Search results for: organozational role stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13377

Search results for: organozational role stress

11937 Finite Element Analysis of Ball-Joint Boots under Environmental and Endurance Tests

Authors: Young-Doo Kwon, Seong-Hwa Jun, Dong-Jin Lee, Hyung-Seok Lee

Abstract:

Ball joints support and guide certain automotive parts that move relative to the frame of the vehicle. Such ball joints are covered and protected from dust, mud, and other interfering materials by ball-joint boots made of rubber—a flexible and near-incompressible material. The boots may experience twisting and bending deformations because of the motion of the joint arm. Thus, environmental and endurance tests of ball-joint boots apply both bending and twisting deformations. In this study, environmental and endurance testing was simulated via the finite element method performed by using a commercial software package. The ranges of principal stress and principal strain values that are known to directly affect the fatigue lives of the parts were sought. By defining these ranges, the number of iterative tests and modifications of the materials and dimensions of the boot can be decreased. Therefore, instead of performing actual part tests, manufacturers can perform standard fatigue tests in trials of different materials by applying only the defined range of stress or strain values.

Keywords: boot, endurance tests, rubber, FEA

Procedia PDF Downloads 259
11936 Association of Glutathione S-transferase M1 and T1 Gene Polymorphisms with Vitiligo in Saudi Population

Authors: Ghaleb Bin Huraib, Fahad Al Harthi, Mohammad Mustafa, Abdulrahman Al-Asmari

Abstract:

Introduction: Vitiligo is an acquired pigmentary skin disorder with the regional disappearance of melanocytes. Vitiligo affects 0.1 to 2% of the global population, and the incidence varies substantially depending on ethnicity. Glutathione S-transferase (GST) is a multigene family of enzymes that detoxify oxidative stress products. The oxidative stress-related GSTM1/GSTT1 genes deletion may cause epidermal melanocytes destruction and the development of vitiligo. Hence, the present study aimed to investigate the association of GST gene polymorphisms with vitiligo in the Saudi population, if any. Materials and Methods: The present study includes 129 vitiligo cases and 130 age-matched healthy controls. The proportion of male and female patients with vitiligo is almost equal. The multiplex polymerase chain reaction (PCR) method was used for polymorphic analysis. Results: Increased odds of generalized vitiligo was observed with the null genotypes of GSTT1- gene (OR = 1.91, 95% CI = 1.07-3.42, p = 0.019). The possible genetic combinations of GSTM1/GSTT1 and their genotypic distribution showed the frequency of GSTM1+/GSTT1+ 62/130 (47.69%) and GSTM1-/GSTT1+ 52/130 (40.00%) were higher in controls than in cases 44/129 (34.11%), 43/129 (33.34%), respectively while GSTM1+/GSTT1- and GSTM1-/GSTT1- null genotypes were higher 22/129 (17.05%) and 20/129 (15.50%) in vitiligo patients as compared to controls 11/130 (8.46%), 5/130 (3.84%), respectively. The strength of association of different genetic combinations with cases have shown GSTM1+/GSTT1- (OR = 2.81, 95% CI = 1.24-6.40, p = 0.009) and GSTM1-/GSTT1- (OR = 5.63, 95% CI = 1.96 - 16.16, p = 0.0004) were significantly higher in vitiligo cases as compared to controls. We did not observe any significant association of age and gender of patients with GST gene polymorphisms. Conclusions: The GSTT1-, GSTM1+/GSTT1- and GSTM1-/GSTT1- null genotypes were significantly associated with vitiligo. These genetic polymorphisms may be the associative genetic risk factor for vitiligo among Saudis. It could be used as a genetic marker for screening vitiligo patients among Saudis. Further studies on GSTs gene polymorphism in larger sample sizes from different geographical areas and ethnicity are needed to strengthen the present findings.

Keywords: vitiligo, GSTM1, GSTT1, gene polymorphism, oxidative stress

Procedia PDF Downloads 119
11935 Private Universities and Socio-Economic Development of Host Communities: The Case of Fountain University, Nigeria

Authors: Ganiyu Rasaq Omokeji

Abstract:

The growing recognition of the pivotal role of universities in promoting socio-economic development has led to a focus upon the expansion of the sector around the world. As the economy and society become more ‘knowledge intensive’, the role of universities in development is more onerous than just teaching, research, and service. It is to help create the open society upon which the progress of ideas depends on. Driven to fulfill this role, universities are likely to become even more important in building regional networks of their host communities. Currently, there are about 129 universities in Nigeria, with a total number of 37 federal, 36 state, and 56 privately owned universities. Fountain University is among the private universities in Nigeria located in Osogbo, Osun State. The university is committed to the total development of men and women in an enabling environment, through appropriate teaching, research, and service to humanity, influenced by Islamic ethics and culture. The university focuses on educational development and growth that are relevant to the nation’s manpower needs and global competitiveness through a gradual but steady process. This paper examines the role of Private University in the socio-economic development of host community using Fountain University as a case study. The research methodology design for this paper has a total of 200 respondents. The research instrument of data collection was a questionnaire and in-depth interview (IDI). The finding reveals that Fountain University plays an important role in socio-economic and cultural development through their Islamic culture. The paper recommend that universities must bridge the gaps between creative individual with innovative ideas and the application of technology for economic progress and social betterment of their host communities. University also must serve as a bridge that carries the traffic of social and economic development.

Keywords: private university, socio-economic development, host communities, role of universities and community development

Procedia PDF Downloads 276
11934 The Role of the Returned Migration in the Regional Economic Growth

Authors: Jessica Ordoñez, Francisco Ochoa, Pascual García

Abstract:

The objective of this paper is to analyze the relationship between return migration in Ecuador and economic growth. The improvement of macroeconomic conditions in Latin America, starting in 2012, makes the region a new migratory destination, in both senses in north-south and south-south flows. Current studies highlight only the role of the entrepreneurial migrant in generating employment and economic growth in the region. Nevertheless, it has not been considered that not all migrants are entrepreneurs and that not all entrepreneurs contribute to economic growth. This research compares the socioeconomic and labor characteristics of migrant returnees working as freelancers in Ecuador. The principal aim is to demystify the role of migrant entrepreneurs in regional growth and to identify socioeconomic characteristics that can enhance growth. A panel econometric model was used, which is part of the information from labor and macroeconomic surveys.

