Search results for: interlayer contact
438 Communicating Meaning through Translanguaging: The Case of Multilingual Interactions of Algerians on Facebook
Authors: F. Abdelhamid
Abstract:
Algeria is a multilingual speech community where individuals constantly mix between codes in spoken discourse. Code is used as a cover term to refer to the existing languages and language varieties which include, among others, the mother tongue of the majority Algerian Arabic, the official language Modern Standard Arabic and the foreign languages French and English. The present study explores whether Algerians mix between these codes in online communication as well. Facebook is the selected platform from which data is collected because it is the preferred social media site for most Algerians and it is the most used one. Adopting the notion of translanguaging, this study attempts explaining how users of Facebook use multilingual messages to communicate meaning. Accordingly, multilingual interactions are not approached from a pejorative perspective but rather as a creative linguistic behavior that multilingual utilize to achieve intended meanings. The study is intended as a contribution to the research on multilingualism online because although an extensive literature has investigated multilingualism in spoken discourse, limited research investigated it in the online one. Its aim is two-fold. First, it aims at ensuring that the selected platform for analysis, namely Facebook, could be a source for multilingual data to enable the qualitative analysis. This is done by measuring frequency rates of multilingual instances. Second, when enough multilingual instances are encountered, it aims at describing and interpreting some selected ones. 120 posts and 16335 comments were collected from two Facebook pages. Analysis revealed that third of the collected data are multilingual messages. Users of Facebook mixed between the four mentioned codes in writing their messages. The most frequent cases are mixing between Algerian Arabic and French and between Algerian Arabic and Modern Standard Arabic. A focused qualitative analysis followed where some examples are interpreted and explained. It seems that Algerians mix between codes when communicating online despite the fact that it is a conscious type of communication. This suggests that such behavior is not a random and corrupted way of communicating but rather an intentional and natural one.Keywords: Algerian speech community, computer mediated communication, languages in contact, multilingualism, translanguaging
Procedia PDF Downloads 131437 A Study on Shear Field Test Method in Timber Shear Modulus Determination Using Stereo Vision System
Authors: Niaz Gharavi, Hexin Zhang
Abstract:
In the structural timber design, the shear modulus of the timber beam is an important factor that needs to be determined accurately. According to BS EN 408, shear modulus can be determined using torsion test or shear field test method. Although torsion test creates pure shear status in the beam, it does not represent the real-life situation when the beam is in the service. On the other hand, shear field test method creates similar loading situation as in reality. The latter method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test as indicated in BS EN 408. Current testing practice code advised using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. Timber is not a homogenous material, but a heterogeneous and this characteristic makes timber to undergo a non-uniform deformation. Therefore, the dimensions and the location of the constructing square in the area with the constant transverse force might alter the shear modulus determination. This study aimed to investigate the impact of the shape, size, and location of the square in the shear field test method. A binocular stereo vision system was developed to capture the 3D displacement of a grid of target points. This approach is an accurate and non-contact method to extract the 3D coordination of targeted object using two cameras. Two group of three glue laminated beams were produced and tested by the mean of four-point bending test according to BS EN 408. Group one constructed using two materials, laminated bamboo lumber and structurally graded C24 timber and group two consisted only structurally graded C24 timber. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of size and location of the square in the determination of shear modulus of the beam. The results have shown that the size of the square is an affecting factor in shear modulus determination. However, the location of the square in the area with the constant shear force does not affect the shear modulus.Keywords: shear field test method, BS EN 408, timber shear modulus, photogrammetry approach
Procedia PDF Downloads 212436 Preparation and Characterization of Biosorbent from Cactus (Opuntia ficus-indica) cladodes and its Application for Dye Removal from Aqueous Solution
Authors: Manisha Choudhary, Sudarsan Neogi
Abstract:
Malachite green (MG), an organic basic dye, has been widely used for the dyeing purpose, as well as a fungicide and antiseptic in aquaculture industry to control fish parasites and disease. However, MG has now turned out to be an extremely controversial compound due to its adverse impact on living beings. Due to high toxicity, proper treatment of wastewater containing MG is utmost important. Among different available technologies, adsorption process is one of the most efficient and cost-effective treatment method due to its simplicity of design, ease of operation and regeneration of used materials. Nonetheless, commercial activated carbon is expensive leading the researchers to focus on utilizing natural resources. In the present work, a species of cactus, Opuntia ficus-indica (OFI), was used to develop a highly efficient, low-cost powdered activated carbon by chemical activation using NaOH. The biosorbent was characterized by Fourier-transform infrared spectroscopy, field emission scanning electron microscope, energy-dispersive X-ray spectroscopy, Brunauer–Emmett–Teller (BET) and X-ray diffraction analysis. Batch adsorption studies were performed to remove MG from an aqueous solution as a function of contact time, initial solution pH, initial dye concentration, biosorbent dosages, the presence of salt and temperature. By increasing the initial dye concentration from 100 to 500 mg/l, adsorption capacity increased from 165.45 to 831.58 mg/g. The adsorption kinetics followed the pseudo-second-order model and the chemisorption mechanisms were revealed. The electrostatic attractions and chemical interactions were observed between amino and hydroxyl groups of the biosorbent and amine groups of the dye. The adsorption was solely controlled by film diffusion. Different isotherm models were used to fit the adsorption data. The excellent recovery of adsorption efficiency after the regeneration of biosorbent indicated the high potential of this adsorbent to remove MG from aqueous solution and an excellent cost-effective biosorbent for wide application in wastewater treatment.Keywords: adsorption, biosorbent, cactus, malachite green
Procedia PDF Downloads 374435 Impact of COVID-19 on Antenatal Care Provision at Public Hospitals in Ethiopia: A Mixed Method Study
Authors: Zemenu Yohannes
Abstract:
Introduction: The pandemic overstretched the weak health systems in developing countries, including Ethiopia. This study aims to assess and explore the effect of COVID-19 on antenatal care (ANC) provision. Methods: A concurrent mixed methods study was applied. An interrupted time series design was applied for the quantitative study, and in-depth interviews were implemented for the qualitative research to explore maternity care providers' perceptions of ANC provision during COVID-19. We used routine monthly collected data from the health management information system (HMIS) in fifteen hospitals in the Sidama region, Ethiopia, from March 2019 to February 2020 (12 months) before COVID-19 and from March to August 2020 (6 months) during COVID-19. We imported data into STATA V.17 for analysis. ANC provision's mean monthly incidence rate ratio (IRR) was calculated using Poisson regression with a 95% confidence interval. The qualitative data were analysed using thematic analysis. Findings from quantitative and qualitative elements were integrated with a contiguous approach. Results: Our findings indicate the rate of ANC provision significantly decreased in the first six months of COVID-19. This study has three identified main themes: barriers to ANC provision, inadequate COVID-19 prevention approach, and delay in providing ANC. Conclusion and recommendation: Based on our findings, the pandemic affected ANC provision in the study area. The health bureau and stakeholders should take a novel and sustainable approach to prevent future pandemics. The health bureau and hospital administrators should establish a task force that relies on financial self-reliance to close gaps in future pandemics of medical supply shortages. Pregnant women should receive their care promptly from maternity care providers. In order to foster contact and avoid discrimination the future pandemics, hospital administrators should set up a platform for community members and maternity care providers.Keywords: ANC provision, COVID-19, mixed methods study, Ethiopia
