Search results for: sampling algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4991

Search results for: sampling algorithms

3581 Evaluate the Influence of Culture on the Choice of Capital Structure Management Companies

Authors: Sahar Jami, Iman Valizadeh

Abstract:

The purpose of the study: The aim of this study was to evaluate the influence of culture on the choice of capital structure management companies are listed in the Tehran Stock Exchange. Methods: This study was a cross-document using data after the event (Retrospective) in 1394 was performed. To select a sample of elimination sampling (screening) is used to determine the sample size was 123 companies. Results: The results showed that the variables of culture, return on equity, a significant positive impact on the capital structure (ROA, QTobins) and financial leverage and firm size variables and a significant negative impact on the capital structure (ROA, QTobins).

Keywords: culture management, capital structure, ROA, QTobins, variables of culture

Procedia PDF Downloads 469
3580 Context-Aware Recommender System Using Collaborative Filtering, Content-Based Algorithm and Fuzzy Rules

Authors: Xochilt Ramirez-Garcia, Mario Garcia-Valdez

Abstract:

Contextual recommendations are implemented in Recommender Systems to improve user satisfaction, recommender system makes accurate and suitable recommendations for a particular situation reaching personalized recommendations. The context provides information relevant to the Recommender System and is used as a filter for selection of relevant items for the user. This paper presents a Context-aware Recommender System, which uses techniques based on Collaborative Filtering and Content-Based, as well as fuzzy rules, to recommend items inside the context. The dataset used to test the system is Trip Advisor. The accuracy in the recommendations was evaluated with the Mean Absolute Error.

Keywords: algorithms, collaborative filtering, intelligent systems, fuzzy logic, recommender systems

Procedia PDF Downloads 425
3579 Using Historical Data for Stock Prediction

Authors: Sofia Stoica

Abstract:

In this paper, we use historical data to predict the stock price of a tech company. To this end, we use a dataset consisting of the stock prices in the past five years of ten major tech companies – Adobe, Amazon, Apple, Facebook, Google, Microsoft, Netflix, Oracle, Salesforce, and Tesla. We experimented with a variety of models– a linear regressor model, K nearest Neighbors (KNN), a sequential neural network – and algorithms - Multiplicative Weight Update, and AdaBoost. We found that the sequential neural network performed the best, with a testing error of 0.18%. Interestingly, the linear model performed the second best with a testing error of 0.73%. These results show that using historical data is enough to obtain high accuracies, and a simple algorithm like linear regression has a performance similar to more sophisticated models while taking less time and resources to implement.

Keywords: finance, machine learning, opening price, stock market

Procedia PDF Downloads 197
3578 Using Cooperation Approaches at Different Levels of Artificial Bee Colony Method

Authors: Vahid Zeighami, Mohsen Ghsemi, Reza Akbari

Abstract:

In this work, a Multi-Level Artificial Bee Colony (called MLABC) is presented. In MLABC two species are used. The first species employs n colonies in which each of the them optimizes the complete solution vector. The cooperation between these colonies is carried out by exchanging information through a leader colony, which contains a set of elite bees. The second species uses a cooperative approach in which the complete solution vector is divided to k sub-vectors, and each of these sub-vectors is optimized by a a colony. The cooperation between these colonies is carried out by compiling sub-vectors into the complete solution vector. Finally, the cooperation between two species is obtained by exchanging information between them. The proposed algorithm is tested on a set of well known test functions. The results show that MLABC algorithms provide efficiency and robustness to solve numerical functions.

Keywords: artificial bee colony, cooperative, multilevel cooperation, vector

Procedia PDF Downloads 448
3577 The Effectiveness of Metaphor Therapy on Depression among Female Students

Authors: Marzieh Talebzadeh Shoushtari

Abstract:

The present study aimed to determine the effectiveness of Metaphor therapy on depression among female students. The sample included 60 female students with depression symptoms selected by simple sampling and randomly divided into two equal groups (experimental and control groups). Beck Depression Inventory was used to measure the variables. This was an experimental study with a pre-test/post-test design with control group. Eight metaphor therapy sessions were held for the experimental group. A post-test was administered to both groups. Data were analyzed using multivariate analysis of covariance (MANCOVA). Results showed that the Metaphor therapy decreased depression in the experimental group compared to the control group.

