Search results for: high temperature polymer electrolyte membrane fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27951

Search results for: high temperature polymer electrolyte membrane fuel cell

13581 Numerical Investigation of Hygrothermal Behavior on Porous Building Materials

Authors: Faiza Mnasri, Kamilia Abahri, Mohammed El Ganaoui, Slimane Gabsi

Abstract:

Most of the building materials are considered porous, and composed of solid matrix and pores. In the pores, the moisture can be existed in two phases: liquid and vapor. Thus, the mass balance equation is comprised of various moisture driving potentials that translate the movement of the different existing phases occupying pores and the hygroscopic behavior of a porous construction material. This study suggests to resolve a hygrothermal mathematical model of heat and mass transfers in different porous building materials by a numerical investigation. Thereby, the evolution of temperature and moisture content fields has been processed. So, numerous series of hygrothermal calculation on several cases of wall are exposed. Firstly, a case of monolayer wall of massive wood has been treated. In this part, we have compared the numerical solution of the model on one and two dimensions and the effect of dimensional space has been evaluated. In the second case, three building materials (concrete, wood fiberboard and wooden insulation) are tested separately with the same boundary conditions and their hygrothermal behavior are compared. The evaluation of the exchange of heat and air at the interface between the wall and the interior ambiance is carried.

Keywords: building materials, heat transfer, moisture diffusion, numerical solution

Procedia PDF Downloads 286
13580 Development of an Auxetic Tissue Implant

Authors: Sukhwinder K. Bhullar, M. B. G. Jun

Abstract:

The developments in biomedical industry have demanded the development of biocompatible, high performance materials to meet higher engineering specifications. The general requirements of such materials are to provide a combination of high stiffness and strength with significant weight savings, resistance to corrosion, chemical resistance, low maintenance, and reduced costs. Auxetic materials which come under the category of smart materials offer huge potential through measured enhancements in mechanical properties. Unique deformation mechanism, providing cushioning on indentation, automatically adjustable with its strength and thickness in response to forces and having memory returns to its neutral state on dissipation of stresses make them good candidate in biomedical industry. As simple extension and compression of tissues is of fundamental importance in biomechanics, therefore, to study the elastic behaviour of auxetic soft tissues implant is targeted in this paper. Therefore development and characterization of auxetic soft tissue implant is studied in this paper. This represents a real life configuration where soft tissue such as meniscus in knee replacement, ligaments and tendons often are taken as transversely isotropic. Further, as composition of alternating polydisperse blocks of soft and stiff segments combined with excellent biocompatibility make polyurethanes one of the most promising synthetic biomaterials. Hence selecting auxetic polyurathylene foam functional characterization is performed and compared with conventional polyurathylene foam.

Keywords: auxetic materials, deformation mechanism, enhanced mechanical properties, soft tissues

Procedia PDF Downloads 455
13579 Optimization of Syngas Quality for Fischer-Tropsch Synthesis

Authors: Ali Rabah

Abstract:

This research received no grant or financial support from any public, commercial, or none governmental agency. The author conducted this work as part of his normal research activities as a professor of Chemical Engineering at the University of Khartoum, Sudan. Abstract While fossil oil reserves have been receding, the demand for diesel and gasoline has been growing. In recent years, syngas of biomass origin has been emerging as a viable feedstock for Fischer-Tropsch (FT) synthesis, a process for manufacturing synthetic gasoline and diesel. This paper reports the optimization of syngas quality to match FT synthesis requirements. The optimization model maximizes the thermal efficiency under the constraint of H2/CO≥2.0 and operating conditions of equivalent ratio (0 ≤ ER ≤ 1.0), steam to biomass ratio (0 ≤ SB ≤ 5), and gasification temperature (500 °C ≤ Tg ≤ 1300 °C). The optimization model is executed using the optimization section of the Model Analysis Tools of the Aspen Plus simulator. The model is tested using eleven (11) types of MSW. The optimum operating conditions under which the objective function and the constraint are satisfied are ER=0, SB=0.66-1.22, and Tg=679 - 763°C. Under the optimum operating conditions, the syngas quality is H2=52.38 - 58.67-mole percent, LHV=12.55 - 17.15 MJ/kg, N2=0.38 - 2.33-mole percent, and H2/CO≥2.15. The generalized optimization model reported could be extended to any other type of biomass and coal. Keywords: MSW, Syngas, Optimization, Fischer-Tropsch.

Keywords: syngas, MSW, optimization, Fisher-Tropsh

Procedia PDF Downloads 69
13578 Flash Flood in Gabes City (Tunisia): Hazard Mapping and Vulnerability Assessment

Authors: Habib Abida, Noura Dahri

Abstract:

Flash floods are among the most serious natural hazards that have disastrous environmental and human impacts. They are associated with exceptional rain events, characterized by short durations, very high intensities, rapid flows and small spatial extent. Flash floods happen very suddenly and are difficult to forecast. They generally cause damage to agricultural crops and property, infrastructures, and may even result in the loss of human lives. The city of Gabes (South-eastern Tunisia) has been exposed to numerous damaging floods because of its mild topography, clay soil, high urbanization rate and erratic rainfall distribution. The risks associated with this situation are expected to increase further in the future because of climate change, deemed responsible for the increase of the frequency and the severity of this natural hazard. Recently, exceptional events hit Gabes City causing death and major property losses. A major flooding event hit the region on June 2nd, 2014, causing human deaths and major material losses. It resulted in the stagnation of storm water in the numerous low zones of the study area, endangering thereby human health and causing disastrous environmental impacts. The characterization of flood risk in Gabes Watershed (South-eastern Tunisia) is considered an important step for flood management. Analytical Hierarchy Process (AHP) method coupled with Monte Carlo simulation and geographic information system were applied to delineate and characterize flood areas. A spatial database was developed based on geological map, digital elevation model, land use, and rainfall data in order to evaluate the different factors susceptible to affect flood analysis. Results obtained were validated by remote sensing data for the zones that showed very high flood hazard during the extreme rainfall event of June 2014 that hit the study basin. Moreover, a survey was conducted from different areas of the city in order to understand and explore the different causes of this disaster, its extent and its consequences.