Procedia PDF Downloads 74434 Cu₂(ZnSn)(S)₄ Electrodeposition from a Single Bath for Photovoltaic Applications
Authors: Mahfouz Saeed
Abstract:
Cu₂(ZnSn)(S)₄ (CTZS) offers potential advantages over CuInGaSe₂ (CIGS) as solar thin film because to its higher band gap. Preparing such photovoltaic materials by electrochemical techniques is particularly attractive due to the lower processing cost and the high throughput of such techniques. Several recent publications report CTZS electroplating; however, the electrochemical process still facing serious challenges such as a sulfur atomic ration which is about 50% of the total alloy. We introduce in this work an improved electrolyte composition which enables the direct electrodeposition of CTZS from a single bath. The electrolyte is significantly more dilute in comparison to common baths described in the literature. The bath composition we introduce is: 0.0032 M CuSO₄, 0.0021 M ZnSO₄, 0.0303 M SnCl₂, 0.0038 M Na₂S₂O₃, and 0.3 mM Na₂S₂O3. PHydrion is applied to buffer the electrolyte to pH=2, and 0.7 M LiCl is applied as supporting electrolyte. Electrochemical process was carried at a rotating disk electrode which provides quantitative characterization of the flow (room temperature). Comprehensive electrochemical behavior study at different electrode rotation rates are provided. The effects of agitation on atomic composition of the deposit and its adhesion to the molybdenum back contact are discussed. The post treatment annealing was conducted under sulfur atmosphere with no need for metals addition from the gas phase during annealing. The potential which produced the desired atomic ratio of CTZS at -0.82 V/NHE. Smooth deposit, with uniform composition across the sample surface and depth was obtained at 500 rpm rotation speed. Final sulfur atomic ratio was adjusted to 50.2% in order to have the desired atomic ration. The final composition was investigated using Energy-dispersive X-ray spectroscopy technique (EDS). XRD technique used to analyze CTZS crystallography and thickness. Complete and functional CTZS PV devices were fabricated by depositing all the required layers in the correct order and the desired optical properties. Acknowledgments: Case Western Reserve University for the technical help and for using their instruments.Keywords: photovoltaic, CTZS, thin film, electrochemical
Procedia PDF Downloads 241433 Multilingual Practices in the UK: Kabyles’ Situational Language Choice in a Linguistically Diverse Setting.
Authors: Souhila Belabbas
Abstract:
This paper focuses on the Kabyles’ multilingual practices in the UK, within the Kabyle/Amazigh Cultural Organisation in London, on online platforms and at home. The Kabyles have roots in northern Algeria and associate their language, Kabyle, with a pre-Arabized history of northern Africa. Drawing on ethnographic research with this community, this study brings together their post-migration language preservation activisms as well as their dynamic multilingual practices and situational language choice into a dialogue. This shows the enduring significance of the heritage language for social, cultural and historical identity. It also demonstrates that the current survival of the “mother tongue” hinges on multilingual and multi-sited language activisms, which bear the hallmarks of both new creativities and diminishing fluencies in multilingual spaces. These multilingual repertoires also included a range of ideological stances, expressed as cultural, moral, and political attitudes to the “mother tongue” and to other, potentially more dominant, languages in their lives, involving both inclusive and exclusive instances. The Kabyles in the UK practice everyday forms of multilingualism in the dynamic terms whilst making strong identity claims to an endangered heritage language. Crucially, their language contact experiences were not a post-migration novelty but part of their pre-migration lifeworlds. The participants involved in this study shared a commitment to Kabyle identity activism. They expressed this differently, varyingly foregrounding cultural, social or political issues. These differences were related to their North-African cultural background, live, gender, religious and/or political affiliation, as well as to their different migratory trajectories. Among these ethno-conscious individuals, the use of Kabyle was often particularly vibrant in informal domains of casual conversations and mixed in with French, English and often Arabic. During community events and festivals, though, many made special efforts to converse in Kabyle as if to make a point about their commitment to a shared identity.Keywords: ethnography, language ideology, language choice, heritage language, migration trajectories, multilingual repertoires
Procedia PDF Downloads 79432 Multilingual Practices in the UK: Kabyles’ Situational Language Choice in a Linguistically Diverse Setting
Authors: Souhila Belabbas
Abstract:
This paper focuses on the Kabyles’ multilingual practices in the UK, within the Kabyle/Amazigh Cultural Organisation in London, on online platforms and at home. The Kabyles have roots in northern Algeria and associate their language, Kabyle, with a pre-Arabized history of northern Africa. Drawing on ethnographic research with this community, this study brings together their post-migration language preservation activisms as well as their dynamic multilingual practices and situational language choice into a dialogue. This shows the enduring significance of the heritage language for social, cultural and historical identity. It also demonstrates that the current survival of the “mother tongue” hinges on multilingual and multi-sited language activisms, which bear the hallmarks of both new creativities and diminishing fluencies in multilingual spaces. These multilingual repertoires also included a range of ideological stances, expressed as cultural, moral, and political attitudes to the “mother tongue” and to other, potentially more dominant, languages in their lives, involving both inclusive and exclusive instances. The Kabyles in the UK practice everyday forms of multilingualism in the dynamic terms whilst making strong identity claims to an endangered heritage language. Crucially, their language contact experiences were not a post-migration novelty but part of their pre-migration lifeworlds. The participants involved in this study shared a commitment to Kabyle identity activism. They expressed this differently, varyingly foregrounding cultural, social or political issues. These differences were related to their North-African cultural background, live, gender, religious and/or political affiliation, as well as to their different migratory trajectories. Among these ethno-conscious individuals, the use of Kabyle was often particularly vibrant in informal domains of casual conversations and mixed in with French, English and often Arabic. During community events and festivals, though, many made special efforts to converse in Kabyle as if to make a point about their commitment to a shared identity.Keywords: ethnography, language ideology, language choice, heritage language, migration trajectories, multilingual repertoires
Procedia PDF Downloads 78431 Lead-Free Inorganic Cesium Tin-Germanium Triiodide Perovskites for Photovoltaic Application
Authors: Seyedeh Mozhgan Seyed-Talebi, Javad Beheshtian
Abstract:
The toxicity of lead associated with the lifecycle of perovskite solar cells (PSCs( is a serious concern which may prove to be a major hurdle in the path toward their commercialization. The current proposed lead-free PSCs including Ag(I), Bi(III), Sb(III), Ti(IV), Ge(II), and Sn(II) low-toxicity cations are still plagued with the critical issues of poor stability and low efficiency. This is mainly because of their chemical stability. In the present research, utilization of all inorganic CsSnGeI3 based materials offers the advantages to enhance resistance of device to degradation, reduce the cost of cells, and minimize the carrier recombination. The presence of inorganic halide perovskite improves the photovoltaic parameters of PCSs via improved surface coverage and stability. The inverted structure of simulated devices using a 1D simulator like solar cell capacitance simulator (SCAPS) version 3308 involves TCOHTL/Perovskite/ETL/Au contact layer. PEDOT:PSS, PCBM, and CsSnGeI3 used as hole transporting layer (HTL), electron transporting layer (ETL), and perovskite absorber layer in the inverted structure for the first time. The holes are injected from highly stable and air tolerant Sn0.5Ge0.5I3 perovskite composition to HTM and electrons from the perovskite to ETL. Simulation results revealed a great dependence of power conversion efficiency (PCE) on the thickness and defect density of perovskite layer. Here the effect of an increase in operating temperature from 300 K to 400 K on the performance of CsSnGeI3 based perovskite devices is investigated. Comparison between simulated CsSnGeI3 based PCSs and similar real testified devices with spiro-OMeTAD as HTL showed that the extraction of carriers at the interfaces of perovskite absorber depends on the energy level mismatches between perovskite and HTL/ETL. We believe that optimization results reported here represent a critical avenue for fabricating the stable, low-cost, efficient, and eco-friendly all-inorganic Cs-Sn-Ge based lead-free perovskite devices.Keywords: hole transporting layer, lead-free, perovskite solar cell, SCAPS-1D, Sn-Ge based