Keywords: metaphor therapy, depression, female, students

Procedia PDF Downloads 456
3576 Determination of the Botanical Origin of Honey by the Artificial Neural Network Processing of PARAFAC Scores of Fluorescence Data

Authors: Lea Lenhardt, Ivana Zeković, Tatjana Dramićanin, Miroslav D. Dramićanin

Abstract:

Fluorescence spectroscopy coupled with parallel factor analysis (PARAFAC) and artificial neural networks (ANN) were used for characterization and classification of honey. Excitation emission spectra were obtained for 95 honey samples of different botanical origin (acacia, sunflower, linden, meadow, and fake honey) by recording emission from 270 to 640 nm with excitation in the range of 240-500 nm. Fluorescence spectra were described with a six-component PARAFAC model, and PARAFAC scores were further processed with two types of ANN’s (feed-forward network and self-organizing maps) to obtain algorithms for classification of honey on the basis of their botanical origin. Both ANN’s detected fake honey samples with 100% sensitivity and specificity.

Keywords: honey, fluorescence, PARAFAC, artificial neural networks

Procedia PDF Downloads 956
3575 Study on the Efficient Routing Algorithms in Delay-Tolerant Networks

Authors: Si-Gwan Kim

Abstract:

In Delay Tolerant Networks (DTN), there may not exist an end-to-end path between source and destination at the time of message transmission. Employing ‘Store Carry and Forward’ delivery mechanism for message transmission in such networks usually incurs long message delays. In this paper, we present the modified Binary Spray and Wait (BSW) routing protocol that enhances the performance of the original one. Our proposed algorithm adjusts the number of forward messages depending on the number of neighbor nodes. By using beacon messages periodically, the number of neighbor nodes can be managed. The simulation using ONE simulator results shows that our modified version gives higher delivery ratio and less latency as compared to BSW.

Keywords: delay tolerant networks, store carry and forward, one simulator, binary spray and wait

Procedia PDF Downloads 126
3574 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: data mining, information retrieval system, multi-label, problem transformation, histogram of gradients

Procedia PDF Downloads 376
3573 Comparison of Machine Learning Models for the Prediction of System Marginal Price of Greek Energy Market

Authors: Ioannis P. Panapakidis, Marios N. Moschakis

Abstract:

The Greek Energy Market is structured as a mandatory pool where the producers make their bid offers in day-ahead basis. The System Operator solves an optimization routine aiming at the minimization of the cost of produced electricity. The solution of the optimization problem leads to the calculation of the System Marginal Price (SMP). Accurate forecasts of the SMP can lead to increased profits and more efficient portfolio management from the producer`s perspective. Aim of this study is to provide a comparative analysis of various machine learning models such as artificial neural networks and neuro-fuzzy models for the prediction of the SMP of the Greek market. Machine learning algorithms are favored in predictions problems since they can capture and simulate the volatilities of complex time series.

Keywords: deregulated energy market, forecasting, machine learning, system marginal price

Procedia PDF Downloads 216
3572 Software Quality Assurance in Network Security using Cryptographic Techniques

Authors: Sidra Shabbir, Ayesha Manzoor, Mehreen Sirshar

Abstract:

The use of the network communication has imposed serious threats to the security of assets over the network. Network security is getting more prone to active and passive attacks which may result in serious consequences to data integrity, confidentiality and availability. Various cryptographic techniques have been proposed in the past few years to combat with the concerned problem by ensuring quality but in order to have a fully secured network; a framework of new cryptosystem was needed. This paper discusses certain cryptographic techniques which have shown far better improvement in the network security with enhanced quality assurance. The scope of this research paper is to cover the security pitfalls in the current systems and their possible solutions based on the new cryptosystems. The development of new cryptosystem framework has paved a new way to the widespread network communications with enhanced quality in network security.

