2017.Keywords: ASD, child, detection, educational intervention, physicians
Procedia PDF Downloads 29348 Effect of Nigella sativa on Blood Pressure, Vascular Reactivity, Inflammatory Biomarkers and Nitric Oxide in L-Name-Induced Hypertensive Rats
Authors: Kamsiah Jaarin, Yusof Kamisah, Faizah Othman Nurul Akmal Muhammad, Zakiah Jubri, Qodriyah Mohd Saad, Srijit Das
Abstract:
Forty (40) normotensive adult male Sprague-Dawley rats aged three months weighing 180-200 g were divided into 4 groups with 10 rats per group: (1) normotensive control; (2) hypertensive rats; (3) hypertensive rats treated with Nigella sativa (2.5 ml/kg/day); and (4) hypertensive rats treated with nicardipine (5 mg/kg/day). After acclimatization, the hypertensive rats of the group 2, 3 and 4 were induced to be hypertensive by giving NW–nitro-L-arginine methyl ester (L-NAME; 30 mg/kg/day) in their drinking water for consecutive 7 days. After one week, rats in the group 3 were given a daily oral dose of 2.5 ml/kg/day of Nigella sativa (NS) by oral gavage. Rats in the group 4 were given nicardipine (5 mg/kg/day) via oral gavages. All rats in this study received L-NAME continuously throughout the treatment duration. The blood pressure will be measured pre-treatment and weekly for 8 weeks using power lab. Blood was taken before and at the end of study for measurement of nitric oxide. At the end of 8 weeks, the rats are sacrificed and descending thoracic aorta was disserted for measurement of vascular reactivity, and intracellular adhesion molecules (ICAM-1) and vascular cell adhesion molecules (VCAM-1). Nigella sativa reduced both systolic and diastolic BP compared to control and L-name group. The BP lowering effect of NS was comparable to nicardipine a calcium antagonist. The blood pressure lowering effect of NS was accompanied with an increasing relaxation response to nitroprusside and acetylcholine and reducing vasoconstriction response to epinephrine. L-NAME and nicardipine on the other hand, reduced plasma nitric oxide concentration. In contrast, NS increased NO concentration. However, Nigella sativa had no significant effect on aortic VCAM- 1 and ICAM-1 expression. In conclusion; Nigella sativa oil reduces both systolic and diastolic blood pressure in L-NAME treated rats. The antihypertensive effect of NS was comparable to nicardipine. The BP lowering effect may be mediated via stimulating nitric oxide release from vascular endothelium.Keywords: Nigella sativa, ICAM, VCAM, blood pressure, vascular reactivity
Procedia PDF Downloads 41947 Nanopack: A Nanotechnology-Based Antimicrobial Packaging Solution for Extension of Shelf Life and Food Safety
Authors: Andy Sand, Naama Massad – Ivanir, Nadav Nitzan, Elisa Valderrama, Alfred Wegenberger, Koranit Shlosman, Rotem Shemesh, Ester Segal
Abstract:
Microbial spoilage of food products is of great concern in the food industry due to the direct impact on the shelf life of foods and the risk of foodborne illness. Therefore, food packaging may serve as a crucial contribution to keep the food fresh and suitable for consumption. Active packaging solutions that have the ability to inhibit the development of microorganism in food products attract a lot of interest, and many efforts have been made to engineer and assimilate such solutions on various food products. NanoPack is an EU-funded international project aiming to develop state-of-the-art antimicrobial packaging systems for perishable foods. The project is based on natural essential oils which possess significant antimicrobial activity against many bacteria, yeasts and molds. The essential oils are encapsulated in natural aluminosilicate clays, halloysite nanotubes (HNT's), that serves as a carrier for the volatile essential oils and enable their incorporation into polymer films. During the course of the project, several polyethylene films with diverse essential oils combinations were designed based on the characteristics of their target food products. The antimicrobial activity of the produced films was examined in vitro on a broad spectrum of microorganisms including gram-positive and gram-negative bacteria, aerobic and anaerobic bacteria, yeasts and molds. The films that showed promising in vitro results were successfully assimilated on in vivo active packaging of several food products such as cheese, bread, fruits and raw meat. The results of the in vivo analyses showed significant inhibition of the microbial spoilage, indicating the strong contribution of the NanoPack packaging solutions on the extension of shelf life and reduction of food waste caused by early spoilage throughout the supply chain.Keywords: food safety, food packaging, essential oils, nanotechnology
Procedia PDF Downloads 13846 Enzymatic Degradation of Poly (Butylene Adipate Terephthalate) Copolymer Using Lipase B From Candida Antarctica and Effect of Poly (Butylene Adipate Terephthalate) on Plant Growth