Keywords: analytical hierarchy process, flash floods, Gabes, remote sensing, Tunisia

Procedia PDF Downloads 102
13577 UEMG-FHR Coupling Analysis in Pregnancies Complicated by Pre-Eclampsia and Small for Gestational Age

Authors: Kun Chen, Yan Wang, Yangyu Zhao, Shufang Li, Lian Chen, Xiaoyue Guo, Jue Zhang, Jing Fang

Abstract:

The coupling strength between uterine electromyography (UEMG) and Fetal heart rate (FHR) signals during peripartum reflects the fetal biophysical activities. Therefore, UEMG-FHR coupling characterization is instructive in assessing placenta function. This study introduced a physiological marker named elevated frequency of UEMG-FHR coupling (E-UFC) and explored its predictive value for pregnancies complicated by pre-eclampsia and small for gestational age (SGA). Placental insufficiency patients (n=12) and healthy volunteers (n=24) were recruited and participated. UEMG and FHR were recorded non-invasively by a trans-abdominal device in women at term with singleton pregnancy (32-37 weeks) from 10:00 pm to 8:00 am. The product of the wavelet coherence and the wavelet cross-spectral power between UEMG and FHR was used to weight these two effects in order to quantify the degree of the UEMG-FHR coupling. E-UFC was exacted from the resultant spectrogram by calculating the mean value of the high-coherence (r > 0.5) frequency band. Results showed the high-coherence between UEMG and FHR was observed in the frequency band (1/512-1/16Hz). In addition, E-UFC in placental insufficiency patients was weaker compared to healthy controls (p < 0.001) at group level. These findings suggested the proposed approach could be used to quantitatively characterize the fetal biophysical activities, which is beneficial for early detection of placental insufficiency and reduces the occurrence of adverse pregnancy.

Keywords: uterine electromyography, fetal heart rate, coupling analysis, wavelet analysis

Procedia PDF Downloads 190
13576 The Effectiveness of an Injury Prevention Workshop in Increasing Knowledge and Understanding in Grass-Root Youth Coaches

Authors: Mark De Ste Croix, Jonathan Hughes, Francisco Ayala, Michal Lehnert

Abstract:

There are well-known challenges to implementing injury prevention training for youth players but no data are available on the knowledge and understanding of deliverers of such programmes at grass root level. To increase adoption and adherence to such programmes coach knowledge and understanding of injury risk and prevention is essential. Therefore, the purpose of this study was to examine grass-root coaches knowledge and understanding of injury risk and prevention in youth players. 68 grass root coaches (18 females and 50 males) who were attending a one-day injury prevention workshop completed a modified validated questionnaire exploring knowledge and understanding of injury risk and prevention in youth players. Only 59% of coaches agreed that youth players are at a high risk of suffering an injury. There were high levels of agreement that injuries can have negative impacts on team performance (75%) and can cause physical problems in later life (85%), however only around half of coaches felt that injuries affect youth players current quality of life (59%). There was strong agreement that it is possible to prevent injuries in youth players (84%), but coaches were generally unaware of programs to help prevent injuries (84%), and only 9% used some form of injury prevention program. Despite this, nearly all coaches felt that their coaching could benefit from a greater understanding of growth and maturation (91%), injury prevention programmes (91%) and specific exercises (93%) for youth athletes. 17% of coaches rated their knowledge of injury prevention as good/very good at the start of the workshop and this increased to 94% at the end of the workshop. 62% of coaches identified their attitude towards injury prevention as indifferent at the start of the workshop compared with only 1% at the end. Only 14% of coaches at the start of the workshop were confident to deliver an injury prevention session but 83% stated they were confident by the end of the workshop. Finally, 98% of coaches felt that the workshop provided them with the confidence and the knowledge to deliver an injury prevention session and 98% suggested that they would implement injury prevention into their coaching. These data suggest that there is a lack of understanding of grass root coaches that children are a high-risk group for injuries, and that such injuries impact on current quality of life. Despite understanding that injuries can be prevented most grass root coaches do not have the knowledge to implement injury prevention into their coaching and very few do. There is a common consensus amongst these coaches that a greater understanding of such programmes will enhance their coaching. The injury prevention workshop appears to have increased the knowledge and changed the attitude of coaches towards injury prevention. All coaches felt that the workshop provided them with the tools to adopt, implement and deliver injury prevention in their coaching. These data highlight that there is a clear need for education regarding injury risk and prevention to be embedded within the coach education pathway, especially at grass root level.

Keywords: coach education, injury prevention, knowledge, and understanding, youth

Procedia PDF Downloads 165
13575 Evaluating the Impact of Judicial Review of 2003 “Radical Surgery” Purging Corrupt Officials from Kenyan Courts

Authors: Charles A. Khamala

Abstract:

In 2003, constrained by an absent “rule of law culture” and negative economic growth, the new Kenyan government chose to pursue incremental judicial reforms rather than comprehensive constitutional reforms. President Mwai Kibaki’s first administration’s judicial reform strategy was two pronged. First, to implement unprecedented “radical surgery,” he appointed a new Chief Justice who instrumentally recommended that half the purportedly-corrupt judiciary should be removed by Presidential tribunals of inquiry. Second, the replacement High Court judges, initially, instrumentally-endorsed the “radical surgery’s” administrative decisions removing their corrupt predecessors. Meanwhile, retention of the welfare-reducing Constitution perpetuated declining public confidence in judicial institutions culminating in refusal by the dissatisfied opposition party to petition the disputed 2007 presidential election results, alleging biased and corrupt courts. Fatefully, widespread post-election violence ensued. Consequently, the international community prompted the second Kibaki administration to concede to a new Constitution. Suddenly, the High Court then adopted a non-instrumental interpretation to reject the 2003 “radical surgery.” This paper therefore critically analyzes whether the Kenyan court’s inconsistent interpretations–pertaining to the constitutionality of the 2003 “radical surgery” removing corruption from Kenya’s courts–was predicated on political expediency or human rights principles. If justice “must also seen to be done,” then pursuit of the CJ’s, Judicial Service Commission’s and president’s political or economic interests must be limited by respect for the suspected judges and magistrates’ due process rights. The separation of powers doctrine demands that the dismissed judges should have a right of appeal which entails impartial review by a special independent oversight mechanism. Instead, ignoring fundamental rights, Kenya’s new Supreme Court’s interpretation of another round of vetting under the new 2010 Constitution, ousts the High Court’s judicial review jurisdiction altogether, since removal of judicial corruption is “a constitutional imperative, akin to a national duty upon every judicial officer to pave way for judicial realignment and reformulation.”