Keywords: economic growth, entrepreneur, migration, returned migration

Procedia PDF Downloads 202
11933 A Frictional-Collisional Closure Model for the Saturated Granular Flow: Experimental Evidence and Two Phase Modelling

Authors: Yunhui Sun, Qingquan Liu, Xiaoliang Wang

Abstract:

Dense granular flows widely exist in geological flows such as debris flow, landslide, or sheet flow, where both the interparticle and solid-liquid interactions are important to modify the flow. So, a two-phase approach with both phases correctly modelled is important for a better investigation of the saturated granular flows. However, a proper closure model covering a wide range of flowing states for the solid phase is still lacking. This study first employs a chute flow experiment based on the refractive index matching method, which makes it possible to obtain internal flow information such as velocity, shear rate, granular fluctuation, and volume fraction. The granular stress is obtained based on a steady assumption. The kinetic theory is found to describe the stress dependence on the flow state well. More importantly, the granular rheology is found to be frictionally dominated under weak shear and collisionally dominated under strong shear. The results presented thus provide direct experimental evidence on a possible frictional-collisional closure model for the granular phase. The data indicates that both frictional stresses exist over a wide range of the volume fraction, though traditional theory believes it vanishes below a critical volume fraction. Based on the findings, a two-phase model is used to simulate the chute flow. Both phases are modelled as continuum media, and the inter-phase interactions, such as drag force and pressure gradient force, are considered. The frictional-collisional model is used for the closure of the solid phase stress. The profiles of the kinematic properties agree well with the experiments. This model is further used to simulate immersed granular collapse, which is unsteady in nature, to study the applicability of this model, which is derived from steady flow.

Keywords: closure model, collision, friction, granular flow, two-phase model

Procedia PDF Downloads 52
11932 The Traditional Ceramics Value in the Middle East

Authors: Abdelmessih Malak Sadek Labib

Abstract:

Ceramic materials are known for their stability in harsh environments and excellent electrical, mechanical, and thermal properties. They have been widely used in various applications despite the emergence of new materials such as plastics and composites. However, ceramics are often brittle, which can lead to catastrophic failure. The fragility of ceramics and the mechanisms behind their failure have been a topic of extensive research, particularly in load-bearing applications like veneers. Porcelain, a type of traditional pottery, is commonly used in such applications. Traditional pottery consists of clay, silica, and feldspar, and the presence of quartz in the ceramic body can lead to microcracks and stress concentrations. The mullite hypothesis suggests that the strength of porcelain can be improved by increasing the interlocking of mullite needles in the ceramic body. However, there is a lack of reports on Young's moduli in the literature, leading to erroneous conclusions about the mechanical behavior of porcelain. This project aims to investigate the role of quartz and mullite on the mechanical strength of various porcelains while considering factors such as particle size, flexural strength, and fractographic forces. Research Aim: The aim of this research project is to assess the role of quartz and mullite in enhancing the mechanical strength of different porcelains. The project will also explore the effect of reducing particle size on the properties of porcelain, as well as investigate flexural strength and fractographic techniques. Methodology: The methodology for this project involves using scientific expressions and a mix of modern English to ensure the understanding of all attendees. It will include the measurement of Young's modulus and the evaluation of the mechanical behavior of porcelains through various experimental techniques. Findings: The findings of this study will provide a realistic assessment of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. The research will also contribute to a better understanding of the mechanical behavior of ceramics, specifically in load-bearing applications. Theoretical Importance: The theoretical importance of this research lies in its contribution to the understanding of the factors influencing the mechanical strength and fragility of ceramics, particularly porcelain. By investigating the interplay between quartz, mullite, and other variables, this study will enhance our knowledge of the properties and behavior of traditional ceramics. Data Collection and Analysis Procedures: Data for this research will be collected through experiments involving the measurement of Young's modulus and other mechanical properties of porcelains. The effects of quartz, mullite, particle size, flexural strength, and fractographic forces will be examined and analyzed using appropriate statistical techniques and fractographic analysis. Questions Addressed: This research project aims to address the following questions: (1) How does the presence of quartz and mullite affect the mechanical strength of porcelain? (2) What is the impact of reducing particle size on the properties of porcelain? (3) How do flexural strength and fractographic forces influence the behavior of porcelains? Conclusion: In conclusion, this research project aims to enhance the understanding of the role of quartz and mullite in strengthening and reducing the fragility of porcelain. By investigating the mechanical properties of porcelains and considering factors such as particle size, flexural strength, and fractographic forces, this study will contribute to the knowledge of traditional ceramics and their potential applications. The findings will have practical implications for the use of ceramics in various fields.

Keywords: stability, harsh environments, electrical, techniques, mechanical disadvantages, materials

Procedia PDF Downloads 64
11931 Psychotraumatology: The Relationship Between Posttraumatic Stress Disorder and Criminal Justice Involvement in Vietnam War Veterans

Authors: Danielle Page

Abstract:

Foregoing studies, statistics, and medical evaluations have established a relationship between Posttraumatic stress disorder (PTSD) and criminal justice involvement in Vietnam veterans. War is highly trauma inducing and can leave combat veterans with mental disorders ranging from psychopathic thoughts to suicidal ideation. The majority of those suffering are unaware that they have PTSD, and as a coping mechanism, they often turn to self isolation. Beyond isolation, many veterans with symptomatic PTSD turn to aggression and substance abuse to cope with their internal agony. The most common crimes committed by veterans with PTSD fall into the assault and drug/alcohol abuse categories. Thus, a relationship is established between veteran populations and the criminal justice system. This dissertation aims to define the relationship between PTSD and criminal justice involvement in veterans, explore the mediating factors in this relationship, and analyze numerous court cases in this subject area. Further, it will examine the ways in which crime rates can be reduced for veterans with symptoms of PTSD. This ranges from the improvement of healthcare systems to the implementation of special courts to handle veteran cases.