Procedia PDF Downloads 155430 Improving Cleanability by Changing Fish Processing Equipment Design
Authors: Lars A. L. Giske, Ola J. Mork, Emil Bjoerlykhaug
Abstract:
The design of fish processing equipment greatly impacts how easy the cleaning process for the equipment is. This is a critical issue in fish processing, as cleaning of fish processing equipment is a task that is both costly and time consuming, in addition to being very important with regards to product quality. Even more, poorly cleaned equipment could in the worst case lead to contaminated product from which consumers could get ill. This paper will elucidate how equipment design changes could improve the work for the cleaners and saving money for the fish processing facilities by looking at a case for product design improvements. The design of fish processing equipment largely determines how easy it is to clean. “Design for cleaning” is the new hype in the industry and equipment where the ease of cleaning is prioritized gets a competitive advantage over equipment in which design for cleaning has not been prioritized. Design for cleaning is an important research area for equipment manufacturers. SeaSide AS is doing continuously improvements in the design of their products in order to gain a competitive advantage. The focus in this paper will be conveyors for internal logistic and a product called the “electro stunner” will be studied with regards to “Design for cleaning”. Often together with SeaSide’s customers, ideas for new products or product improvements are sketched out, 3D-modelled, discussed, revised, built and delivered. Feedback from the customers is taken into consideration, and the product design is revised once again. This loop was repeated multiple times, and led to new product designs. The new designs sometimes also cause the manufacturing processes to change (as in going from bolted to welded connections). Customers report back that the concrete changes applied to products by SeaSide has resulted in overall more easily cleaned equipment. These changes include, but are not limited to; welded connections (opposed to bolted connections), gaps between contact faces, opening up structures to allow cleaning “inside” equipment, and generally avoiding areas in which humidity and water may gather and build up. This is important, as there will always be bacteria in the water which will grow if the area never dries up. The work of creating more cleanable design is still ongoing, and will “never” be finished as new designs and new equipment will have their own challenges.Keywords: cleaning, design, equipment, fish processing, innovation
Procedia PDF Downloads 237429 Morphology Evolution in Titanium Dioxide Nanotubes Arrays Prepared by Electrochemical Anodization
Authors: J. Tirano, H. Zea, C. Luhrs
Abstract:
Photocatalysis has established as viable option in the development of processes for the treatment of pollutants and clean energy production. This option is based on the ability of semiconductors to generate an electron flow by means of the interaction with solar radiation. Owing to its electronic structure, TiO₂ is the most frequently used semiconductors in photocatalysis, although it has a high recombination of photogenerated charges and low solar energy absorption. An alternative to reduce these limitations is the use of nanostructured morphologies which can be produced during the synthesis of TiO₂ nanotubes (TNTs). Therefore, if possible to produce vertically oriented nanostructures it will be possible to generate a greater contact area with electrolyte and better charge transfer. At present, however, the development of these innovative structures still presents an important challenge for the development of competitive photoelectrochemical devices. This research focuses on established correlations between synthesis variables and 1D nanostructure morphology which has a direct effect on the photocatalytic performance. TNTs with controlled morphology were synthesized by two-step potentiostatic anodization of titanium foil. The anodization was carried out at room temperature in an electrolyte composed of ammonium fluoride, deionized water and ethylene glycol. Consequent thermal annealing of as-prepared TNTs was conducted in the air between 450 °C-550 °C. Morphology and crystalline phase of the TNTs were carried out by SEM, EDS and XRD analysis. As results, the synthesis conditions were established to produce nanostructures with specific morphological characteristics. Anatase was the predominant phase of TNTs after thermal treatment. Nanotubes with 10 μm in length, 40 nm in pore diameter and a surface-volume ratio of 50 are important in photoelectrochemical applications based on TiO₂ due to their 1D characteristics, high surface-volume ratio, reduced radial dimensions and high oxide/electrolyte interface. Finally, this knowledge can be used to improve the photocatalytic activity of TNTs by making additional surface modifications with dopants that improve their efficiency.Keywords: electrochemical anodization, morphology, self-organized nanotubes, TiO₂ nanotubes
Procedia PDF Downloads 158428 Transient Response of Elastic Structures Subjected to a Fluid Medium
Authors: Helnaz Soltani, J. N. Reddy
Abstract:
Presence of fluid medium interacting with a structure can lead to failure of the structure. Since developing efficient computational model for fluid-structure interaction (FSI) problems has broader impact to realistic problems encountered in aerospace industry, ship industry, oil and gas industry, and so on, one can find an increasing need to find a method in order to investigate the effect of fluid domain on structural response. A coupled finite element formulation of problems involving FSI issue is an accurate method to predict the response of structures in contact with a fluid medium. This study proposes a finite element approach in order to study the transient response of the structures interacting with a fluid medium. Since beam and plate are considered to be the fundamental elements of almost any structure, the developed method is applied to beams and plates benchmark problems in order to demonstrate its efficiency. The formulation is a combination of the various structure theories and the solid-fluid interface boundary condition, which is used to represent the interaction between the solid and fluid regimes. Here, three different beam theories as well as three different plate theories are considered to model the solid medium, and the Navier-Stokes equation is used as the theoretical equation governed the fluid domain. For each theory, a coupled set of equations is derived where the element matrices of both regimes are calculated by Gaussian quadrature integration. The main feature of the proposed methodology is to model the fluid domain as an added mass; the external distributed force due to the presence of the fluid. We validate the accuracy of such formulation by means of some numerical examples. Since the formulation presented in this study covers several theories in literature, the applicability of our proposed approach is independent of any structure geometry. The effect of varying parameters such as structure thickness ratio, fluid density and immersion depth, are studied using numerical simulations. The results indicate that maximum vertical deflection of the structure is affected considerably in the presence of a fluid medium.Keywords: beam and plate, finite element analysis, fluid-structure interaction, transient response
Procedia PDF Downloads 568427 Modification of Polyolefin Membrane Using Supercritical Carbon Dioxide for Redox Flow Batteries
Authors: Vadim V. Zefirov, Victor E. Sizov, Marina A. Pigaleva, Igor V. Elmanovich, Mikhail S. Kondratenko, Marat O. Gallyamov
Abstract:
This work presents a novel method for treating porous hydrophobic polyolefin membranes using supercritical carbon dioxide that allows usage of the modified membrane in redox flow batteries with an aqueous electrolyte. Polyolefin membranes are well known and widely used, however, they cannot be used as separators in redox flow batteries with an aqueous electrolyte since they have insufficient wettability, and therefore do not provide sufficient proton conductivity. The main aim of the presented work was the development of hydrophilic composites based on cheap membranes and precursors. Supercritical fluid was used as a medium for the deposition of the hydrophilic phase on the hydrophobic surface of the membrane. Due to the absence of negative capillary effects in a supercritical medium, a homogeneous composite is obtained as a result of synthesis. The in-situ synthesized silicon oxide nanoparticles and the chitosan polymer layer act as the hydrophilic phase and not only increase the affinity of the membrane towards the electrolyte, but also reduce the pore size of the polymer matrix, which positively affects the ion selectivity of the membrane. The composite material obtained as a result of synthesis has enhanced hydrophilic properties and is capable of providing proton conductivity in redox flow batteries. The morphology of the obtained composites was characterized by electron microscopy. To analyze the phase composition, infrared spectroscopy was used. The hydrophilic properties were studied by water contact angle measurements. In addition, the proton conductivity and ion selectivity of the obtained samples were studied, and tests in real redox flow batteries were performed. As a result, modified membrane was characterised in detail and moreover it was shown that modified cheap polyolefin membranes have pronounced proton conductivity and high ion selectivity, so their performance in a real redox flow battery approaches expensive commercial analogues, reaching 70% of energy efficiency.Keywords: carbon dioxide, chitosan, polymer membrane, redox flow batteries, silica nanoparticles, supercritical fluid