Authors: Aqsa Kanwal, Min Zhang, Faisal Sharaf, Li Chengtao
Abstract:
The globe is facing increasing challenges of plastic pollution due to single-use of plastic-based packaging material. The plastic material is continuously being dumped into the natural environment, which causes serious harm to the entire ecosystem. Polymer degradation in nature is very difficult, so the use of biodegradable polymers instead of conventional polymers can mitigate this issue. Due to the good mechanical properties and biodegradability, aliphatic-aromatic polymers are being widely commercialized. Due to the advancement in molecular biology, many studies have reported specific microbes that can effectively degrade PBAT. Aliphatic polyesters undergo hydrolytic cleavage of ester groups, so they can be easily degraded by microorganisms. In this study, we investigated the enzymatic degradation of poly (butylene adipate terephthalate) (PBAT) copolymer using lipase B from Candida Antarctica (CALB). Results of the study displayed approximately 5.16 % loss in PBAT mass after 2 days which significantly increased to approximately 15.7 % at the end of the experiment (12 days) as compared to blank. The pH of the degradation solution also displayed significant reduction and reached the minimum value of 6.85 at the end of the experiment. The structure and morphology of PBAT after degradation were characterized by FTIR, XRD, SEM, and TGA. FTIR analysis showed that after degradation many peaks become weaker and the peak at 2950 cm-1 almost disappeared after 12 days. The XRD results indicated that as the degradation time increases the intensity of diffraction peaks slightly increases as compared to the blank PBAT. TGA analysis also confirmed the successful degradation of PBAT with time. SEM micrographs further confirmed that degradation has occurred. Hence, biodegradable polymers can widely be used. The effect of PBAT biodegradation on plant growth was also studied and it was found that PBAT has no toxic effect on the growth of plants. Hence PBAT can be employed in a wide range of applications.Keywords: aliphatic-aromatic co-polyesters, polybutylene adipate terephthalate, lipase (CALB), biodegradation, plant growth
Procedia PDF Downloads 7945 Effect of Primer on Bonding between Resin Cement and Zirconia Ceramic
Authors: Deog-Gyu Seo, Jin-Soo Ahn
Abstract:
Objectives: Recently, the development of adhesive primers on stable bonding between zirconia and resin cement has been on the increase. The bond strength of zirconia-resin cement can be effectively increased with the treatment of primer composed of the adhesive monomer that can chemically bond with the oxide layer, which forms on the surface of zirconia. 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) that contains phosphate ester and acidic monomer 4-methacryloxyethyl trimellitic anhydride(4-META) have been suggested as monomers that can form chemical bond with the surface oxide layer of zirconia. Also, these suggested monomers have proved to be effective zirconia surface treatment for bonding to resin cement. The purpose of this study is to evaluate the effects of primer treatment on the bond strength of Zirconia-resin cement by using three different kinds of primers on the market. Methods: Zirconia blocks were prepared into 60 disk-shaped specimens by using a diamond saw. Specimens were divided into four different groups: first three groups were treated with zirconiaLiner(Sun Medical Co., Ltd., Furutaka-cho, Moriyama, Shiga, Japan), Alloy primer (Kuraray Noritake Dental Inc., Sakaju, Kurashiki, Okayama, Japan), and Universal primer (Tokuyama dental Corp., Taitou, Taitou-ku, Tokyo, Japan) respectively. The last group was the control with no surface treatment. Dual cured resin cement (Biscem, Bisco Inc., Schaumburg, IL, USA) was luted to each group of specimens. And then, shear bond strengths were measured by universal tesing machine. The significance of the result was statistically analyzed by one-way ANOVA and Tukey test. The failure sites in each group were inspected under a magnifier. Results: Mean shear bond strength were 0.60, 1.39, 1.03, 1.38 MPa for control, Zirconia Liner (ZL), Alloy primer (AP), Universal primer (UP), respectively. Groups with application of each of the three primers showed significantly higher shear bond strength compared to the control group (p < 0.05). Among the three groups with the treatment, ZL and UP showed significantly higher shear bond strength than AP (p < 0.05), and there were no significant differences in mean shear bond strength between ZL and UP (p < 0.05). While the most specimens of control groups showed adhesive failure (80%), the most specimens of three primer-treated groups showed cohesive or mixed failure (80%).Keywords: primer, resin cement, shear bond strength, zirconia
Procedia PDF Downloads 202