Keywords: psychotraumatology, forensic psychology, PTSD, vietnam veterans

Procedia PDF Downloads 79
11930 Friction Stir Processing of the AA7075T7352 Aluminum Alloy Microstructures Mechanical Properties and Texture Characteristics

Authors: Roopchand Tandon, Zaheer Khan Yusufzai, R. Manna, R. K. Mandal

Abstract:

Present work describes microstructures, mechanical properties, and texture characteristics of the friction stir processed AA7075T7352 aluminum alloy. Phases were analyzed with the help of x-ray diffractometre (XRD), transmission electron microscope (TEM) along with the differential scanning calorimeter (DSC). Depth-wise microstructures and dislocation characteristics from the nugget-zone of the friction stir processed specimens were studied using the bright field (BF) and weak beam dark-field (WBDF) TEM micrographs, and variation in the microstructures as well as dislocation characteristics were the noteworthy features found. XRD analysis display changes in the chemistry as well as size of the phases in the nugget and heat affected zones (Nugget and HAZ). Whereas the base metal (BM) microstructures remain un-affected. High density dislocations were noticed in the nugget regions of the processed specimen, along with the formation of dislocation contours and tangles. .The ɳ’ and ɳ phases, along with the GP-Zones were completely dissolved and trapped by the dislocations. Such an observations got corroborated to the improved mechanical as well as stress corrosion cracking (SCC) performances. Bulk texture and residual stress measurements were done by the Panalytical Empyrean MRD system with Co- kα radiation. Nugget zone (NZ) display compressive residual stress as compared to thermo-mechanically(TM) and heat affected zones (HAZ). Typical f.c.c. deformation texture components (e.g. Copper, Brass, and Goss) were seen. Such a phenomenon is attributed to the enhanced hardening as well as other mechanical performance of the alloy. Mechanical characterizations were done using the tensile test and Anton Paar Instrumented Micro Hardness tester. Enhancement in the yield strength value is reported from the 89MPa to the 170MPa; on the other hand, highest hardness value was reported in the nugget-zone of the processed specimens.

Keywords: aluminum alloy, mechanical characterization, texture characterstics, friction stir processing

Procedia PDF Downloads 99
11929 Failure Analysis of Recoiler Mandrel Shaft Used for Coiling of Rolled Steel Sheet

Authors: Sachin Pawar, Suman Patra, Goutam Mukhopadhyay

Abstract:

The primary function of a shaft is to transfer power. The shaft can be cast or forged and then machined to the final shape. Manufacturing of ~5 m length and 0.6 m diameter shaft is very critical. More difficult is to maintain its straightness during heat treatment and machining operations, which involve thermal and mechanical loads, respectively. During the machining operation of a such forged mandrel shaft, a deflection of 3-4mm was observed. To remove this deflection shaft was pressed at both ends which led to the development of cracks in it. To investigate the root cause of the deflection and cracking, the sample was cut from the failed shaft. Possible causes were identified with the help of a cause and effect diagram. Chemical composition analysis, microstructural analysis, and hardness measurement were done to confirm whether the shaft meets the required specifications or not. Chemical composition analysis confirmed that the material grade was 42CrMo4. Microstructural analysis revealed the presence of untempered martensite, indicating improper heat treatment. Due to this, ductility and impact toughness values were considerably lower than the specification of the mentioned grade. Residual stress measurement of one more bent shaft manufactured by a similar route was done by portable X-ray diffraction(XRD) technique. For better understanding, measurements were done at twelve different locations along the length of the shaft. The occurrence of a high amount of undesirable tensile residual stresses close to the Ultimate Tensile Strength(UTS) of the material was observed. Untempered martensitic structure, lower ductility, lower impact strength, and presence of a high amount of residual stresses all confirmed the improper tempering heat treatment of the shaft. Tempering relieves the residual stresses. Based on the findings of this study, stress-relieving heat treatment was done to remove the residual stresses and deflection in the shaft successfully.

Keywords: residual stress, mandrel shaft, untempered martensite, portable XRD

Procedia PDF Downloads 109
11928 Corrosion Analysis of a 3-1/2” Production Tubing of an Offshore Oil and Gas Well

Authors: Suraj Makkar, Asis Isor, Jeetendra Gupta, Simran Bareja, Maushumi K. Talukdar

Abstract:

During the exploratory testing phase of an offshore oil and gas well, when the tubing string was pulled out after production testing, it was observed that there was visible corrosion/pitting in a few of the 3-1/2” API 5 CT L-80 Grade tubing. The area of corrosion was at the same location in all the tubing, i.e., just above the pin end. Since the corrosion was observed in the tubing within two months of their installation, it was a matter of concern, as it could lead to premature failures resulting in leakages and production loss and thus affecting the integrity of the asset. Therefore, the tubing was analysed to ascertain the mechanism of the corrosion occurring on its surface. During the visual inspection, it was observed that the corrosion was totally external, which was near the pin end, and no significant internal corrosion was observed. The chemical compositional analysis and mechanical properties (tensile and impact) show that the pipeline material was conforming to API 5 CT L-80 specifications. The metallographic analysis of the tubing revealed tempered martensitic microstructure. The grain size was observed to be different at the pin end as compared to the microstructure at base metal. The microstructures of the corroded area near threads reveal an oriented microstructure. The clearly oriented microstructure of the cold-worked zone near threads and the difference in microstructure represents inappropriate heat treatment after cold work. This was substantiated by hardness test results as well, which show higher hardness at the pin end in comparison to hardness at base metal. Scanning Electron Microscope (SEM) analysis revealed the presence of round and deep pits and cracks on the corroded surface of the tubing. The cracks were stress corrosion cracks in a corrosive environment arising out of the residual stress, which was not relieved after cold working, as mentioned above. Energy Dispersive Spectroscopy (EDS) analysis indicates the presence of mainly Fe₂O₃, Chlorides, Sulphides, and Silica in the corroded part indicating the interaction of the tubing with the well completion fluid and well bore environment. Thus it was concluded that residual stress after the cold working of male pins during threading and the corrosive environment acted in synergy to cause this pitting corrosion attack on the highly stressed zone along the circumference of the tubing just below the threaded area. Accordingly, the following suitable recommendations were given to avoid the recurrence of such corrosion problems in the wells. (i) After any kind of hot work/cold work, tubing should be normalized at full length to achieve uniform microstructure throughout its length. (ii) Heat treatment requirements (as per API 5 CT) should be part of technical specifications while at the procurement stage.