Keywords: administrative decisions, corruption, fair hearing, judicial review, (non) instrumental

Procedia PDF Downloads 472
13574 Effect of Bentonite on the Rheological Behavior of Cement Grout in Presence of Superplasticizer

Authors: K. Benyounes, A. Benmounah

Abstract:

Cement-based grouts has been used successfully to repair cracks in many concrete structures such as bridges, tunnels, buildings and to consolidate soils or rock foundations. In the present study, the rheological characterization of cement grout with water/binder ratio (W/B) is fixed at 0.5. The effect of the replacement of cement by bentonite (2 to 10 % wt) in presence of superplasticizer (0.5 % wt) was investigated. Several rheological tests were carried out by using controlled-stress rheometer equipped with vane geometry in temperature of 20°C. To highlight the influence of bentonite and superplasticizer on the rheological behavior of grout cement, various flow tests in a range of shear rate from 0 to 200 s-1 were observed. Cement grout showed a non-Newtonian viscosity behavior at all concentrations of bentonite. Three parameter model Herschel-Bulkley was chosen for fitting of experimental data. Based on the values of correlation coefficients of the estimated parameters, The Herschel-Bulkley law model well described the rheological behavior of the grouts. Test results showed that the dosage of bentonite increases the viscosity and yield stress of the system and introduces more thixotropy. While the addition of both bentonite and superplasticizer with cement grout improve significantly the fluidity and reduced the yield stress due to the action of dispersion of SP.

Keywords: rheology, cement grout, bentonite, superplasticizer, viscosity, yield stress

Procedia PDF Downloads 351
13573 Effect of a Mindfulness Application on Graduate Nursing Student’s Stress and Anxiety

Authors: Susan K. Steele-Moses, Aimee Badeaux

Abstract:

Background Literature: Nurse anesthesia education placed high demands on students both personally and professionally. High levels of anxiety affect student’s mental, emotional, and physical well-being, which impacts their student success. Whereas more research has focused on the health and well-being of graduate students, far less has focused specifically on nurse anesthesia students (SNRAs), who may experience higher levels of anxiety due to the rigor of their academic program. Current literature describes stressors experienced by SRNAs that cause anxiety and affect their performance, including personal, academic, clinical, interpersonal, emotional, and financial. Sample: DNP-NA 2025 and DNP-NA 2024 cohorts (N = 36). Eighteen (66.7%) students participated in the study. Instrumentation: The DASS-21 was used to measure stress (7 items; α = .87) and anxiety (7 items; α = .74) from the participants. Intervention: The mind-shift meditation app, based on cognitive behavioral therapy, is being used daily before clinical and exams to decrease nurse anesthesia students’ stress and anxiety over time. Results: At baseline, the students exhibited a moderate level of stress, but their anxiety levels were low. The range of scores was 4-21 (out of 28) for stress (M = 12.88; SD = 5.40) and 0-16 (out of 28) for anxiety (M = 6.81; SD = 5.04). Both stress and anxiety were normally distributed [SW = .242 (stress); SW = .210 (anxiety)] without any outliers. There was a significant difference between their stress and anxiety levels (t = 5.55; p < .001) at baseline. Stress and anxiety will be measured over time, with the change analyzed using repeated measures ANOVA. Implications for Practice: The use of purposeful mindfulness meditation has been shown to decrease stress and anxiety in nursing students.

Keywords: mindfulness, meditation, graduate nursing education, nursing education

Procedia PDF Downloads 77
13572 Erosion Wear of Cast Al-Si Alloys

Authors: Pooja Verma, Rajnesh Tyagi, Sunil Mohan

Abstract:

Al-Si alloys are widely used in various components such as liner-less engine blocks, piston, compressor bodies and pumps for automobile sector and aerospace industries due to their excellent combination of properties like low thermal expansion coefficient, low density, excellent wear resistance, high corrosion resistance, excellent cast ability, and high hardness. The low density and high hardness of primary Si phase results in significant reduction in density and improvement in wear resistance of hypereutectic Al-Si alloys. Keeping in view of the industrial importance of the alloys, hypereutectic Al-Si alloys containing 14, 16, 18 and 20 wt. % of Si were prepared in a resistance furnace using adequate amount of deoxidizer and degasser and their erosion behavior was evaluated by conducting tests at impingement angles of 30°, 60°, and 90° with an erodent discharge rate of 7.5 Hz, pressure 1 bar using erosion test rig. Microstructures of the cast alloys were examined using Optical microscopy (OM) and scanning electron microscopy (SEM) and the presence of Si particles was confirmed by x-ray diffractometer (XRD). The mechanical properties and hardness were measured using uniaxial tension tests at a strain rate of 10-3/s and Vickers hardness tester. Microstructures of the alloys and X-ray examination revealed the presence of primary and eutectic Si particles in the shape of cuboids or polyhedral and finer needles. Yield strength (YS), ultimate tensile strength (UTS), and uniform elongation of the hypereutectic Al-Si alloys were observed to increase with increasing content of Si. The optimal strength and ductility was observed for Al-20 wt. % Si alloy which is significantly higher than the Al-14 wt. % Si alloy. The increased hardness and the strength of the alloys with increasing amount of Si has been attributed presence of Si in the solid solution which creates strain, and this strain interacts with dislocations resulting in solid-solution strengthening. The interactions between distributed primary Si particles and dislocations also provide Orowan strengthening leading to increased strength. The steady state erosion rate was found to decrease with increasing angle of impact as well as Si content for all the alloys except at 900 where it was observed to increase with the increase in the Si content. The minimum erosion rate is observed in Al-20 wt. % Si alloy at 300 and 600 impingement angles because of its higher hardness in comparison to other alloys. However, at 90° impingement angle the wear rate for Al-20 wt. % Si alloy is found to be the minimum due to deformation, subsequent cracking and chipping off material.