Procedia PDF Downloads 153426 The Fabrication and Characterization of a Honeycomb Ceramic Electric Heater with a Conductive Coating
Authors: Siming Wang, Qing Ni, Yu Wu, Ruihai Xu, Hong Ye
Abstract:
Porous electric heaters, compared to conventional electric heaters, exhibit excellent heating performance due to their large specific surface area. Porous electric heaters employ porous metallic materials or conductive porous ceramics as the heating element. The former attains a low heating power with a fixed current due to the low electrical resistivity of metal. Although the latter can bypass the inherent challenges of porous metallic materials, the fabrication process of the conductive porous ceramics is complicated and high cost. This work proposed a porous ceramic electric heater with dielectric honeycomb ceramic as a substrate and surface conductive coating as a heating element. The conductive coating was prepared by the sol-gel method using silica sol and methyl trimethoxysilane as raw materials and graphite powder as conductive fillers. The conductive mechanism and degradation reason of the conductive coating was studied by electrical resistivity and thermal stability analysis. The heating performance of the proposed heater was experimentally investigated by heating air and deionized water. The results indicate that the electron transfer is achieved by forming the conductive network through the contact of the graphite flakes. With 30 wt% of graphite, the electrical resistivity of the conductive coating can be as low as 0.88 Ω∙cm. The conductive coating exhibits good electrical stability up to 500°C but degrades beyond 600°C due to the formation of many cracks in the coating caused by the weight loss and thermal expansion. The results also show that the working medium has a great influence on the volume power density of the heater. With air under natural convection as the working medium, the volume power density attains 640.85 kW/m3, which can be increased by 5 times when using deionized water as the working medium. The proposed honeycomb ceramic electric heater has the advantages of the simple fabrication method, low cost, and high volume power density, demonstrating great potential in the fluid heating field.Keywords: conductive coating, honeycomb ceramic electric heater, high specific surface area, high volume power density
Procedia PDF Downloads 153425 The Impact of Animal-Assisted Pedagogy on Social Participation in Heterogenous Classrooms: A Survey Considering the Pupils Perspective on Animal-Assisted Teaching
Authors: Mona Maria Mombeck
Abstract:
Social participation in heterogeneous classrooms is one of the main goals in inclusive education. Children with special educational needs (SEN) and children with learning difficulties, or behavioural problems not diagnosed as SEN, are more likely to be excluded by other children than others. It is proven that the presence of dogs, as well as contact with dogs, increases the likelihood of positive social behaviour between humans. Therefore, animal-assisted pedagogy may be presumed to be a constructive way of inclusive teaching and facing the challenges of social inclusion in school classes. This study investigates the presence of a friendly dog in heterogeneous groups of pupils in order to evaluate the influence of dogs on facets of social participation of children in school. 30 German pupils, aged from 10 to 14, in four classes were questioned about their social participation before and after they were educated for a year in school with animal-assisted-pedagogy, using the problem-concerned interview method. In addition, the post-interview includes some general questions about the putative differences or similarities of being educated with and without a dog. The interviews were analysed with the qualitative-content-analysis using QDA software. The results showed that a dog has a positive impact on the atmosphere, student relationships, and well-being in class. Regarding the atmosphere, the pupils mainly argued that the improvement was caused by taking into account the dog’s well-being, respecting the dog-related rules, and by emotional self-regulation. It can be supposed that children regard the rules concerning the dog as more relevant to them than rules, not concerning the dog even if they require the same behaviour and goal. Furthermore, a dog has a positive impact on emotional self-regulation and, therefore, on pupil’s behaviour in class and the atmosphere. In terms of the statements about relationships, the dog’s presence was mainly seen to provide both a unifying aim and a uniting topic to talk about. The improved well-being was described as a feeling of joy and peace of mind. Moreover, the teacher was evaluated as more friendly and trustworthy after animal-assisted teaching. Nevertheless, animal-assisted pedagogy can, rarely, cause problems as well, such as jealousy, distraction, or concerns about the well-being of the dog. The study could prove the relevance of animal-assisted pedagogy for facing the challenges of social participation in inclusive education.Keywords: animal-assisted-pedagogy, inclusive education, human-animal-interactions, social participation
Procedia PDF Downloads 115424 Climate-Smart Agriculture Technologies and Determinants of Farmers’ Adoption Decisions in the Great Rift Valley of Ethiopia
Authors: Theodrose Sisay, Kindie Tesfaye, Mengistu Ketema, Nigussie Dechassa, Mezegebu Getnet
Abstract:
Agriculture is a sector that is very vulnerable to the effects of climate change and contributes to anthropogenic greenhouse gas (GHG) emissions in the atmosphere. By lowering emissions and adjusting to the change, it can also help to reduce climate change. Utilizing Climate-Smart Agriculture (CSA) technology that can sustainably boost productivity, improve resilience, and lower GHG emissions is crucial. This study sought to identify the CSA technologies used by farmers and assess adoption levels and factors that influence them. In order to gather information from 384 smallholder farmers in the Great Rift Valley (GRV) of Ethiopia, a cross-sectional survey was carried out. Data were analysed using percentage, chi-square test, t-test, and multivariate probit model. Results showed that crop diversification, agroforestry, and integrated soil fertility management were the most widely practiced technologies. The results of the Chi-square and t-tests showed that there are differences and significant and positive connections between adopters and non-adopters based on various attributes. The chi-square and t-test results confirmed that households who were older had higher incomes, greater credit access, knowledge of the climate, better training, better education, larger farms, higher incomes, and more frequent interactions with extension specialists had a positive and significant association with CSA technology adopters. The model result showed that age, sex, and education of the head, farmland size, livestock ownership, income, access to credit, climate information, training, and extension contact influenced the selection of CSA technologies. Therefore, effective action must be taken to remove barriers to the adoption of CSA technologies, and taking these adoption factors into account in policy and practice is anticipated to support smallholder farmers in adapting to climate change while lowering emissions.Keywords: climate change, climate-smart agriculture, smallholder farmers, multivariate probit model
Procedia PDF Downloads 127423 Risk Factors Associated with Dengue Fever Outbreak in Diredawa Administration City, Ethiopia, October 2015: A Case Control Study
Authors: Luna Degife, Desalegn Belay, Yoseph Worku, Tigist Tesfaye, Assefa Tufa, Abyot Bekele, Zegeye Hailemariam, Abay Hagos
Abstract:
Half of the world’s population is at risk of Dengue Fever (DF), a highly under-recognized and underreported mosquito-borne viral disease with high prevalence in the tropical and subtropical regions. Globally, an estimated 50 to 200 million cases and 20, 000 DF deaths occur annually as per the world health organization report. In Ethiopia, the first outbreak occurred in 2013 in Diredawa administration city. Afterward, three outbreaks have been reported from the eastern part of the country. We received a report of the fifth DF outbreak for Ethiopia and the second for Diredawa city on October 4, 2015. We conducted the investigation to confirm the outbreak, identify the risk factors for the repeatedly occurrence of the disease and implement control measures. We conducted un- matched case-control study and defined a suspected DF case as any person with fever of 2-7 days and 2 or more of the following: a headache, arthralgia, myalgia, rash, or bleeding from any part of the body. Controls were residents of Diredawa city without DF symptoms. We interviewed 70 Cases and 140 controls from all health facilities in Diredawa city from October 7 to 15; 2015. Epi Info version 7.1.5.0 was used to analyze the data and multivariable logistic regression was conducted to assess risk factors for DF. Sixty-nine blood samples were collected for Laboratory confirmation.The mean age for cases was 23.7±9.5 standard deviation (SD) and for controls 31.2±13 SD. Close contact with DF patient (Adjusted odds ratio (AOR)=5.36, 95% confidence interval(CI): 2.75-10.44), nonuse of long-lasting insecticidal nets (AOR=2.74, 95% CI: 1.06-7.08) and availability of stagnant water in the village (AOR=3.61, 95% CI:1.31-9.93) were independent risk factors associated with higher rates of the disease. Forty-two samples were tested positive. Endemicity of DF is becoming a concern for Diredawa city after the first outbreak. Therefore, effective vector control activities need to be part of long-term preventive measures.Keywords: dengue fever, Diredawa, outbreak, risk factors, second