Keywords: cryptography, network security, encryption, decryption, integrity, confidentiality, security algorithms, elliptic curve cryptography

Procedia PDF Downloads 734
3571 A New Floating Point Implementation of Base 2 Logarithm

Authors: Ahmed M. Mansour, Ali M. El-Sawy, Ahmed T. Sayed

Abstract:

Logarithms reduce products to sums and powers to products; they play an important role in signal processing, communication and information theory. They are primarily used for hardware calculations, handling multiplications, divisions, powers, and roots effectively. There are three commonly used bases for logarithms; the logarithm with base-10 is called the common logarithm, the natural logarithm with base-e and the binary logarithm with base-2. This paper demonstrates different methods of calculation for log2 showing the complexity of each and finds out the most accurate and efficient besides giving in- sights to their hardware design. We present a new method called Floor Shift for fast calculation of log2, and then we combine this algorithm with Taylor series to improve the accuracy of the output, we illustrate that by using two examples. We finally compare the algorithms and conclude with our remarks.

Keywords: logarithms, log2, floor, iterative, CORDIC, Taylor series

Procedia PDF Downloads 535
3570 A Research on Inference from Multiple Distance Variables in Hedonic Regression Focus on Three Variables

Authors: Yan Wang, Yasushi Asami, Yukio Sadahiro

Abstract:

In urban context, urban nodes such as amenity or hazard will certainly affect house price, while classic hedonic analysis will employ distance variables measured from each urban nodes. However, effects from distances to facilities on house prices generally do not represent the true price of the property. Distance variables measured on the same surface are suffering a problem called multicollinearity, which is usually presented as magnitude variance and mean value in regression, errors caused by instability. In this paper, we provided a theoretical framework to identify and gather the data with less bias, and also provided specific sampling method on locating the sample region to avoid the spatial multicollinerity problem in three distance variable’s case.

Keywords: hedonic regression, urban node, distance variables, multicollinerity, collinearity

Procedia PDF Downloads 465
3569 A Phenomenological Inquiry on the Spirituality of Young Filipino Gay Men Living with HIV

Authors: Dela Cruz Abraham, Bachoco Janine

Abstract:

Spirituality plays a central role among patients dealing with HIV mostly on the LGBT community in the world today particularly in the Philippines. This study seeks to contribute to the growing body of knowledge in LGBT psychology particularly on gay men living with HIV and their spiritual aspect. In line with this, the researchers aim to describe (1) how young Filipino gay men relate their experiences as an HIV-positive in relations to their self and significant others (partners, family, friends and community); (2) how young Filipino gay men make sense of their experiences as an HIV-positive, in connection to God, this also includes their meaning making and purpose of their life experiences. To recruit participants, the researchers will employ purposive sampling using snowball technique, and conduct a semi-structured interview. Verbatim transcriptions of the participant will be analyzed using interpretative phenomenological analysis.

Keywords: interpretative phenomenological analysis, living with HIV, spirituality, young Filipino gay men

Procedia PDF Downloads 316
3568 Demand Forecasting Using Artificial Neural Networks Optimized by Particle Swarm Optimization

Authors: Daham Owaid Matrood, Naqaa Hussein Raheem

Abstract:

Evolutionary algorithms and Artificial neural networks (ANN) are two relatively young research areas that were subject to a steadily growing interest during the past years. This paper examines the use of Particle Swarm Optimization (PSO) to train a multi-layer feed forward neural network for demand forecasting. We use in this paper weekly demand data for packed cement and towels, which have been outfitted by the Northern General Company for Cement and General Company of prepared clothes respectively. The results showed superiority of trained neural networks using particle swarm optimization on neural networks trained using error back propagation because their ability to escape from local optima.