Keywords: Al-Si alloy, erosion wear, cast alloys, dislocation, strengthening

Procedia PDF Downloads 61
13571 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction

Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal

Abstract:

Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.

Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction

Procedia PDF Downloads 133
13570 Determination of Resistance to Freezing of Bonded Façade Joint

Authors: B. Nečasová, P. Liška, J. Šlanhof

Abstract:

Verification of vented wooden façade system with bonded joints is presented in this paper. The potential of bonded joints is studied and described in more detail. The paper presents the results of an experimental and theoretical research about the effects of freeze cycling on the bonded joint. For the purpose of tests spruce timber profiles were chosen for the load bearing substructure. Planks from wooden plastic composite and Siberian larch are representing facade cladding. Two types of industrial polyurethane adhesives intended for structural bonding were selected. The article is focused on the preparation as well as on the subsequent curing and conditioning of test samples. All test samples were subjected to 15 cycles that represents sudden temperature changes, i.e. immersion in a water bath at (293.15 ± 3) K for 6 hours and subsequent freezing to (253.15 ± 2) K for 18 hours. Furthermore, the retention of bond strength between substructure and cladding was tested and strength in shear was determined under tensile stress. Research data indicate that little, if any, damage to the bond results from freezing cycles. Additionally, the suitability of selected group of adhesives in combination with timber substructure was confirmed.

Keywords: adhesive system, bonded joints, wooden lightweight façade, timber substructure

Procedia PDF Downloads 388
13569 Modelling and Numerical Analysis of Thermal Non-Destructive Testing on Complex Structure

Authors: Y. L. Hor, H. S. Chu, V. P. Bui

Abstract:

Composite material is widely used to replace conventional material, especially in the aerospace industry to reduce the weight of the devices. It is formed by combining reinforced materials together via adhesive bonding to produce a bulk material with alternated macroscopic properties. In bulk composites, degradation may occur in microscopic scale, which is in each individual reinforced fiber layer or especially in its matrix layer such as delamination, inclusion, disbond, void, cracks, and porosity. In this paper, we focus on the detection of defect in matrix layer which the adhesion between the composite plies is in contact but coupled through a weak bond. In fact, the adhesive defects are tested through various nondestructive methods. Among them, pulsed phase thermography (PPT) has shown some advantages providing improved sensitivity, large-area coverage, and high-speed testing. The aim of this work is to develop an efficient numerical model to study the application of PPT to the nondestructive inspection of weak bonding in composite material. The resulting thermal evolution field is comprised of internal reflections between the interfaces of defects and the specimen, and the important key-features of the defects presented in the material can be obtained from the investigation of the thermal evolution of the field distribution. Computational simulation of such inspections has allowed the improvement of the techniques to apply in various inspections, such as materials with high thermal conductivity and more complex structures.

Keywords: pulsed phase thermography, weak bond, composite, CFRP, computational modelling, optimization

Procedia PDF Downloads 161
13568 Adsorption of Malachite Green Dye on Graphene Oxide Nanosheets from Aqueous Solution: Kinetics and Thermodynamics Studies

Authors: Abeer S. Elsherbiny, Ali H. Gemeay

Abstract:

In this study, graphene oxide (GO) nanosheets have been synthesized and characterized using different spectroscopic tools such as X-ray diffraction spectroscopy, infrared Fourier transform (FT-IR) spectroscopy, BET specific surface area and Transmission Electronic Microscope (TEM). The prepared GO was investigated for the removal of malachite green, a cationic dye from aqueous solution. The removal methods of malachite green has been proceeded via adsorption process. GO nanosheets can be predicted as a good adsorbent material for the adsorption of cationic species. The adsorption of the malachite green onto the GO nanosheets has been carried out at different experimental conditions such as adsorption kinetics, concentration of adsorbate, pH, and temperature. The kinetics of the adsorption data were analyzed using four kinetic models such as the pseudo first-order model, pseudo second-order model, intraparticle diffusion, and the Boyd model to understand the adsorption behavior of malachite green onto the GO nanosheets and the mechanism of adsorption. The adsorption isotherm of adsorption of the malachite green onto the GO nanosheets has been investigated at 25, 35 and 45 °C. The equilibrium data were fitted well to the Langmuir model. Various thermodynamic parameters such as the Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) change were also evaluated. The interaction of malachite green onto the GO nanosheets has been investigated by infrared Fourier transform (FT-IR) spectroscopy.

Keywords: adsorption, graphene oxide, kinetics, malachite green

Procedia PDF Downloads 400
13567 Synthesis and Characterization of Mass Catalysts Based on Cobalt and Molybdenum

Authors: Nassira Ouslimani

Abstract:

The electronic structure of transition metals gives them many catalytic possibilities in many types of reactions, particularly cobalt and molybdenum. It is in this context that this study is part of the synthesis and characterization of mass catalysts based on cobalt and molybdenum Co1₋xMoO4 (X=0 and X=0.5 and X=1). The two catalysts were prepared by Co-precipitation using ammonia as a precipitating agent and one by precipitation. The samples obtained were analyzed by numerous physic-chemical analysis techniques: ATG-ATD-DSC, DRX-HT, SEM-EDX, and the elemental composition of the catalysts was verified by SAA as well as the FTIR. The ATG-DSC shows a mass loss for all the catalysts of approximately 8%, corresponding to the loss of water and the decomposition of nitrates. The DRX-HT analysis allows the detection of the two CoMoO4 phases with diffraction peaks which increase with the increase in temperature. The results of the FTIR analysis made it possible to highlight the vibration modes of the bonds of the structure of the prepared catalysts. The SEM images of the solids show very different textures with almost homogeneous surfaces with a more regular particle size distribution and a more defined grain shape. The EDX analysis showed the presence of the elements Co, Mo, and O in proportions very close to the nominal proportions. Finally, the actual composition, evaluated by SAA, is close to the theoretical composition fixed during the preparation. This testifies to the good conditions for the preparation of the catalysts by the co-precipitation method.