Keywords: pin end, microstructure, grain size, stress corrosion cracks

Procedia PDF Downloads 75
11927 Role of Social Media for Institutional Branding: Ethics of Communication Review

Authors: Iva Ariani, Mohammad Alvi Pratama

Abstract:

Currently, the world of communication experiences a rapid development. There are many ways of communication utilized in line with the development of science which creates many technologies that encourage a rapid development of communication system. However, despite giving convenience for the society, the development of communication system is not accompanied by the development of applicable values and regulations. Therefore, it raises many issues regarding false information or hoax which can influence the society’s mindset. This research aims to know the role of social media towards the reputation of an institution using a communication ethics study. It is a qualitative research using interview, observation, and literature study for collecting data. Then, the data will be analyzed using philosophical methods which are hermeneutic and deduction methods. This research is expected to show the role of social media in developing an institutional reputation in ethical review.

Keywords: social media, ethics, communication, reputation

Procedia PDF Downloads 202
11926 Finite Element Modelling and Optimization of Post-Machining Distortion for Large Aerospace Monolithic Components

Authors: Bin Shi, Mouhab Meshreki, Grégoire Bazin, Helmi Attia

Abstract:

Large monolithic components are widely used in the aerospace industry in order to reduce airplane weight. Milling is an important operation in manufacturing of the monolithic parts. More than 90% of the material could be removed in the milling operation to obtain the final shape. This results in low rigidity and post-machining distortion. The post-machining distortion is the deviation of the final shape from the original design after releasing the clamps. It is a major challenge in machining of the monolithic parts, which costs billions of economic losses every year. Three sources are directly related to the part distortion, including initial residual stresses (RS) generated from previous manufacturing processes, machining-induced RS and thermal load generated during machining. A finite element model was developed to simulate a milling process and predicate the post-machining distortion. In this study, a rolled-aluminum plate AA7175 with a thickness of 60 mm was used for the raw block. The initial residual stress distribution in the block was measured using a layer-removal method. A stress-mapping technique was developed to implement the initial stress distribution into the part. It is demonstrated that this technique significantly accelerates the simulation time. Machining-induced residual stresses on the machined surface were measured using MTS3000 hole-drilling strain-gauge system. The measured RS was applied on the machined surface of a plate to predict the distortion. The predicted distortion was compared with experimental results. It is found that the effect of the machining-induced residual stress on the distortion of a thick plate is very limited. The distortion can be ignored if the wall thickness is larger than a certain value. The RS generated from the thermal load during machining is another important factor causing part distortion. Very limited number of research on this topic was reported in literature. A coupled thermo-mechanical FE model was developed to evaluate the thermal effect on the plastic deformation of a plate. A moving heat source with a feed rate was used to simulate the dynamic cutting heat in a milling process. When the heat source passed the part surface, a small layer was removed to simulate the cutting operation. The results show that for different feed rates and plate thicknesses, the plastic deformation/distortion occurs only if the temperature exceeds a critical level. It was found that the initial residual stress has a major contribution to the part distortion. The machining-induced stress has limited influence on the distortion for thin-wall structure when the wall thickness is larger than a certain value. The thermal load can also generate part distortion when the cutting temperature is above a critical level. The developed numerical model was employed to predict the distortion of a frame part with complex structures. The predictions were compared with the experimental measurements, showing both are in good agreement. Through optimization of the position of the part inside the raw plate using the developed numerical models, the part distortion can be significantly reduced by 50%.

Keywords: modelling, monolithic parts, optimization, post-machining distortion, residual stresses

Procedia PDF Downloads 50
11925 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 69
11924 Flange/Web Distortional Buckling of Cold-Formed Steel Beams with Web Holes under Pure Bending

Authors: Nan-Ting Yu, Boksun Kim, Long-Yuan Li

Abstract:

The cold-formed steel beams with web holes are widely used as the load-carrying members in structural engineering. The perforations can release the space of the building and let the pipes go through. However, the perforated cold-formed steel (PCFS) beams may fail by distortional buckling more easily than beams with plain web; this is because the rotational stiffness from the web decreases. It is well known that the distortional buckling can be described as the buckling of the compressed flange-lip system. In fact, near the ultimate failure, the flange/web corner would move laterally, which indicates the bending of the web should be taken account. The purpose of this study is to give a specific solution for the critical stress of flange/web distortional buckling of PCFS beams. The new model is deduced based on classical energy method, and the deflection of the web is represented by the shape function of the plane beam element. The finite element analyses have been performed to validate the accuracy of the proposed model. The comparison of the critical stress calculated from Hancock's model, FEA, and present model, shows that the present model can provide a splendid prediction for the flange/web distortional buckling of PCFS beams.