Keywords: artificial neural network, demand forecasting, particle swarm optimization, weight optimization

Procedia PDF Downloads 454
3567 The Application of to Optimize Pellet Quality in Broiler Feeds

Authors: Reza Vakili

Abstract:

The aim of this experiment was to optimize the effect of moisture, the production rate, grain particle size and steam conditioning temperature on pellet quality in broiler feed using Taguchi method and a 43 fractional factorial arrangement was conducted. Production rate, steam conditioning temperatures, particle sizes and moisture content were performed. During the production process, sampling was done, and then pellet durability index (PDI) and hardness evaluated in broiler feed grower and finisher. There was a significant effect of processing parameters on PDI and hardness. Based on the results of this experiment Taguchi method can be used to find the best combination of factors for optimal pellet quality.

Keywords: broiler, feed physical quality, hardness, processing parameters, PDI

Procedia PDF Downloads 189
3566 Prevalence and Molecular Characterization of Vibrio parahaemolyticus in Estuarine Fish from Dhaka City Markets

Authors: Fahmida Khalique Nitu

Abstract:

Little is known on the biosafety level of Vibrio parahaemolyticus in estuarine fish in Bangladesh. The purpose of this study was to investigate the prevalence and concentration of V. parahaemolyticus in estuarine fishes using the Polymerase Chain Reaction( PCR) method . The study was conducted on 37 fishes of different species from different types of estuarine fish commonly sold at city markets. Sampling was done on the intestinal tract and gills of each fish. The prevalence of V. parahaemolyticus was found to be 29.72% with higher percentages detected in samples from the gills (89.28%) followed by the intestinal tract (10.71%). The density of Vibrio spp. in the gill of estuarine fishes with an average was 4.4 x103CFU/g and in the intestine samples was 1.5x103 CFU/g. The outcome of the biosafety assessment V. parahaemolyticus in estuarine fish indicates another potential source of food safety issues to consumers.

Keywords: biosafety, estuarine, prevalence, Vibrios

Procedia PDF Downloads 279
3565 Investigating the Factors Affecting the Household Accounting of People in Bangkeaw Samutsongkhram

Authors: Khajeerat Phumpurk

Abstract:

This research aims to study the knowledge, attitude toward household accounting of people in Bangkeaw Samutsongkhram. The sample use in this study was the people in tambol bangkeao Mueang Samut songkhram province. The Sample size for 100 household by using the accidental sampling and data collection was a questionnaire. Statistical analysis for frequency, percentage, mean, minimum, maximum value and standard deviation. It was found that the most of the respondent are farmers for 63.4. Most of them are male, with average of age 49.54 years. The education is vocational. The average household income is 60,873.74 per year. The respondent has the debt with the bank for 64.4 percent. The greatest influence to do the household accounting of farmers is the bank expertise. All the advice about doing household accounts get it from the staff of the bank for agriculture and agricultural cooperatives. The farmers for 57.3 do household accounting during the night time.

Keywords: Bangkeaw Samutsongkhram, household accounting, knowledge, sufficiency economy

Procedia PDF Downloads 225
3564 Memetic Algorithm for Solving the One-To-One Shortest Path Problem

Authors: Omar Dib, Alexandre Caminada, Marie-Ange Manier

Abstract:

The purpose of this study is to introduce a novel approach to solve the one-to-one shortest path problem. A directed connected graph is assumed in which all edges’ weights are positive. Our method is based on a memetic algorithm in which we combine a genetic algorithm (GA) and a variable neighborhood search method (VNS). We compare our approximate method with two exact algorithms Dijkstra and Integer Programming (IP). We made experimentations using random generated, complete and real graph instances. In most case studies, numerical results show that our method outperforms exact methods with 5% average gap to the optimality. Our algorithm’s average speed is 20-times faster than Dijkstra and more than 1000-times compared to IP. The details of the experimental results are also discussed and presented in the paper.