Keywords: catalytic, molybdenum, coprecipitation, cobalt, ammonia

Procedia PDF Downloads 81
13566 MHD Stagnation-Point Flow over a Plate

Authors: H. Niranjan, S. Sivasankaran

Abstract:

Heat and mass transfer near a steady stagnation point boundary layer flow of viscous incompressible fluid through porous media investigates along a vertical plate is thoroughly studied under the presence of magneto hydrodynamic (MHD) effects. The fluid flow is steady, laminar, incompressible and in two-dimensional. The nonlinear differential coupled parabolic partial differential equations of continuity, momentum, energy and specie diffusion are converted into the non-similar boundary layer equations using similarity transformation, which are then solved numerically using the Runge-Kutta method along with shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, slip, convective boundary condition, stagnation point

Procedia PDF Downloads 295
13565 Groundwater Utilization and Sustainability: A Case Study of Pydibheemavaram Industrial Area, India

Authors: G. Venkata Rao, R. Srinivasa Rao, B. Neelima Sri Priya

Abstract:

The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Now a days the ground water extraction increases by year to year because increased population and industrialization. The ground water is the only source of irrigation, domestic and Industrial purposes at Pydibhimavaram industrial area, which is located in the coastal belt of Srikakulam district, India of Latitudes 18.145N 83.627E and Longitudes 18.099N 83.674E. The present study has been attempted to calculate amount of water getting recharged into this aquifer, status of rainfall pattern for the past two decades and the runoff is calculated by using Khosla’s formula with available rainfall and temperature in the study area. A decision support model has been developed on the basis of Monthly Extractions of the water from the ground through bore wells and the Net Recharge of the aquifer. It is concluded that the amount of extractions is exceeding the amount of recharge from May to October in a given year which will in turn damage the water balance in the subsurface layers.

Keywords: aquifer, decision support model, groundwater extraction, run off estimation and rainfall

Procedia PDF Downloads 293
13564 Higher Education Internationalisation: The Case of Indonesia

Authors: Agustinus Bandur, Dyah Budiastuti

Abstract:

With the rapid development of information and communication technology (ICT) in globalisation era, higher education (HE) internationalisation has become a worldwide phenomenon. However, even though various studies have been widely published in existing literature, the settings of these studies were taken places in developed countries. Accordingly, the major purpose of this article is to explore the current trends of higher education internationalisation programs with particular reference to identify the benefits and challenges confronted by participating staff and students. For these purposes, ethnographic qualitative study with the usage of NVivo 11 software was applied in coding, analyzing, and visualization of non-numeric data gathered from interviews, videos, web contents, social media, and relevant documents. Purposive sampling technique was applied in this study with a total of ten high-ranked accredited government and private universities in Indonesia. On the basis of thematic and cross-case analyses, this study indicates that while Australia has led other countries in dual-degree programs, partner universities from Japan and Korea have the most frequent collaboration on student exchange programs. Meanwhile, most visiting scholars who have collaborated with the universities in this study came from the US, the UK, Japan, Australia, Netherlands, and China. Other European countries such as Germany, French, and Norway have also conducted joint research with Indonesian universities involved in this study. This study suggests that further supports of government policy and grants are required to overcome the challenges as well as strategic leadership and management roles to achieve high impacts of such programs on higher education quality.

Keywords: higher education, internationalisation, challenges, Indonesia

Procedia PDF Downloads 264
13563 KTiPO4F: The Negative Electrode Material for Potassium Batteries

Authors: Vahid Ramezankhani, Keith J. Stevenson, Stanislav. S. Fedotov

Abstract:

Lithium-ion batteries (LIBs) play a pivotal role in achieving the key objective “zero-carbon emission” as countries agreed to reach a 1.5ᵒC global warming target according to the Paris agreement. Nowadays, due to the tremendous mobile and stationary consumption of small/large-format LIBs, the demand and consequently the price for such energy storage devices have been raised. The aforementioned challenges originate from the shrinkage of the major applied critical materials in these batteries, such as cobalt (Co), nickel (Ni), Lithium (Li), graphite (G), and manganese (Mn). Therefore, it is imperative to consider alternative elements to address issues corresponding to the limitation of resources around the globe. Potassium (K) is considered an effective alternative to Li since K is a more abundant element, has a higher operating potential, a faster diffusion rate, and the lowest stokes radius in comparison to the closest neighbors in the periodic table (Li and Na). Among all reported materials for metal-ion batteries, some of them possess the general formula AMXO4L [A = Li, Na, K; M = Fe, Ti, V; X = P, S, Si; L= O, F, OH] is of potential to be applied both as anode and cathode and enable researchers to investigate them in the full symmetric battery format. KTiPO4F (KTP structural material) has been previously reported by our group as a promising cathode with decent electronic properties. Herein, we report a synthesis, crystal structure characterization, morphology, as well as K-ion storage properties of KTiPO4F. Our investigation reveals that KTiPO4F delivers discharge capacity > 150 mAh/g at 26.6 mA/g (C/5 current rate) in the potential window of 0.001-3 V. Surprisingly, the cycling performance of C-KTiPO4F//K cell is stable for 1000 cycles at 130 mA/g (C current rate), presenting capacity > 130 mAh/g. More interestingly, we achieved to assemble full symmetric batteries where carbon-coated KTiPO4F serves as both negative and positive electrodes, delivering >70 mAh/g in the potential range of 0.001-4.2V.