Keywords: cold-formed steel, beams, perforations, flange-web distortional buckling, finite element analysis

Procedia PDF Downloads 127
11923 Speech Rhythm Variation in Languages and Dialects: F0, Natural and Inverted Speech

Authors: Imen Ben Abda

Abstract:

Languages have been classified into different rhythm classes. 'Stress-timed' languages are exemplified by English, 'syllable-timed' languages by French and 'mora-timed' languages by Japanese. However, to our best knowledge, acoustic studies have not been unanimous in strictly establishing which rhythm category a given language belongs to and failed to show empirical evidence for isochrony. Perception seems to be a good approach to categorize languages into different rhythm classes. This study, within the scope of experimental phonetics, includes an account of different perceptual experiments using cues from natural and inverted speech, as well as pitch extracted from speech data. It is an attempt to categorize speech rhythm over a large set of Arabic (Tunisian, Algerian, Lebanese and Moroccan) and English dialects (Welsh, Irish, Scottish and Texan) as well as other languages such as Chinese, Japanese, French, and German. Listeners managed to classify the different languages and dialects into different rhythm classes using suprasegmental cues mainly rhythm and pitch (F0). They also perceived rhythmic differences even among languages and dialects belonging to the same rhythm class. This may show that there are different subclasses within very broad rhythmic typologies.

Keywords: F0, inverted speech, mora-timing, rhythm variation, stress-timing, syllable-timing

Procedia PDF Downloads 517
11922 China’s Role in Globalization through Belt and Road Initiative

Authors: Enayatollah Yazdani

Abstract:

Globalization is the most significant change in today’s world. It has caused remarkable growth in different aspects of human life. Such a strong contribution to the development would not have occurred without the role that each country and particularly great powers play in the globalization process. Among those powers is China, whose role in the globalization trend is growing fast. With its rapid economic and technological development, China has moved from a regional economic power to a global powerhouse. Accordingly, China has been supporting the development of global infrastructure through new initiatives and institutions such as the Asia Infrastructure Investment Bank and the New Development Bank, among them, the most ambitious manifestation of these efforts is China Belt and Road Initiative (BRI). BRI is seen as an important vehicle that helps China to play a more proactive role in the globalization process. China started Belt and Road initiative as a global drive in more than 65 (now more than 140) countries in Asia, the Middle East, Central Asia, Latin America, Africa, and Europe, offering the world a unique state of bigger openness, integration, and interdependence with a comprehensive approach to shared development, shared future, and shared opportunities. As a result, one can say that BRI is an attempt by China to promote international cooperation and enhance globalization. However, in this regard, China may face some challenges as well. This paper aims to address: how China is playing a role in globalization through BRI and how BRI will support the Chinese role in the globalization process. And what are the major challenges that China might be faced? Based on the analytical methodology, the paper argues that BRI is a cornucopia of international projects that offer mammoth opportunities for more economic cooperation and deeper regional and global integration, primarily among emerging economies. The paper discusses that at a time when globalization from the West appears to be in retreat, the BRI is a potent symbol of the rise of China-based globalization.

Keywords: globalization, China, belt, and road initiative

Procedia PDF Downloads 121
11921 A Systems Approach to Targeting Cyclooxygenase: Genomics, Bioinformatics and Metabolomics Analysis of COX-1 -/- and COX-2-/- Lung Fibroblasts Providing Indication of Sterile Inflammation

Authors: Abul B. M. M. K. Islam, Mandar Dave, Roderick V. Jensen, Ashok R. Amin

Abstract:

A systems approach was applied to characterize differentially expressed transcripts, bioinformatics pathways, and proteins and prostaglandins (PGs) from lung fibroblasts procured from wild-type (WT), COX-1-/- and COX-2-/- mice to understand system level control mechanism. Bioinformatics analysis of COX-2 and COX-1 ablated cells induced COX-1 and COX-2 specific signature respectively, which significantly overlapped with an 'IL-1β induced inflammatory signature'. This defined novel cross-talk signals that orchestrated coordinated activation of pathways of sterile inflammation sensed by cellular stress. The overlapping signals showed significant over-representation of shared pathways for interferon y and immune responses, T cell functions, NOD, and toll-like receptor signaling. Gene Ontology Biological Process (GOBP) and pathway enrichment analysis specifically showed an increase in mRNA expression associated with: (a) organ development and homeostasis in COX-1-/- cells and (b) oxidative stress and response, spliceosomes and proteasomes activity, mTOR and p53 signaling in COX-2-/- cells. COX-1 and COX-2 showed signs of functional pathways committed to cell cycle and DNA replication at the genomics level. As compared to WT, metabolomics analysis revealed a significant increase in COX-1 mRNA and synthesis of basal levels of eicosanoids (PGE2, PGD2, TXB2, LTB4, PGF1α, and PGF2α) in COX-2 ablated cells and increase in synthesis of PGE2, and PGF1α in COX-1 null cells. There was a compensation of PGE2 and PGF1α in COX-1-/- and COX-2-/- cells. Collectively, these results support a broader, differential and collaborative regulation of both COX-1 and COX-2 pathways at the metabolic, signaling, and genomics levels in cellular homeostasis and sterile inflammation induced by cellular stress.

Keywords: cyclooxygenases, inflammation, lung fibroblasts, systemic

Procedia PDF Downloads 289
11920 Porous Titanium Scaffolds Fabricated by Metal Injection Moulding Using Potassium-Chloride and Space Holder

Authors: Ali Dehghan Manshadi, David H. StJohn, Matthew S. Dargusch, M. Qian

Abstract:

Biocompatible, highly porous titanium scaffolds were manufactured by metal injection moulding of spherical titanium powder (powder size: -45 µm) with potassium chloride (powder size: -250 µm) as a space holder. Property evaluation of scaffolds confirmed a high level of compatibility between their mechanical properties and those of human cortical bone. The optimum sintering temperature was found to be 1250°C producing scaffolds with more than 90% interconnected pores in the size range of 200-250 µm, yield stress of 220 MPa and Young’s modulus of 7.80 GPa, all of which are suitable for bone tissue engineering. Increasing the sintering temperature to 1300°C increased the Young’s modulus to 22.0 GPa while reducing the temperature to 1150°C reduced the yield stress to 120 MPa due to incomplete sintering. The residual potassium chloride was determined vs. sintering temperature. A comparison was also made between the porous titanium scaffolds fabricated in this study and the additively manufactured titanium lattices of similar porosity reported in the literature.