Keywords: shortest path problem, Dijkstra’s algorithm, integer programming, memetic algorithm

Procedia PDF Downloads 468
3563 Mathematical Modeling and Algorithms for the Capacitated Facility Location and Allocation Problem with Emission Restriction

Authors: Sagar Hedaoo, Fazle Baki, Ahmed Azab

Abstract:

In supply chain management, network design for scalable manufacturing facilities is an emerging field of research. Facility location allocation assigns facilities to customers to optimize the overall cost of the supply chain. To further optimize the costs, capacities of these facilities can be changed in accordance with customer demands. A mathematical model is formulated to fully express the problem at hand and to solve small-to-mid range instances. A dedicated constraint has been developed to restrict emissions in line with the Kyoto protocol. This problem is NP-Hard; hence, a simulated annealing metaheuristic has been developed to solve larger instances. A case study on the USA-Canada cross border crossing is used.

Keywords: emission, mixed integer linear programming, metaheuristic, simulated annealing

Procedia PDF Downloads 311
3562 Channel Estimation for LTE Downlink

Authors: Rashi Jain

Abstract:

The LTE systems employ Orthogonal Frequency Division Multiplexing (OFDM) as the multiple access technology for the Downlink channels. For enhanced performance, accurate channel estimation is required. Various algorithms such as Least Squares (LS), Minimum Mean Square Error (MMSE) and Recursive Least Squares (RLS) can be employed for the purpose. The paper proposes channel estimation algorithm based on Kalman Filter for LTE-Downlink system. Using the frequency domain pilots, the initial channel response is obtained using the LS criterion. Then Kalman Filter is employed to track the channel variations in time-domain. To suppress the noise within a symbol, threshold processing is employed. The paper draws comparison between the LS, MMSE, RLS and Kalman filter for channel estimation. The parameters for evaluation are Bit Error Rate (BER), Mean Square Error (MSE) and run-time.

Keywords: LTE, channel estimation, OFDM, RLS, Kalman filter, threshold

Procedia PDF Downloads 359
3561 Exposure and Satisfaction toward Online News of Undergraduate Students in Thailand

Authors: Ekapon Thienthaworn

Abstract:

This research aims to study the exposure and satisfaction toward online news of undergraduate students in Bangkok, Thailand. This research is the survey research which 400 questionnaires are used to collect data with the accidental sampling technique and the data collected are analyzed with descriptive statistics. The result can be divided into 2 sections as follow: (1) Undergraduate students in Bangkok consume online news via most of the Smartphone. In most cases, they use average more than 2 hours per day. Most times to consume news are 22.01- 02.00 pm. Primary source is Facebook and the most interested news genre is entertainment news and headline of the day. (2) Undergraduate students in Bangkok have positive attitude in online news is a fastness and easy-to-access. Negative attitude is piracy. Finally, average satisfaction in consuming online news is in high levels.

Keywords: exposure, satisfaction, online news, Bangkok

Procedia PDF Downloads 248
3560 Research on ARQ Transmission Technique in Mars Detection Telecommunications System

Authors: Zhongfei Cai, Hui He, Changsheng Li

Abstract:

This paper studied in the automatic repeat request (ARQ) transmission technique in Mars detection telecommunications system. An ARQ method applied to proximity-1 space link protocol was proposed by this paper. In order to ensure the efficiency of data reliable transmission, this ARQ method combined these different ARQ maneuvers characteristics. Considering the Mars detection communication environments, this paper analyzed the characteristics of the saturation throughput rate, packet dropping probability, average delay and energy efficiency with different ARQ algorithms. Combined thus results with the theories of ARQ transmission technique, an ARQ transmission project in Mars detection telecommunications system was established. The simulation results showed that this algorithm had excellent saturation throughput rate and energy efficiency with low complexity.