Procedia PDF Downloads 276422 Study of Morning-Glory Spillway Structure in Hydraulic Characteristics by CFD Model
Authors: Mostafa Zandi, Ramin Mansouri
Abstract:
Spillways are one of the most important hydraulic structures of dams that provide the stability of the dam and downstream areas at the time of flood. Morning-Glory spillway is one of the common spillways for discharging the overflow water behind dams, these kinds of spillways are constructed in dams with small reservoirs. In this research, the hydraulic flow characteristics of a morning-glory spillways are investigated with CFD model. Two dimensional unsteady RANS equations were solved numerically using Finite Volume Method. The PISO scheme was applied for the velocity-pressure coupling. The mostly used two-equation turbulence models, k- and k-, were chosen to model Reynolds shear stress term. The power law scheme was used for discretization of momentum, k , and equations. The VOF method (geometrically reconstruction algorithm) was adopted for interface simulation. The results show that the fine computational grid, the input speed condition for the flow input boundary, and the output pressure for the boundaries that are in contact with the air provide the best possible results. Also, the standard wall function is chosen for the effect of the wall function, and the turbulent model k -ε (Standard) has the most consistent results with experimental results. When the jet is getting closer to end of basin, the computational results increase with the numerical results of their differences. The lower profile of the water jet has less sensitivity to the hydraulic jet profile than the hydraulic jet profile. In the pressure test, it was also found that the results show that the numerical values of the pressure in the lower landing number differ greatly in experimental results. The characteristics of the complex flows over a Morning-Glory spillway were studied numerically using a RANS solver. Grid study showed that numerical results of a 57512-node grid had the best agreement with the experimental values. The desired downstream channel length was preferred to be 1.5 meter, and the standard k-ε turbulence model produced the best results in Morning-Glory spillway. The numerical free-surface profiles followed the theoretical equations very well.Keywords: morning-glory spillway, CFD model, hydraulic characteristics, wall function
Procedia PDF Downloads 77421 Walking Progression in Ambulatory Individuals with Spinal Cord Injury Who Daily Walked with a Walking Device
Authors: Makamas Kumprou, Pipatana Amatachaya, Sugalya Amatachaya, Thiwabhorn Thaweewannakij, Preeda Arayawichanon
Abstract:
Many individuals with spinal cord injury (SCI) need an ambulatory assistive device (AAD) to promote their independence and experience of task-specific walking practice. Without a periodic follow-up for their walking progression, however, many individuals may use the same AAD even though up to 66% of them had the potential to progress walking ability. This may distort their optimal ability and increase the possibility of having negative impacts due to the long-lasting used of an AAD. However, these findings were cross-sectionally collected without data confirmation for the benefit or negative impacts of those who changed the types of AAD used. Therefore, this study prospectively assessed the proportion of ambulatory individuals with SCI who were able to progress their walking ability as determined using a type of AAD, and the changes of their functional ability as well as the incidence of falls over 6 months. Twenty-four subjects with SCI who daily walked with an AAD were involved in the study for 2 visits over 6 months. At the first visit (baseline assessments), the subjects were assessed for their spatiotemporal variables (i.e., cadence, step length, stride length, and step symmetry) and walking ability using the 10-meter walk test (10MWT). Then, they were assessed for the possibility of their walking progression as determined using the ability of walking with the least support AAD with no more than contact guarding assist. Those who were capable of changing an AAD were trained for the ability to walk with a new AAD. Thereafter, all subjects were monthly monitored for incidence of fall over 6 months. At the second visit (after 6 months followed-up), subjects were reassessed for their spatiotemporal variables and 10MWT. The findings indicated that, of all 24 subjects, 8 subjects (33.3%) were able to walk with less support AAD than their usual one. The walking cadence, step length symmetry, and walking ability of these subjects improved significantly greater than those who walked with the same AAD (p < 0.05). Among these subjects, one subject (12.5%) reported fell (3 times) during the follow-up period, whereas 5 subjects (31.3%) who walked with the same AAD experienced at least one fall (range 1 – 16 times). The findings indicated that a large proportion of ambulatory individuals with SCI who daily walked with an AAD could progress their walking ability, whereby their walking ability and safety also significantly improved after they walked with an optimal AAD. The findings suggest the need for a periodic follow-up for an appropriate AAD used for these individuals.Keywords: walking device, walker, crutches, cane, rehabilitation
Procedia PDF Downloads 126420 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm
Procedia PDF Downloads 170419 The Needs of People with a Diagnosis of Dementia and Their Carers and Families
Authors: James Boag
Abstract:
The needs of people with a diagnosis of dementia and their carers and families are physical, psychosocial, and psychological and begin at the time of diagnosis. There is frequently a lack of emotional support and counselling. Care- giving support is required from the presentation of the first symptoms of dementia until death. Alzheimer's disease begins decades before the clinical symptoms begin to appear, and in many cases, it remains undiagnosed, or diagnosed too late for any possible interventions to have any effect. However, if an incorrect diagnosis is given, it may result in a person being treated, without effect, for a type of dementia they do not have and delaying the interventions they should have received. Being diagnosed with dementia can cause emotional distress to the person, and physical and emotional support is needed, which will become more important as the disease progresses. The severity of the patient's dementia and their symptoms has a bearing of the impact on the carer and the support needed. A lack of insight and /or a denial of the diagnosis, grief, reacting to anticipated future losses, and coping methods to maximise the disease outcome, are things that should be addressed. Because of the stigma, it is important for carers not to lose contact with family and others because social isolation leads to depression and burnout. The impact on a carer's well- being and quality of life can be influenced by the severity of the illness, its type of dementia, its symptoms, healthcare support, financial and social status, career, age, health, residential setting, and relationship to the patient. Carer burnout due to lack of support leads to people diagnosed with dementia being put into residential care prematurely. Often dementia is not recognised as a terminal illness, limiting the ability of the person diagnosed with dementia and their carers to work on advance care planning and getting access to palliative and other support. Many carers have been satisfied with the physical support they were given in their everyday life, however, it was agreed that there was an immense unmet need for psychosocial support, especially after diagnosis and approaching end of life. Providing continuity and coordination of care is important. Training is necessary for providers to understand that every case is different, and they should understand the complexities. Grief, the emotional response to loss, is suffered during the progression of the disease and long afterwards, and carers should continue to be supported after the death of the person they were caring for.Keywords: dementia, caring, challenges, needs
Procedia PDF Downloads 97418 Local Remedies to Hangover in Iligan City, Philippines: An Alcohol Consumer Welfare-Concerned Study
Authors: Lindsay Crystabelle A. Gillamac, Lemuel Roy Amarillo, Al Leonard Joseph B. Aca-Ac, Felipe V. Lula Jr.