Keywords: titanium, metal injection moulding, mechanical properties, scaffolds

Procedia PDF Downloads 203
11919 Paediatric Motor Difficulties and Internalising Problems: An Integrative Review on the Environmental Stress Hypothesis

Authors: Noah Erskine, Jaime Barratt, John Cairney

Abstract:

The current study aims to provide an in-depth analysis and extension of the Environmental Stress Hypothesis (ESH) framework, focusing on the complex interplay between poor motor skills and internalising problems like anxiety and depression. Using an integrative research review methodology, this study synthesizes findings from 38 articles, both empirical and theoretical, building upon the foundational work of the model. The hypothesis posits that poor motor skills serve as a primary stressor, leading to internalising problems through various secondary stressors. A rigorous comparison of data was conducted, considering study design, findings, and methodologies - while giving special attention to variables such as age, sex, and comorbidities. The study also enhances the ESH framework by introducing resource buffers, including optimism and familial support, as additional influencing factors. This multi-level approach yields a more nuanced and comprehensive ESH framework, highlighting the need for future studies to consider intersectional variables and how they may vary across various life stages.

Keywords: motor coordination, mental health, developmental coordination disorders, paediatric comorbidities, obesity, peer problems

Procedia PDF Downloads 69
11918 Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation

Authors: Pannaga Pavan Jutur

Abstract:

Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs.

Keywords: algae, biofuels, nutrient stress, omics

Procedia PDF Downloads 272
11917 Antiulcer Potential of Heme Oxygenase-1 Inducers

Authors: Gaweł Magdalena, Lipkowska Anna, Olbert Magdalena, Frąckiewicz Ewelina, Librowski Tadeusz, Nowak Gabriel, Pilc Andrzej

Abstract:

Heme oxygenase-1 (HO-1), also known as heat shock protein 32 (HSP32), has been shown to be implicated in cytoprotection in various organs. Its activation plays a significant role in acute and chronic inflammation, protecting cells from oxidative injury and apoptosis. This inducible isoform of HO catalyzes the first and rate-limiting step in heme degradation to produce equimolar quantities of biologically active products: carbon monoxide (CO), free iron and biliverdin. CO has been reported to possess anti-apoptotic properties. Moreover, it inhibits the production of proinflammatory cytokines and stimulates the synthesis of the anti-inflammatory interleukin-10 (IL-10), as well as promotes vasodilatation at sites of inflammation. The second product of catalytic HO-1 activity, free cytotoxic iron, is promptly sequestered into the iron storage protein ferritin, which lowers the pro-oxidant state of the cell. The third product, biliverdin, is subsequently converted by biliverdin reductase into the bile pigment bilirubin, the most potent endogenous antioxidant among the constituents of human serum, which modulates immune effector functions and suppresses inflammatory response. Furthermore, being one of the so-called stress proteins, HO-1 adaptively responds to different stressors, such as reactive oxygen species (ROS), inflammatory cytokines and heavy metals and thus protects cells against such conditions as ischemia, hemorrhagic shock, heat shock or hypoxia. It is suggested that pharmacologic modulation of HO-1 may represent an effective strategy for prevention of stress and drug-induced gastrointestinal toxicity. HO-1 is constitutively expressed in normal gastric, intestinal and colonic mucosa and up-regulated during inflammation. It has been proven that HO-1 up-regulated by hemin, heme and cobalt-protoporphyrin ameliorates experimental colitis. In addition, the up-regulation of HO-1 partially explains the mechanism of action of 5-aminosalicylic acid (5-ASA), which is used clinically as an anti-colitis agent. In 2009 Ueda et al. has reported for the first time that mucosal protection by Polaprezinc, a chelate compound of zinc and L-carnosine used as an anti-ulcer drug in Japan, is also attributed to induction of HO-1 in the stomach. Since then, inducers of HO-1 are desired subject of research, as they may constitute therapeutically effective anti-ulcer drugs.

Keywords: heme oxygenase-1, gastric lesions, gastroprotection, Polaprezinc

Procedia PDF Downloads 499
11916 Mood Symptom Severity in Service Members with Posttraumatic Stress Symptoms after Service Dog Training

Authors: Tiffany Riggleman, Andrea Schultheis, Kalyn Jannace, Jerika Taylor, Michelle Nordstrom, Paul F. Pasquina

Abstract:

Introduction: Posttraumatic Stress (PTS) and Posttraumatic Stress Disorder (PTSD) remain significant problems for military and veteran communities. Symptoms of PTSD often include poor sleep, intrusive thoughts, difficulty concentrating, and trouble with emotional regulation. Unfortunately, despite its high prevalence, service members diagnosed with PTSD often do not seek help, usually because of the perceived stigma surrounding behavioral health care. To help address these challenges, non-pharmacological, therapeutic approaches are being developed to help improve care and enhance compliance. The Service Dog Training Program (SDTP), which involves teaching patients how to train puppies to become mobility service dogs, has been successfully implemented into PTS/PTSD care programs with anecdotal reports of improved outcomes. This study was designed to assess the biopsychosocial effects of SDTP from military beneficiaries with PTS symptoms. Methods: Individuals between the ages of 18 and 65 with PTS symptom were recruited to participate in this prospective study. Each subject completes 4 weeks of baseline testing, followed by 6 weeks of active service dog training (twice per week for one hour sessions) with a professional service dog trainer. Outcome measures included the Posttraumatic Stress Checklist for the DSM-5 (PCL-5), Generalized Anxiety Disorder questionnaire-7 (GAD-7), Patient Health Questionnaire-9 (PHQ-9), social support/interaction, anthropometrics, blood/serum biomarkers, and qualitative interviews. Preliminary analysis of 17 participants examined mean scores on the GAD-7, PCL-5, and PHQ-9, pre- and post-SDTP, and changes were assessed using Wilcoxon Signed-Rank tests. Results: Post-SDTP, there was a statistically significant mean decrease in PCL-5 scores of 13.5 on an 80-point scale (p=0.03) and a significant mean decrease of 2.2 in PHQ-9 scores on a 27 point scale (p=0.04), suggestive of decreased PTSD and depression symptoms. While there was a decrease in mean GAD-7 scores post-SDTP, the difference was not significant (p=0.20). Recurring themes among results from the qualitative interviews include decreased pain, forgetting about stressors, improved sense of calm, increased confidence, improved communication, and establishing a connection with the service dog. Conclusion: Preliminary results of the first 17 participants in this study suggest that individuals who received SDTP had a statistically significant decrease in PTS symptom, as measured by the PCL-5 and PHQ-9. This ongoing study seeks to enroll a total of 156 military beneficiaries with PTS symptoms. Future analyses will include additional psychological outcomes, pain scores, blood/serum biomarkers, and other measures of the social aspects of PTSD, such as relationship satisfaction and sleep hygiene.

