Search results for: predictive mining
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2056

Search results for: predictive mining

646 A Method for the Extraction of the Character's Tendency from Korean Novels

Authors: Min-Ha Hong, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The character in the story-based content, such as novels and movies, is one of the core elements to understand the story. In particular, the character’s tendency is an important factor to analyze the story-based content, because it has a significant influence on the storyline. If readers have the knowledge of the tendency of characters before reading a novel, it will be helpful to understand the structure of conflict, episode and relationship between characters in the novel. It may therefore help readers to select novel that the reader wants to read. In this paper, we propose a method of extracting the tendency of the characters from a novel written in Korean. In advance, we build the dictionary with pairs of the emotional words in Korean and English since the emotion words in the novel’s sentences express character’s feelings. We rate the degree of polarity (positive or negative) of words in our emotional words dictionary based on SenticNet. Then we extract characters and emotion words from sentences in a novel. Since the polarity of a word grows strong or weak due to sentence features such as quotations and modifiers, our proposed method consider them to calculate the polarity of characters. The information of the extracted character’s polarity can be used in the book search service or book recommendation service.

Keywords: character tendency, data mining, emotion word, Korean novel

Procedia PDF Downloads 335
645 Classification for Obstructive Sleep Apnea Syndrome Based on Random Forest

Authors: Cheng-Yu Tsai, Wen-Te Liu, Shin-Mei Hsu, Yin-Tzu Lin, Chi Wu

Abstract:

Background: Obstructive Sleep apnea syndrome (OSAS) is a common respiratory disorder during sleep. In addition, Body parameters were identified high predictive importance for OSAS severity. However, the effects of body parameters on OSAS severity remain unclear. Objective: In this study, the objective is to establish a prediction model for OSAS by using body parameters and investigate the effects of body parameters in OSAS. Methodologies: Severity was quantified as the polysomnography and the mean hourly number of greater than 3% dips in oxygen saturation during examination in a hospital in New Taipei City (Taiwan). Four levels of OSAS severity were classified by the apnea and hypopnea index (AHI) with American Academy of Sleep Medicine (AASM) guideline. Body parameters, including neck circumference, waist size, and body mass index (BMI) were obtained from questionnaire. Next, dividing the collecting subjects into two groups: training and testing groups. The training group was used to establish the random forest (RF) to predicting, and test group was used to evaluated the accuracy of classification. Results: There were 3330 subjects recruited in this study, whom had been done polysomnography for evaluating severity for OSAS. A RF of 1000 trees achieved correctly classified 79.94 % of test cases. When further evaluated on the test cohort, RF showed the waist and BMI as the high import factors in OSAS. Conclusion It is possible to provide patient with prescreening by body parameters which can pre-evaluate the health risks.

Keywords: apnea and hypopnea index, Body parameters, obstructive sleep apnea syndrome, Random Forest

Procedia PDF Downloads 154
644 Methotrexate Associated Skin Cancer: A Signal Review of Pharmacovigilance Center

Authors: Abdulaziz Alakeel, Abdulrahman Alomair, Mohammed Fouda

Abstract:

Introduction: Methotrexate (MTX) is an antimetabolite used to treat multiple conditions, including neoplastic diseases, severe psoriasis, and rheumatoid arthritis. Skin cancer is the out-of-control growth of abnormal cells in the epidermis, the outermost skin layer, caused by unrepaired DNA damage that triggers mutations. These mutations lead the skin cells to multiply rapidly and form malignant tumors. The aim of this review is to evaluate the risk of skin cancer associated with the use of methotrexate and to suggest regulatory recommendations if required. Methodology: Signal Detection team at Saudi Food and Drug Authority (SFDA) performed a safety review using National Pharmacovigilance Center (NPC) database as well as the World Health Organization (WHO) VigiBase, alongside with literature screening to retrieve related information for assessing the causality between skin cancer and methotrexate. The search conducted in July 2020. Results: Four published articles support the association seen while searching in literature, a recent randomized control trial published in 2020 revealed a statistically significant increase in skin cancer among MTX users. Another study mentioned methotrexate increases the risk of non-melanoma skin cancer when used in combination with immunosuppressant and biologic agents. In addition, the incidence of melanoma for methotrexate users was 3-fold more than the general population in a cohort study of rheumatoid arthritis patients. The last article estimated the risk of cutaneous malignant melanoma (CMM) in a cohort study shows a statistically significant risk increase for CMM was observed in MTX exposed patients. The WHO database (VigiBase) searched for individual case safety reports (ICSRs) reported for “Skin Cancer” and 'Methotrexate' use, which yielded 121 ICSRs. The initial review revealed that 106 cases are insufficiently documented for proper medical assessment. However, the remaining fifteen cases have extensively evaluated by applying the WHO criteria of causality assessment. As a result, 30 percent of the cases showed that MTX could possibly cause skin cancer; five cases provide unlikely association and five un-assessable cases due to lack of information. The Saudi NPC database searched to retrieve any reported cases for the combined terms methotrexate/skin cancer; however, no local cases reported up to date. The data mining of the observed and the expected reporting rate for drug/adverse drug reaction pair is estimated using information component (IC), a tool developed by the WHO Uppsala Monitoring Centre to measure the reporting ratio. Positive IC reflects higher statistical association, while negative values translated as a less statistical association, considering the null value equal to zero. Results showed that a combination of 'Methotrexate' and 'Skin cancer' observed more than expected when compared to other medications in the WHO database (IC value is 1.2). Conclusion: The weighted cumulative pieces of evidence identified from global cases, data mining, and published literature are sufficient to support a causal association between the risk of skin cancer and methotrexate. Therefore, health care professionals should be aware of this possible risk and may consider monitoring any signs or symptoms of skin cancer in patients treated with methotrexate.