Abstract:
Hangover is the unpleasant psychological and physiologic effects after heavy consumption of alcoholic beverages. In awareness of the need to have a remedy for hangover occurrence in Iligan City, the authors aimed to determine the most preferred and effective local remedy to the hangover and inform people, bars and food establishments that there are available remedies to the hangover in the locality. The study utilizes qualitative data gathered through an interview on four different age groups with 50 random individuals each group as to what symptom determines they are experiencing the hangover. Then, quantitative data gathered through an online and written survey was done as to what local hangover remedy do they intake after drinking to ameliorate the most experienced symptom provided from the first assessment. After data tabulation of hangover symptoms on different age groups, we have found out that the most common determinant that you have a hangover has a headache. Thus, we queried the respondents again to what was effective the most in relieving them of a headache and their other felt symptoms depending on their varying age groups. The results of the evaluations showed that most respondents from different age groups preferred Halang-halang Soup, a spicy beef soup in the locality. As part of the hospitality industry concerned with welfare of customers, Bars in Iligan City should include on their menu these hang-over remedies in anticipation of guest needs given the fact that there are no more stores open at late hours in Iligan City. Placards should also be posted within the bar area to orient the guests about hang-over cures available inside the bar. Bartenders and other staff being directly in-contact with guests should take part in orienting guests about these aforementioned remedies. Added to that, we would like to promote Halang-halang Soup as a Health beneficial cuisine in the Philippines and help in the growth of the Tourism Industry of Iligan City by making the Halang-halang place a tourist destination.Keywords: alcohol, alcohol consumption, alcohol hangover, anticipation of needs, bar, cure, hangover, headache, hospitality industry, local remedy, menu, menu development, menu improvement, remedy, Philippines
Procedia PDF Downloads 312417 Mineralogy and Fluid Inclusion Study of the Kebbouch South Pb-Zn Deposit, Northwest Tunisia
Authors: Imen Salhi, Salah Bouhlel, Bernrd Lehmann
Abstract:
The Kebbouch South Pb-Zn deposit is located 20 km to the east of El Kef (NW) in the southeastern part of the Triassic diapir belt in the Tunisian Atlas. The deposit is composed of sulfide and non-sulfide zinc-lead ore bodies. The aim of this study is to provide petrographic results, mineralogy, as well as fluid inclusion data of the carbonate-hosted Pb-Zn Kebbouch South deposit. Mineralization forms two major ore types: (1) lenticular dolostones and clay breccias in the contact zone between Triassic and Upper Cretaceous strata;, it consists of small-scale lenticular, strata-or fault-controlled mineralization mainly composed of marcasite, galena, sphalerite, pyrite, and (2) stratiform mineralization in the Bahloul Formation (Upper Cenomanian-Lower Turonian) consisting of framboidal and cubic pyrite, disseminated sphalerite and galena. Non-metalliferous and/or gangue minerals are represented by dolomite, calcite, celestite and quartz. Fluid inclusion petrography study has been carried out on calcite and celestite. Fluid inclusions hosted in celestite are less than 20 µm large and show two types of aqueous inclusions: monophase liquid aqueous inclusions (L), abundant and very small, generally less than 15 µm and liquid-rich two phase inclusions (L+V). The gas phase forms a mobile vapor bubble. Microthermometric analyses of (L+V) fluid inclusions for celestite indicate that the homogenization temperature ranges from 121 to 156°C, and final ice melting temperatures are in the range of – 19 to -9°C corresponding to salinities of 12 to 21 wt% NaCl eq. (L+V) fluid inclusions from calcite are frequently localized along the growth zones; their homogenization temperature ranges from 96 to 164°C with final ice melting temperatures between -16 and -7°C corresponding to salinities of 9 to 19 wt% NaCl eq. According to mineralogical and fluid inclusion studies, mineralization in the Pb – Zn Kebbouch South deposit formed between 96 to 164°C with salinities ranging from 9 to 21 wt% NaCl eq. A contribution of basinal brines in the ore formation of the kebbouch South Pb–Zn deposit is likely. The deposit is part of the family of MVT deposits associated with the salt diapir environment.Keywords: fluid inclusion, Kebbouch South, mineralogy, MVT deposits, Pb-Zn
Procedia PDF Downloads 252416 Investigation of Nucleation and Thermal Conductivity of Waxy Crude Oil on Pipe Wall via Particle Dynamics
Authors: Jinchen Cao, Tiantian Du
Abstract:
As waxy crude oil is easy to crystallization and deposition in the pipeline wall, it causes pipeline clogging and leads to the reduction of oil and gas gathering and transmission efficiency. In this paper, a mesoscopic scale dissipative particle dynamics method is employed, and constructed four pipe wall models, including smooth wall (SW), hydroxylated wall (HW), rough wall (RW), and single-layer graphene wall (GW). Snapshots of the simulation output trajectories show that paraffin molecules interact with each other to form a network structure that constrains water molecules as their nucleation sites. Meanwhile, it is observed that the paraffin molecules on the near-wall side are adsorbed horizontally between inter-lattice gaps of the solid wall. In the pressure range of 0 - 50 MPa, the pressure change has less effect on the affinity properties of SS, HS, and GS walls, but for RS walls, the contact angle between paraffin wax and water molecules was found to decrease with the increase in pressure, while the water molecules showed the opposite trend, the phenomenon is due to the change in pressure, leading to the transition of paraffin wax molecules from amorphous to crystalline state. Meanwhile, the minimum crystalline phase pressure (MCPP) was proposed to describe the lowest pressure at which crystallization of paraffin molecules occurs. The maximum number of crystalline clusters formed by paraffin molecules at MCPP in the system showed NSS (0.52 MPa) > NHS (0.55 MPa) > NRS (0.62 MPa) > NGS (0.75 MPa). The MCPP on the graphene surface, with the least number of clusters formed, indicates that the addition of graphene inhibited the crystallization process of paraffin deposition on the wall surface. Finally, the thermal conductivity was calculated, and the results show that on the near-wall side, the thermal conductivity changes drastically due to the occurrence of adsorption crystallization of paraffin waxes; on the fluid side the thermal conductivity gradually tends to stabilize, and the average thermal conductivity shows: ĸRS(0.254W/(m·K)) > ĸRS(0.249W/(m·K)) > ĸRS(0.218W/(m·K)) > ĸRS(0.188W/(m·K)).This study provides a theoretical basis for improving the transport efficiency and heat transfer characteristics of waxy crude oil in terms of wall type, wall roughness, and MCPP.Keywords: waxy crude oil, thermal conductivity, crystallization, dissipative particle dynamics, MCPP
Procedia PDF Downloads 72415 A Facile One Step Modification of Poly(dimethylsiloxane) via Smart Polymers for Biomicrofluidics
Authors: A. Aslihan Gokaltun, Martin L. Yarmush, Ayse Asatekin, O. Berk Usta
Abstract:
Poly(dimethylsiloxane) (PDMS) is one of the most widely used materials in the fabrication of microfluidic devices. It is easily patterned and can replicate features down to nanometers. Its flexibility, gas permeability that allows oxygenation, and low cost also drive its wide adoption. However, a major drawback of PDMS is its hydrophobicity and fast hydrophobic recovery after surface hydrophilization. This results in significant non-specific adsorption of proteins as well as small hydrophobic molecules such as therapeutic drugs limiting the utility of PDMS in biomedical microfluidic circuitry. While silicon, glass, and thermoplastics have been used, they come with problems of their own such as rigidity, high cost, and special tooling needs, which limit their use to a smaller user base. Many strategies to alleviate these common problems with PDMS are lack of general practical applicability, or have limited shelf lives in terms of the modifications they achieve. This restricts large scale implementation and adoption by industrial and research communities. Accordingly, we aim to tailor biocompatible PDMS surfaces by developing a simple and one step bulk modification approach with novel smart materials to reduce non-specific molecular adsorption and to stabilize long-term cell analysis with PDMS substrates. Smart polymers that blended with PDMS during device manufacture, spontaneously segregate to surfaces when in contact with aqueous solutions and create a < 1 nm layer that reduces non-specific adsorption of organic and biomolecules. Our methods are fully compatible with existing PDMS device manufacture protocols without any additional processing steps. We have demonstrated that our modified PDMS microfluidic system is effective at blocking the adsorption of proteins while retaining the viability of primary rat hepatocytes and preserving the biocompatibility, oxygen permeability, and transparency of the material. We expect this work will enable the development of fouling-resistant biomedical materials from microfluidics to hospital surfaces and tubing.Keywords: cell culture, microfluidics, non-specific protein adsorption, PDMS, smart polymers
Procedia PDF Downloads 294414 Organic Paddy Production as a Coping Strategy to the Adverse Impact of Climate Change
Authors: Thapa M., J.P. Dutta, K.R. Pandey, R.R. Kattel
Abstract:
Nepal is extremely vulnerable to the impact of climate change. To mitigate the climate change effects on agricultural production and productivity a range of adaptive strategies needs to be considered. The study was conducted to assess organic paddy production as a coping strategy to the adverse impact of climate change in Phulbari, VDC of Chitwan district. Altogether, 120 respondents (60 adopters of organic farming and 60 from non adopter) were selected using snowball technique of sampling. Pre- tested interview schedule, direct observation, focus group discussion, key informant interview as well as secondary data were used to collect the required information. Factors determining the adoption of organic farming were found to be age, year of schooling, training, frequency of extension contact, perception about climate change, economically active members and poor. A unit increase in these factors except poor would increase the probability of adoption by 4.1%, 7.5%, 7.8%, 43.1%, 41.8% and 7% respectively. However, for poor, it would decrease the probability of adoption of organic farming by 5.1%. Average organic matter content in the adopters' field was higher (2.7%) than the non-adopters' field (2.5%). The regression result showed that type of farmer, price and area under rice cultivation had positive and significant relationship with income; however dependency ratio had negative relationship. As the year of adoption of organic farming increases, the production of rice decline in the first two years then after goes on increasing but the cost of production goes on decreasing with the year of adoption. The respondents adapted to the changing climate through diversification of crops, use of resistance varieties and following good cropping pattern. Gradually growing consumers' awareness about health, preference towards quality food products are the strong points behind organic farming, whereas lacks of bio-fertilizers, lack of effective extension services, no price differentiation between organic and inorganic products were the weak points. There is need for more training and education to change the attitude of farmers and enhance their confidence about the role of organic farming to cope with climate change impact.Keywords: Organic farming, climate change, sustainable development
Procedia PDF Downloads 454413 Predictors of Lost to Follow-Up among HIV Patients Attending Anti-Retroviral Therapy Treatment Centers in Nigeria
Authors: Oluwasina Folajinmi, Kate Ssamulla, Penninah Lutung, Daniel Reijer
Abstract:
Background: Despite of well-verified benefits of anti-retroviral therapy (ART) in prolonging life expectancy being lost to follow-up (LTFU) presents a challenge to the success of ART programs in resource limited countries like Nigeria. In several studies of ART programs in developing countries, researchers have reported that there has been a high rate of LTFU among patients receiving care and treatment at ART treatment centers. This study seeks to determine the cause of LTFU among HIV clients. Method: A descriptive cross sectional study focused on a population of 9,280 persons living with HIV/AIDS who were enrolled in nine treatment centers in Nigeria (both pre-ART and ART patients were included). Out of the total population, 1752 (18.9%) were found to be LTFU. Of this group we randomly selected 1200 clients (68.5%) their d patients’ information was generated through a database. Data on demographics and CD4 counts, causes of LTFU were analyzed and summarized. Results: Out of 1200 LTFU clients selected, 462 (38.5%) were on ART; 341 clients (73.8%) had CD4 level < 500cell/µL and 738 (61.5%) on pre-ART had CD4 level >500/µL. In our records we found telephone number for 675 (56.1%) of these clients. 675 (56.1%) were owners of a phone. The majority of the client’s 731 (60.9%) were living at not more than 25km away from the ART center. A majority were females (926 or 77.2%) while 274 (22.8%) were male. 675 (56.1%) clients were reported traced via telephone and home address. 326 (27.2%) of clients phone numbers were not reachable; 173 (14.4%) of telephone numbers were incomplete. 71 (5.9%) had relocated due to communal crises and expert client trackers reported that some patient could not afford transportation to ART centers. Conclusion: This study shows that, low health education levels, poverty, relocations and lack of reliable phone contact were major predictors of LTFU. Periodic updates of home addresses, telephone contacts including at least two next of kin, phone text messages and home visits may improve follow up. Early and consistent tracking of missed appointments is crucial. Creation of more ART decentralized centres are needed to avoid long distances.Keywords: anti-retroviral therapy, HIV/AIDS, predictors, lost to follow up
Procedia PDF Downloads 304412 The Impact of Small-Scale Irrigation on the Income of Rural Households and Determinants of Its Adoption: Evidence from Dehana Woreda, Ethiopia
Authors: Wondmnew Derebe Yohannis
Abstract:
Farming irrigation plays a crucial role in rural development strategies, impacting both annual household income and livelihood. This research aims to evaluate the factors influencing irrigation participation and assess the impact of small-scale irrigation on rural households' annual income. The study collected data from 287 farmers in the Dahana district of northern Ethiopia. The research investigates the driving forces behind farmers' decisions to adopt small-scale irrigation and its effect on annual income gain. The findings reveal that several factors positively influence the probability of adoption, including access to credit, cultivated land size, livestock holding, extension contact, and the education level of the household head. Conversely, the distance to local markets and water schemes negatively affects the likelihood of adoption. To understand the differences in annual income between farm households that adopted irrigation and those that did not, a simultaneous equations model with endogenous switching regression is estimated. This accounts for the heterogeneity in the adoption decision and unobservable characteristics of farmers and their farms. The analysis compares the expected income gain under actual and counterfactual scenarios, considering whether the farm household adopted irrigation or not. The study reveals that the group of farm households that adopted irrigation has distinct characteristics compared to those that did not adopt it. Furthermore, the research demonstrates that the adoption of irrigation practices leads to an increase in annual income. Interestingly, the impact of small-scale irrigation on annual income is greater for the farm households that actually adopted irrigation compared to those in the counterfactual scenario where they did not adopt. Based on the findings, the researcher concludes that small-scale irrigation is a practical solution for meeting household financial needs in the study area. It is recommended that investments in small-scale irrigation continue to further improve the livelihoods of rural farming communities by enhancing annual income gains.Keywords: small-scale irrigation, income, rural farm households, endogenous switching regression, user, non-user