Keywords: anode material, potassium battery, chemical characterization, electrochemical properties

Procedia PDF Downloads 202
13562 The Cleavage of DNA by the Anti-Tumor Drug Bleomycin at the Transcription Start Sites of Human Genes Using Genome-Wide Techniques

Authors: Vincent Murray

Abstract:

The glycopeptide bleomycin is used in the treatment of testicular cancer, Hodgkin's lymphoma, and squamous cell carcinoma. Bleomycin damages and cleaves DNA in human cells, and this is considered to be the main mode of action for bleomycin's anti-tumor activity. In particular, double-strand breaks are thought to be the main mechanism for the cellular toxicity of bleomycin. Using Illumina next-generation DNA sequencing techniques, the genome-wide sequence specificity of bleomycin-induced double-strand breaks was determined in human cells. The degree of bleomycin cleavage was also assessed at the transcription start sites (TSSs) of actively transcribed genes and compared with non-transcribed genes. It was observed that bleomycin preferentially cleaved at the TSSs of actively transcribed human genes. There was a correlation between the degree of this enhanced cleavage at TSSs and the level of transcriptional activity. Bleomycin cleavage is also affected by chromatin structure and at TSSs, the peaks of bleomycin cleavage were approximately 200 bp apart. This indicated that bleomycin was able to detect phased nucleosomes at the TSSs of actively transcribed human genes. The genome-wide cleavage pattern of the bleomycin analogues 6′-deoxy-BLM Z and zorbamycin was also investigated in human cells. As found for bleomycin, these bleomycin analogues also preferentially cleaved at the TSSs of actively transcribed human genes. The cytotoxicity (IC₅₀ values) of these bleomycin analogues was determined. It was found that the degree of enhanced cleavage at TSSs was inversely correlated with the IC₅₀ values of the bleomycin analogues. This suggested that the level of cleavage at the TSSs of actively transcribed human genes was important for the cytotoxicity of bleomycin and analogues. Hence this study provided a deeper understanding of the cellular processes involved in the cancer chemotherapeutic activity of bleomycin.

Keywords: anti-tumour activity, bleomycin analogues, chromatin structure, genome-wide study, Illumina DNA sequencing

Procedia PDF Downloads 114
13561 Numerical Heat Transfer Performance of Water-Based Graphene Nanoplatelets

Authors: Ahmad Amiri, Hamed K. Arzani, S. N. Kazi, B. T. Chew

Abstract:

Since graphene nanoplatelet (GNP) is a promising material due to desirable thermal properties, this paper is related to the thermophysical and heat transfer performance of covalently functionalized GNP-based water/ethylene glycol nanofluid through an annular channel. After experimentally measuring thermophysical properties of prepared samples, a computational fluid dynamics study has been carried out to examine the heat transfer and pressure drop of well-dispersed and stabilized nanofluids. The effect of concentration of GNP and Reynolds number at constant wall temperature boundary condition under turbulent flow regime on convective heat transfer coefficient has been investigated. Based on the results, for different Reynolds numbers, the convective heat transfer coefficient of the prepared nanofluid is higher than that of the base fluid. Also, the enhancement of convective heat transfer coefficient and thermal conductivity increase with the increase of GNP concentration in base-fluid. Based on the results of this investigation, there is a significant enhancement on the heat transfer rate associated with loading well-dispersed GNP in base-fluid.

Keywords: nanofluid, turbulent flow, forced convection flow, graphene, annular, annulus

Procedia PDF Downloads 350
13560 Uptake of Hepatitis B Vaccine among Hepatitis C Positive Patients and Their Vaccine Response in Myanmar

Authors: Zaw Z Aung

Abstract:

Background: High-risk groups for hepatitis B infection (HBV) are people who injected drugs (PWID), men who have sex with men (MSM), people living with HIV (PLHIV) and persons with hepatitis C (HCV), etc. HBV/HCV coinfected patients are at increased risk of cirrhosis, hepatic decompensation and hepatocellular carcinoma. To the best of author’s knowledge, there is currently no data for hepatitis B vaccine utilization in HCV positive patients and their antibody response. Methodology: From February 2018 to May 2018, consented participants at or above 18 years who came to the clinic in Mandalay were tested with the anti-HCV rapid test. Those who tested HCV positive (n=168) were further tested with hepatitis B profile and asked about their previous hepatitis B vaccination history and risk factors. Results: Out of 168 HCV positive participants, three were excluded for active HBV infections. The remaining 165 were categorized into previously vaccinated 64% (n=106) and unvaccinated 36% (n=59) There were three characteristics groups- PWID monoinfected (n=77), General Population (GP) monoinfected (n=22) and HIV/HCV coinfected participants (n=66). Unvaccinated participants were highest in HIV/HCV, with 68%(n=45) followed by GP (23%, n=5) and PWID (12%, n=9). Among previously vaccinated participants, the highest percentage was PWID (88%, n=68), the second highest was GP (77%, n=17) and lowest in HIV/HCV patients (32%, n=21). 63 participants completed third doses of vaccination (PWID=36, GP=13, HIV/HCV=14). 53% of participants who completed 3 dose of hepatitis B were non-responders (n=34): HIV/HCV (86%, n=12), PWID (44%, n=16), and GP (46%, n=6) Conclusion: Even in the presence of effective and safe hepatitis B vaccine, uptake is low among high risk groups especially PLHIV that needs to be improved. Integration or collaboration of hepatitis B vaccination program, HIV/AIDS and hepatitis C treatment centers is desirable. About half of vaccinated participants were non-responders so that optimal doses, schedule and follow-up testing need to be addressed carefully for those groups.