Keywords: ARQ, mars, CCSDS, proximity-1, deepspace

Procedia PDF Downloads 341
3559 The Self-Care During Pregnancy of Muslim Adolescents in Southern Border Provinces, Thailand

Authors: Benyapa Thitimapong, Najwa Niyomdecha

Abstract:

This qualitative descriptive research aimed to explore the self-care experiences during pregnancy of Muslim adolescents. Twenty participants were first-time Muslim mothers who had pregnancy experienceห under 20 years of age in three Southern border provinces of Thailand. Participants were selected by purposive sampling with inclusion criteria. Data were collected from the in-depth interview and analyzed using content analysis. The findings revealed that Muslim pregnant adolescents take care of themselves in the context of combining self-care in an Islamic way and conventional medicine. There are 2 subthemes: 1) antenatal care with Tok Bidan and 2) health promotion during pregnancy. The finding will help to understand self-care during pregnancy of Muslim adolescents among three Southern border provinces and can apply to nurse educators as a guide to educate and manage an appropriate self-care program for Muslim pregnant adolescents based on cultural diversity.

Keywords: adolescents, muslim, pregnancy, selfcare

Procedia PDF Downloads 127
3558 Image Compression Using Block Power Method for SVD Decomposition

Authors: El Asnaoui Khalid, Chawki Youness, Aksasse Brahim, Ouanan Mohammed

Abstract:

In these recent decades, the important and fast growth in the development and demand of multimedia products is contributing to an insufficient in the bandwidth of device and network storage memory. Consequently, the theory of data compression becomes more significant for reducing the data redundancy in order to save more transfer and storage of data. In this context, this paper addresses the problem of the lossless and the near-lossless compression of images. This proposed method is based on Block SVD Power Method that overcomes the disadvantages of Matlab's SVD function. The experimental results show that the proposed algorithm has a better compression performance compared with the existing compression algorithms that use the Matlab's SVD function. In addition, the proposed approach is simple and can provide different degrees of error resilience, which gives, in a short execution time, a better image compression.

Keywords: image compression, SVD, block SVD power method, lossless compression, near lossless

Procedia PDF Downloads 388
3557 Modern and Postmodern Marketing Approaches to Consumer Loyalty in Case of Indonesia Real Estate Developer

Authors: Lincoln Panjaitan, Antonius Sumarlin

Abstract:

The development of property businesses in the metropolitan area is growing rapidly forcing big real estate developers to come up with various strategies in winning the heart of consumers. This empirical research is focusing on how the two schools of marketing thoughts; namely, Modern and postmodern marketing employed by the preceding developers to retain consumers’ commitment toward their prospective brands. The data was collected from three different properties of PT. Intiland Tbk using accidental sampling technique. The data of 600 respondents was then put into Structural Equation Model (SEM). The result of the study suggests that both schools of thought can equally produce commitment and loyalty of consumers; however, the difference lays where the loyalty belongs to. The first is more toward developer’s brand and the latter is more toward the co-creation value of the housing community.

Keywords: consumer loyalty, consumer commitment, knowledge sharing platform, marketing mix

Procedia PDF Downloads 343
3556 Identify Affecting Stadium Factors on Branding of Sport Events in Iran

Authors: Nargess Fasih Mardanloo

Abstract:

The purpose of this study was to identify affecting Stadium factors on branding of sport events in Iran. Research methods was qualitative. Interviews was used to collect data. Research community were experts and elites of sports management, sports events and sports marketing who use theoretical and Snowball sampling, 11 individuals were selected. The results showed, Effective ingredients in the city of the event included: Design and branding stadiums and sport facilities, General welfare in Stadium, Reconstruction of Present sports places.Managers can pay attention to the effective stadium factors. Then they use of the benefits of branding event, such as an increase in interest and media sponsors, ticket sales are able to enjoy the event, and many others.

Keywords: brand, branding of sport event, sports events, stadium, sport management.