Procedia PDF Downloads 63411 Mathematical Modelling of Spatial Distribution of Covid-19 Outbreak Using Diffusion Equation
Authors: Kayode Oshinubi, Brice Kammegne, Jacques Demongeot
Abstract:
The use of mathematical tools like Partial Differential Equations and Ordinary Differential Equations have become very important to predict the evolution of a viral disease in a population in order to take preventive and curative measures. In December 2019, a novel variety of Coronavirus (SARS-CoV-2) was identified in Wuhan, Hubei Province, China causing a severe and potentially fatal respiratory syndrome, i.e., COVID-19. Since then, it has become a pandemic declared by World Health Organization (WHO) on March 11, 2020 which has spread around the globe. A reaction-diffusion system is a mathematical model that describes the evolution of a phenomenon subjected to two processes: a reaction process in which different substances are transformed, and a diffusion process that causes a distribution in space. This article provides a mathematical study of the Susceptible, Exposed, Infected, Recovered, and Vaccinated population model of the COVID-19 pandemic by the bias of reaction-diffusion equations. Both local and global asymptotic stability conditions for disease-free and endemic equilibria are determined using the Lyapunov function are considered and the endemic equilibrium point exists and is stable if it satisfies Routh–Hurwitz criteria. Also, adequate conditions for the existence and uniqueness of the solution of the model have been proved. We showed the spatial distribution of the model compartments when the basic reproduction rate $\mathcal{R}_0 < 1$ and $\mathcal{R}_0 > 1$ and sensitivity analysis is performed in order to determine the most sensitive parameters in the proposed model. We demonstrate the model's effectiveness by performing numerical simulations. We investigate the impact of vaccination and the significance of spatial distribution parameters in the spread of COVID-19. The findings indicate that reducing contact with an infected person and increasing the proportion of susceptible people who receive high-efficacy vaccination will lessen the burden of COVID-19 in the population. To the public health policymakers, we offered a better understanding of the COVID-19 management.Keywords: COVID-19, SEIRV epidemic model, reaction-diffusion equation, basic reproduction number, vaccination, spatial distribution
Procedia PDF Downloads 122410 Effect of Different Sterilization Processes on Drug Loaded Silicone-Hydrogel
Authors: Raquel Galante, Marina Braga, Daniela Ghisleni, Terezinha J. A. Pinto, Rogério Colaço, Ana Paula Serro
Abstract:
The sensitive nature of soft biomaterials, such as hydrogels, renders their sterilization a particularly challenging task for the biomedical industry. Widely used contact lenses are now studied as promising platforms for topical corneal drug delivery. However, to the best of the authors knowledge, the influence of sterilization methods on these systems has yet to be evaluated. The main goal of this study was to understand how different pairs drug-hydrogel would interact under an ozone-based sterilization method in comparison with two conventional processes (steam heat and gamma irradiation). For that, Si-Hy containing hydroxylethyl methacrylate (HEMA) and [tris(trimethylsiloxy)silyl]propyl methacrylate (TRIS) was produced and soaked in different drug solutions, commonly used for the treatment of ocular diseases (levofloxacin, chlorhexidine, diclofenac and timolol maleate). The drug release profiles and main material properties were evaluated before and after the sterilization. Namely, swelling capacity was determined by water uptake studies, transparency was accessed by UV-Vis spectroscopy, surface topography/morphology by scanning electron microscopy (SEM) and mechanical properties by performing tensile tests. The drug released was quantified by high performance liquid chromatography (HPLC). The effectiveness of the sterilization procedures was assured by performing sterility tests. Ozone gas method led to a significant reduction of drug released and to the formation of degradation products specially for diclofenac and levofloxacin. Gamma irradiation led to darkening of the loaded Si-Hys and to the complete degradation of levofloxacin. Steam heat led to smoother surfaces and to a decrease of the amount of drug released, however, with no formation of degradation products. This difference in the total drug released could be the related to drug/polymer interactions promoted by the sterilization conditions in presence of the drug. Our findings offer important insights that, in turn, could be a useful contribution to the safe development of actual products.Keywords: drug delivery, silicone hydrogels, sterilization, gamma irradiation, steam heat, ozone gas
Procedia PDF Downloads 312409 Coherent Optical Tomography Imaging of Epidermal Hyperplasia in Vivo in a Mouse Model of Oxazolone Induced Atopic Dermatitis
Authors: Eric Lacoste
Abstract:
Laboratory animals are currently widely used as a model of human pathologies in dermatology such as atopic dermatitis (AD). These models provide a better understanding of the pathophysiology of this complex and multifactorial disease, the discovery of potential new therapeutic targets and the testing of the efficacy of new therapeutics. However, confirmation of the correct development of AD is mainly based on histology from skin biopsies requiring invasive surgery or euthanasia of the animals, plus slicing and staining protocols. However, there are currently accessible imaging technologies such as Optical Coherence Tomography (OCT), which allows non-invasive visualization of the main histological structures of the skin (like stratum corneum, epidermis, and dermis) and assessment of the dynamics of the pathology or efficacy of new treatments. Briefly, female immunocompetent hairless mice (SKH1 strain) were sensitized and challenged topically on back and ears for about 4 weeks. Back skin and ears thickness were measured using calliper at 3 occasions per week in complement to a macroscopic evaluation of atopic dermatitis lesions on back: erythema, scaling and excoriations scoring. In addition, OCT was performed on the back and ears of animals. OCT allows a virtual in-depth section (tomography) of the imaged organ to be made using a laser, a camera and image processing software allowing fast, non-contact and non-denaturing acquisitions of the explored tissues. To perform the imaging sessions, the animals were anesthetized with isoflurane, placed on a support under the OCT for a total examination time of 5 to 10 minutes. The results show a good correlation of the OCT technique with classical HES histology for skin lesions structures such as hyperkeratosis, epidermal hyperplasia, and dermis thickness. This OCT imaging technique can, therefore, be used in live animals at different times for longitudinal evaluation by repeated measurements of lesions in the same animals, in addition to the classical histological evaluation. Furthermore, this original imaging technique speeds up research protocols, reduces the number of animals and refines the use of the laboratory animal.Keywords: atopic dermatitis, mouse model, oxzolone model, histology, imaging
Procedia PDF Downloads 132