Keywords: Hepatitis B vaccine, Hepatitis C, HIV, Myanmar

Procedia PDF Downloads 137
13559 Fresh State Properties of Steel Fiber Reinforced Self Compacting Concrete

Authors: Anil Nis, Nilufer Ozyurt Zihnioglu

Abstract:

The object of the study is to investigate fresh state properties of the steel fiber reinforced self-compacting concrete (SFR-SCC). Three different steel fibers; straight (Vf:0.5%), hooked-end long (Vf:0.5% and 1%) and hybrid fibers (0.5%short+0.5%long) were used in the research aiming to obtain flow properties of non-fibrous self-compacting concrete. Fly ash was used as a supplementary with an optimum dosage of 30% of the total cementitious materials. Polycarboxylic ether based high-performance concrete superplasticizer was used to get high flowability with percentages ranging from 0.81% (non-fibrous SCC) to 1.07% (hybrid SF-SCC) of the cement weight. The flowability properties of SCCs were measured via slump flow and V-funnel tests; passing ability properties of SCCs were measured with J-Ring, L-Box, and U-Box tests. Workability results indicate that small increase on the superplasticizer dosages compensate the adverse effects of steel fibers on flowability properties of SSC. However, higher dosage fiber addition has a negative effect on passing ability properties, causing blocking of the mixes. In addition, compressive strength, tensile strength, and four point bending results were given. Results indicate that SCCs including steel fibers have superior performances on tensile and bending strength of concrete. Crack bridging capability of steel fibers prevents concrete from splitting, yields higher deformation and energy absorption capacities than non-fibrous SCCs.

Keywords: fiber reinforced self-compacting concrete, fly ash, fresh state properties, steel fiber

Procedia PDF Downloads 216
13558 Identification of the Key Enzyme of Roseoflavin Biosynthesis

Authors: V. Konjik, J. Schwartz, R. Sandhoff, M. Mack

Abstract:

The rising number of multi-resistant pathogens demands the development of new antibiotics in order to reduce the lethal risk of infections. Here, we investigate roseoflavin, a vitamin B2 analogue which is produced by Streptomyces davawensis and Streptomyces cinnabarinus. We consider roseoflavin to be a 'Trojan horse' compound. Its chemical structure is very similar to riboflavin but in fact it is a toxin. Furthermore, it is a clever strategy with regard to the delivery of an antibiotic to its site of action but also with regard to the production of this chemical: The producer cell has only to convert a vitamin (which is already present in the cytoplasm) into a vitamin analog. Roseoflavin inhibits the activity of Flavin depending proteins, which makes up to 3.5 % of predicted proteins in organisms sequenced so far. We sequentially knocked out gene clusters and later on single genes in order to find the ones which are involved in the roseoflavin biosynthesis. Consequently, we identified the gene rosB, coding for the protein carrying out the first step of roseoflavin biosynthesis, starting form Flavin mononucleotide. Here we show, that the protein RosB has so far unknown features. It is per se an oxidoreductase, a decarboxylase and an aminotransferase, all rolled into one enzyme. A screen of cofactors revealed needs of oxygen, NAD+, thiamine and glutamic acid to carry out its function. Surprisingly, thiamine is not only needed for the decaboxylation step, but also for the oxidation of 8-demethyl-8-formyl Flavin mononucleotide. We had managed to isolate three different Flavin intermediates with different oxidation states, which gave us a mechanistic insight of RosB functionality. Our work points to a so far new function of thiamine in Streptomyces davawensis. Additionally, RosB could be extremely useful for chemical synthesis. Careful engineering of RosB may allow the site-specific replacement of methyl groups by amino groups in polyaromatic compounds of commercial interest. Finally, the complete clarification of the roseoflavin biosynthesis opens the possibility of engineering cost-effective roseoflavin producing strains.

Keywords: antibiotic, flavin analogue, roseoflavin biosynthesis, vitamin B2

Procedia PDF Downloads 238
13557 Diffusive Transport of VOCs Through Composite Liners

Authors: Christina Jery, R. K. Anjana, D. N. Arnepalli, R. Sobha

Abstract:

Modern landfills employ a composite liner consisting of a geomembrane overlying a compacted clay liner (CCL) or a geosynthetic clay liner (GCL) as a barrier system. The primary function of a barrier system is to control the contaminant transport from the leachate (dissolved phase) and landfill gas (vapour phase) out of the landfill thereby minimizing the environmental impact. This study is undertaken to investigate the diffusive migration of VOCs through composite liners. VOCs are known hazardous air pollutants were often existing in both the vapour phase and dissolved phase. These compounds are known to diffuse readily through the polymeric geomembranes. The objective of the research is to develop a comprehensive data set of diffusive parameters involved in the diffusion of VOCs in the composite liner (1.5 mm HDPE geomembrane overlying a 30mm compacted clay layer). For this purpose, the study aims to develop a new experimental setup for determining the diffusion characteristics. The key parameters of diffusion (partitioning, diffusion and permeation coefficients) are examined. The diffusion tests are carried out both in aqueous and vapor phase. Finally, an attempt is also made to study the effect of low temperature on the diffusion characteristics.

Keywords: diffusion, sorption, organic compounds, composite liners, geomembrane

Procedia PDF Downloads 359
13556 A Study for the Effect of Fire Initiated Location on Evacuation Success Rate

Authors: Jin A Ryu, Hee Sun Kim

Abstract:

As the number of fire accidents is gradually raising, many studies have been reported on evacuation. Previous studies have mostly focused on evaluating the safety of evacuation and the risk of fire in particular buildings. However, studies on effects of various parameters on evacuation have not been nearly done. Therefore, this paper aims at observing evacuation time under the effect of fire initiated location. In this study, evacuation simulations are performed on a 5-floor building located in Seoul, South Korea using the commercial program, Fire Dynamics Simulator with Evacuation (FDS+EVAC). Only the fourth and fifth floors are modeled with an assumption that fire starts in a room located on the fourth floor. The parameter for evacuation simulations is location of fire initiation to observe the evacuation time and safety. Results show that the location of fire initiation is closer to exit, the more time is taken to evacuate. The case having the nearest location of fire initiation to exit has the lowest ratio of successful occupants to the total occupants. In addition, for safety evaluation, the evacuation time calculated from computer simulation model is compared with the tolerable evacuation time according to code in Japan. As a result, all cases are completed within the tolerable evacuation time. This study allows predicting evacuation time under various conditions of fire and can be used to evaluate evacuation appropriateness and fire safety of building.