Procedia PDF Downloads 460
3555 Performance Analysis of Artificial Neural Network Based Land Cover Classification

Authors: Najam Aziz, Nasru Minallah, Ahmad Junaid, Kashaf Gul

Abstract:

Landcover classification using automated classification techniques, while employing remotely sensed multi-spectral imagery, is one of the promising areas of research. Different land conditions at different time are captured through satellite and monitored by applying different classification algorithms in specific environment. In this paper, a SPOT-5 image provided by SUPARCO has been studied and classified in Environment for Visual Interpretation (ENVI), a tool widely used in remote sensing. Then, Artificial Neural Network (ANN) classification technique is used to detect the land cover changes in Abbottabad district. Obtained results are compared with a pixel based Distance classifier. The results show that ANN gives the better overall accuracy of 99.20% and Kappa coefficient value of 0.98 over the Mahalanobis Distance Classifier.

Keywords: landcover classification, artificial neural network, remote sensing, SPOT 5

Procedia PDF Downloads 549
3554 Evaluation of Parameters of Subject Models and Their Mutual Effects

Authors: A. G. Kovalenko, Y. N. Amirgaliyev, A. U. Kalizhanova, L. S. Balgabayeva, A. H. Kozbakova, Z. S. Aitkulov

Abstract:

It is known that statistical information on operation of the compound multisite system is often far from the description of actual state of the system and does not allow drawing any conclusions about the correctness of its operation. For example, from the world practice of operation of systems of water supply, water disposal, it is known that total measurements at consumers and at suppliers differ between 40-60%. It is connected with mathematical measure of inaccuracy as well as ineffective running of corresponding systems. Analysis of widely-distributed systems is more difficult, in which subjects, which are self-maintained in decision-making, carry out economic interaction in production, act of purchase and sale, resale and consumption. This work analyzed mathematical models of sellers, consumers, arbitragers and the models of their interaction in the provision of dispersed single-product market of perfect competition. On the basis of these models, the methods, allowing estimation of every subject’s operating options and systems as a whole are given.

Keywords: dispersed systems, models, hydraulic network, algorithms

Procedia PDF Downloads 287
3553 Comparing the Willingness to Communicate in a Foreign Language of Bilinguals and Monolinguals

Authors: S. Tarighat, F. Shateri

Abstract:

This study explored the relationship between L2 Willingness to Communicate (WTC) of bilinguals and monolinguals in a foreign language using a snowball sampling method to collect questionnaire data from 200 bilinguals and monolinguals studying a foreign language (FL). The results indicated a higher willingness to communicate in a foreign language (WTC-FL) performed by bilinguals compared to that of the monolinguals with a weak significance. Yet a stronger significance was found in the relationship between the age of onset of bilingualism and WTC-FL. The researcher proposed that L2 WTC is indirectly influenced by knowledge of other languages, which can boost L2 confidence and reduce L2 anxiety and consequently lead to higher L2 WTC when learning a different L2. The study also found the age of onset of bilingualism to be a predictor of L2 WTC when learning a FL. The results emphasize the importance of bilingualism and early bilingualism in particular.

Keywords: bilingualism, foreign language learning, l2 acquisition, willingness to communicate

Procedia PDF Downloads 304
3552 Machine Learning Techniques to Develop Traffic Accident Frequency Prediction Models

Authors: Rodrigo Aguiar, Adelino Ferreira

Abstract:

Road traffic accidents are the leading cause of unnatural death and injuries worldwide, representing a significant problem of road safety. In this context, the use of artificial intelligence with advanced machine learning techniques has gained prominence as a promising approach to predict traffic accidents. This article investigates the application of machine learning algorithms to develop traffic accident frequency prediction models. Models are evaluated based on performance metrics, making it possible to do a comparative analysis with traditional prediction approaches. The results suggest that machine learning can provide a powerful tool for accident prediction, which will contribute to making more informed decisions regarding road safety.

Keywords: machine learning, artificial intelligence, frequency of accidents, road safety

Procedia PDF Downloads 90