Keywords: post-concussive syndrome, posttraumatic stress, service dog, service dog training program, traumatic brain injury

Procedia PDF Downloads 107
11915 Bond Strength between Concrete and AR-Glass Roving with Variables of Development Length

Authors: Jongho Park, Taekyun Kim, Jinwoong Choi, Sungnam Hong, Sun-Kyu Park

Abstract:

Recently, the climate change is the one of the main problems. This abnormal phenomenon is consisted of the scorching heat, heavy rain and snowfall, and cold wave that will be enlarged abnormal climate change repeatedly. Accordingly, the width of temperature change is increased more and more by abnormal climate, and it is the main factor of cracking in the reinforced concrete. The crack of the reinforced concrete will affect corrosion of steel re-bar which can decrease durability of the structure easily. Hence, the elimination of the durability weakening factor (steel re-bar) is needed. Textile which weaves the carbon, AR-glass and aramid fiber has been studied actively for exchanging the steel re-bar in the Europe for about 15 years because of its good durability. To apply textile as the concrete reinforcement, the bond strength between concrete and textile will be investigated closely. Therefore, in this paper, pull-out test was performed with change of development length of textile. Significant load and stress was increasing at D80. But, bond stress decreased by increasing development length.

Keywords: bond strength, climate change, pull-out test, substitution of reinforcement material, textile

Procedia PDF Downloads 473
11914 Investigation of Distortion and Impact Strength of 304 L Butt Joint Using Different Weld Groove

Authors: A. Sharma, S. S. Sandhu, A.Shahi, A. Kumar

Abstract:

In this study, the effects of geometric configurations of butt joints i.e. double V groove, double U groove and UV groove of AISI 304L of thickness 12 mm by using Gas Tungsten Arc Welding (GTAW) are investigated. The magnitude of transverse shrinkage stress and distortion generated during welding under the unrestrained conditions of butt joints is the main objective of the study. The effect of groove design on impact strength and metallurgical properties are also studied. The Finite element analysis for the groove design is done and compared the actual experimentation. The experimental results and the FEM results were compared and reveal a very good correlation for distortion and weld groove design for multipass joint with a standard analogy of 80%. In the case of VV groove design it was found that the transverse stress and cumulative deflection have the lowest value. It was found that the UV groove design had the maximum ultimate and yield tensile strength, VV groove had the highest impact strength. Vicker’s hardness value of all the groove design was measured. Micro structural studies were carried out using conventional microscopic tools which revealed a lot of useful information for correlating the microstructure with mechanical properties.

Keywords: weld groove design, distortion, AISI 304 L, butt joint, FEM, GTAW

Procedia PDF Downloads 362
11913 Experimental and Computational Investigation of Flow Field and Thermal Behavior of a Mechanical Seal

Authors: Hossein Shokouhmand, Masoomeh Shadab, Rohallah Torabi

Abstract:

Turbulent flow inside the seal chamber of a pump operating at nearly high Reynolds number is investigated. A comparison of a 3-D computational model for flow and thermal analysis of a mechanical seal with experimental thermal results is presented. The computational model adequately predicts the flow field in the seal chamber and thermal characteristics with the rotating and stationary rings and the twister flow around the seal parts by solving N-S and energy equations in ANSYS-CFX software. The Reynolds stress model (RSM) is applied as a turbulence model for this purpose. Experimental work is discussed which quantifies the temperature of five different points of the working fluid in chamber, mass flow at inlet and the fluid pressure at inlet and outlet. Experimental measurements are combined with computational modeling to obtain local and average heat transfer characteristics. Numerical results of three cases including different flush rates are reported.

Keywords: mechanical seal, CFD_CFX, reynolds stress model, flow field, heat transfer analysis, stream line, heat transfer coefficient, heat flux, nusselt

Procedia PDF Downloads 436
11912 Effect of Cryogenic Treatment on Various Mechanical and Metallurgical Properties of Different Material: A Review

Authors: Prashant Dhiman, Viranshu Kumar, Pradeep Joshi

Abstract:

Lot of research is going on to study the effect of cryogenic treatment on materials. Cryogenic treatment is a heat treatment process which is used widely to enhance the mechanical and metallurgical properties of various materials whether the material is ferrous or non ferrous. In almost all ferrous metals, it is found that retained austenite is converted into martensite. Generally deep cryogenic treatment is done using liquid nitrogen having temperature of -195 ℃. The austenite is unstable at this stage and converts into martensite. In non ferrous materials there presents a microcavity and under the action of stress it becomes crack. When this crack propagates, fracture takes place. As the metal contract under low temperature, by doing cryogenic treatment these microcavities will be filled hence increases the soundness of the material. Properties which are enhanced by cryogenic treatment of both ferrous and non ferrous materials are hardness, tensile strength, wear rate, electrical and thermal conductivity, and others. Also there is decrease in residual stress. A large number of manufacturing process (EDM, CNC etc.) are using cryogenic treatment on different tools or workpiece to reduce their wear. In this Review paper the use of cryogenic heat treatment in different manufacturing has been shown along with their advantages.