Keywords: fire simulation, evacuation simulation, temperature, evacuation safety

Procedia PDF Downloads 343
13555 Estimated Human Absorbed Dose of 111 In-BPAMD as a New Bone-Seeking Spect-Imaging Agent

Authors: H. Yousefnia, S. Zolghadri

Abstract:

An early diagnosis of bone metastases is very important for providing a profound decision on a subsequent therapy. A prerequisite for the clinical application of new diagnostic radiopharmaceutical is the measurement of organ radiation exposure dose from biodistribution data in animals. In this study, the dosimetric studies of a novel agent for SPECT-imaging of bone methastases, 111In-(4-{[(bis(phosphonomethyl))carbamoyl]methyl}-7,10-bis(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl) acetic acid (111In-BPAMD) complex, have been estimated in human organs based on mice data. The radiolabeled complex was prepared with high radiochemical purity at the optimal conditions. Biodistribution studies of the complex were investigated in male Syrian mice at selected times after injection (2, 4, 24 and 48 h). The human absorbed dose estimation of the complex was performed based on mice data by the radiation absorbed dose assessment resource (RADAR) method. 111In-BPAMD complex was prepared with high radiochemical purity >95% (ITLC) and specific activities of 2.85 TBq/mmol. Total body effective absorbed dose for 111In-BPAMD was 0.205 mSv/MBq. This value is comparable to the other 111In clinically used complexes. The results show that the dose to critical organs the complex is well within the acceptable considered range for diagnostic nuclear medicine procedures. Generally, 111In-BPAMD has interesting characteristics and can be considered as a viable agent for SPECT-imaging of the bone metastases in the near future.

Keywords: In-111, BPAMD, absorbed dose, RADAR

Procedia PDF Downloads 474
13554 Feasibility Study of Constructed Wetlands for Wastewater Treatment and Reuse in Asmara, Eritrea

Authors: Hagos Gebrehiwet Bahta

Abstract:

Asmara, the capital city of Eritrea, is facing a sanitation challenge because the city discharges its wastewater to the environment without any kind of treatment. The aim of this research is to conduct a pre-feasibility study of using constructed wetlands in the peri-urban areas of Asmara for wastewater treatment and reuse. It was found that around 15,000 m³ of wastewater is used daily for agricultural activities, and products are sold in the city's markets, which are claimed to cause some health effects. In this study, three potential sites were investigated around Mai-Bela and an optimum location was selected on the basis of land availability, topography, and geotechnical information. Some types of local microphytes that can be used in constructed wetlands have been identified and documented for further studies. It was found that subsurface constructed wetlands can provide a sufficient pollutant removal with careful planning and design. Following the feasibility study, a preliminary design of screening, grit chamber and subsurface constructed wetland was prepared and cost estimation was done. In the cost estimation part, the filter media was found to be the most expensive part and consists of around 30% percent of the overall cost. The city wastewater drainage runs in two directions and the selected site is located in the southern sub-system, which only carries sewage (separate system). The wastewater analysis conducted particularly around this area (Sembel) indicates high heavy metal levels and organic concentrations, which reveals that there is a high level of industrial pollution in addition to the domestic sewage.

Keywords: agriculture, constructed wetland, Mai-Bela, wastewater reuse

Procedia PDF Downloads 195
13553 Design and Analysis of a Lightweight Fire-Resistant Door

Authors: Zainab Fadil, Mouath Alawadhi, Abdullah Alhusainan, Fahad Alqadiri, Abdulaziz Alqadiri

Abstract:

This study investigates how lightweight a fire resistance door will perform with under types of insulation materials. Data is initially collected from various websites, scientific books and research papers. Results show that different layers of insulation in a single door can perform better than one insulator. Furthermore, insulation materials that are lightweight, high strength and low thermal conductivity are the most preferred for fire-rated doors. Whereas heavy weight, low strength, and high thermal conductivity are least preferred for fire-resistance doors. Fire-rated doors specifications, theoretical test methodology, structural analysis, and comparison between five different models with diverse layers insulations are presented. Five different door models are being investigated with different insulation materials and arrangements. Model 1 contains an air gap between door layers. Model 2 includes phenolic foam, mild steel and polyurethane. Model 3 includes phenolic foam and glass wool. Model 4 includes polyurethane and glass wool. Model 5 includes only rock wool between the door layers. It is noticed that model 5 is the most efficient model and its design is simple compared to other models. For this model, numerical calculations are performed to check its efficiency and the results are compared to data from experiments for validation. Good agreement was noticed.

Keywords: fire resistance, insulation, strength, thermal conductivity, lightweight, layers

Procedia PDF Downloads 81
13552 An Adaptive Neuro-Fuzzy Inference System (ANFIS) Modelling of Bleeding

Authors: Seyed Abbas Tabatabaei, Fereydoon Moghadas Nejad, Mohammad Saed

Abstract:

The bleeding prediction of the asphalt is one of the most complex subjects in the pavement engineering. In this paper, an Adaptive Neuro Fuzzy Inference System (ANFIS) is used for modeling the effect of important parameters on bleeding is trained and tested with the experimental results. bleeding index based on the asphalt film thickness differential as target parameter,asphalt content, temperature depth of two centemeter, heavy traffic, dust to effective binder, Marshall strength, passing 3/4 sieves, passing 3/8 sieves,passing 3/16 sieves, passing NO8, passing NO50, passing NO100, passing NO200 as input parameters. Then, we randomly divided empirical data into train and test sections in order to accomplish modeling. We instructed ANFIS network by 72 percent of empirical data. 28 percent of primary data which had been considered for testing the approprativity of the modeling were entered into ANFIS model. Results were compared by two statistical criterions (R2, RMSE) with empirical ones. Considering the results, it is obvious that our proposed modeling by ANFIS is efficient and valid and it can also be promoted to more general states.

Keywords: bleeding, asphalt film thickness differential, Anfis Modeling

Procedia PDF Downloads 265