Keywords: cyrogenic treatment, EDM (Electrical Discharge Machining), CNC (Computer Numeric Control), Mechanical and Metallurgical Properties

Procedia PDF Downloads 431
11911 Fashion Designers' Role Towards Society through Ethical Designing

Authors: Vishaka Agarwal

Abstract:

Fashion is a dynamic entity. With globalisation, fashion is being retailed out to every corner of the world, and people are becoming fashion aware and adapting to the latest trends and look. In this scenario, the role of fashion in providing social change in society is strong. Every product that we use has a design element in it, and consumers prefer to buy those products. The aim of the paper is to look at the ways in which social change can be brought into society through ethical designing by designers taking into consideration the IPR issues. Review of research done by earlier researchers in studying the work done by designers to achieve social change in the society and also discussions with designers to understand the future plans looking at changing world scenario would be done. The paper concludes that fashion has a dynamic role to play in achieving social change in society, and designers are virtually controlling what people buy, wear, and consume globally. This paper would be useful to the social planners and designers in planning the future of society.

Keywords: fashion designers, ethics, intellectual property right, society

Procedia PDF Downloads 186
11910 Seasonal Heat Stress Effect on Cholesterol, Estradiol and Progesterone during Follicular Development in Egyptian Buffalo

Authors: Heba F. Hozyen, Hodallah H. Ahmed, S. I. A. Shalaby, G. E. S. Essawy

Abstract:

Biochemical and hormonal changes that occur in both follicular fluid and blood are involved in the control of ovarian physiology. The present study was conducted on follicular fluid and serum samples obtained from 708 buffaloes. Samples were examined for estradiol, progesterone, and cholesterol concentrations in relation to seasonal changes, ovarian follicular size, and stage of estrous cycle. The obtained results revealed that follicular fluid and serum levels of estradiol, progesterone, and cholesterol were significantly lower during summer and autumn when compared to winter and spring seasons. With the increase in follicular size, the follicular fluid levels of progesterone and cholesterol were significantly decreased, while estradiol levels were significantly increased. Estradiol and progesterone levels were significantly higher in follicular fluid than blood, while cholesterol was significantly lower in follicular fluid than serum. In conclusion, the current study threw a light on the hormonal changes in the follicular fluid and blood under the effect of heat stress which could be related to the low fertility of buffalo in the summer.

Keywords: buffalo, follicular fluid, folliculogenesis, seasonal changes, steroids

Procedia PDF Downloads 506
11909 In-situ Fabrication of Silver-PDMS Nanocomposite Membrane with Application in Olefine Separation

Authors: P. Tirgarbahnamiri, S. Mahravani, N. Haddadpour, F. Yaghmaie, F. Barazandeh

Abstract:

In this study, silver nanoparticle-Polydimethylsiloxane membrane (SNP-PDMS) was prepared with an in-situ reduction method using AgNO3 in poly (dimethylsiloxane) hardener. Optical and mechanical properties as well as functionality of these membranes were determined employing, UV-Vis spectrophotometry, FTIR, strain-stress test and liquid/liquid filtration measurements. Silver nanoparticles are known to selectively absorb Olefins and may be used for separation of Alkanes from olefins. Yellow color of silver nanocomposites and transparency of blank polymer were observed employing optical microscope. λmax in 415-420 nm regions in UV-Vis spectrophotometry are related to silver nanoparticles absorbance. Based on stress-strain test results, tensile strength of silver nanoparticle PDMS (SNP-PDMS) membranes is higher than PDMS films of comparable size and thickness. Moreover, permeability of SNP-PDMS membranes were characterized using similar olefin/paraffin pair using a simple bench scale separation set- up. The silver -PDMS membranes retain their color and UV-vis characteristics for extended periods of time exceeding several months.

Keywords: nanocomposite membrane, gas separation, facilitated transport, silver nanocomposite, PDMS, in-situ reduction

Procedia PDF Downloads 328
11908 Antioxydant Properties and Gastroprotective Effect of Rosa canina Aqueous Extract against Alcohol-Induced Ulceration and Oxidative Stress in Rat Model

Authors: H. Sebai, M. A. Jabria, D. Wannes, H. Tounsi, L. Marzouki

Abstract:

We aimed in the present study to investigate the protective effects of Tunisian Rosa canina aqueous extract (RCAE) against ethanol-induced gastric ulceration and oxidative stress in a rat model. In this respect, adult male Wistar rats were used and divided into six groups of ten each: control, EtOH, EtOH plus various doses of RCAE, EtOH plus famotidine and EtOH + gallic acid. Phytochemical and biochemical analysis were performed using colorimetric methods. We found that RCAE is rich in total polyphenols, total flavonoids, and condensed tannins, and exhibited an importance in vitro antioxidant activity on 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. In vivo, the results showed that oral administration of EtOH caused macroscopic and histological changes in gastric mucosa. These injuries are accompanied by an oxidative stress status as assessed by an increase of lipid peroxidation as well as a decrease of antioxidant enzyme activities such as superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx). Alcohol intoxication also induced intracellular mediators deregulation as assessed by an increase of hydrogen peroxide (H2O2), calcium and free iron levels in gastric mucosa. More, importantly, RCAE pretreatment reversed all macroscopic, histological and biochemical changes induced by EtOH administration. In conclusion, we suggest that RCAE has potent protective effects on acute ethanol-induced gastric ulceration related in part in part its antioxidant properties and its opposite effect on intracellular mediators. Indeed, Rosa canina can be offered as a food additive to protect against alcohol consumption-induced gastric and oxidative damage.

Keywords: alcohol, antioxidant properties, food additive, gastric ulceration, rat model, Rosa canina

Procedia PDF Downloads 193