Keywords: methotrexate, skin cancer, signal detection, pharmacovigilance

Procedia PDF Downloads 114
643 Indigenous Engagement: Towards a Culturally Sensitive Approach for Inclusive Economic Development

Authors: Karla N. Penna, Eloise J. Hoffman, Tonya R. Carter

Abstract:

This paper suggests that effective cultural landscape management plans in an Indigenous context should be undertaken using multidisciplinary approach taken into consideration context-related social and cultural aspects. In relation to working in Indigenous and mining contexts, we draw upon and contribute to International policies on human rights that promote the development of management plans on that are co-designed through genuine engagement processes. We suggest that the production of management plans that are built upon culturally relevant frameworks, lead to more inclusive economic development, a greater sense of trust, and shared managerial responsibilities. In this paper, three issues related to Indigenous engagement and cultural landscape management plans will be addressed: (1) the need for effective communication channels between proponents and Traditional Owners (Australian original Aboriginal peoples who inhabited specific regions), (2) the use of a culturally sensitive approach to engage local representatives in the decision making processes, and (3) how design of new management plans can help in establishing shared management.

Keywords: culture-centred approach, Holons’ hierarchy, inclusive economic development, indigenous engagement

Procedia PDF Downloads 204
642 Executive Function Assessment with Aboriginal Australians

Authors: T. Keiller, E. Hindman, P. Hassmen, K. Radford, L. Lavrencic

Abstract:

Background: Psychosocial disadvantage is associated with impaired cognitive abilities, with executive functioning (EF) abilities particularly vulnerable. EF abilities strongly predict general daily functioning, educational and career prospects, and health choices. A reliable and valid assessment of EF is important to support appropriate care and intervention strategies. However, evidence-based EF assessment tools for use with Aboriginal Australians are limited. Aim and Method: This research aims to develop and validate a culturally appropriate EF tool for use with indigenous Australians. To this end, Study One aims to review current literature examining the benefits and disadvantages of current EF assessment tools for use with Indigenous Australians. Study Two aims to collate expert opinion on the strengths and weaknesses of various current EF assessment tools for use with Indigenous Australians using Delphi methodology with experienced psychologists (n = 10). The initial two studies will inform the development of a culturally appropriate assessment tool. Study Three aims to evaluate the psychometric properties of the tool with an Indigenous sample living in the New South Wales Mid-North Coast. The study aims to quantify the predictive validity of this tool via comparison to functionality predictors and neuropsychological assessment scores. Study Four aims to collect qualitative data surrounding the feasibility and acceptability of the tool among indigenous Australians and health professionals. Expected Results: Findings from this research are likely to inform cognitive assessment practices and tool selection for health professionals conducting cognitive assessments with Indigenous Australians. Improved assessment of EF will inform appropriate care and intervention strategies for individuals with EF deficits.

Keywords: aboriginal Australians, assessment tool, cognition, executive functioning

Procedia PDF Downloads 281
641 The Effect of Perceived Environmental Uncertainty on Corporate Entrepreneurship Performance: A Field Study in a Large Industrial Zone in Turkey

Authors: Adem Öğüt, M. Tahir Demirsel

Abstract:

Rapid changes and developments today, besides the opportunities and facilities they offer to the organization, may also be a source of danger and difficulties due to the uncertainty. In order to take advantage of opportunities and to take the necessary measures against possible uncertainties, organizations must always follow the changes and developments that occur in the business environment and develop flexible structures and strategies for the alternative cases. Perceived environmental uncertainty is an outcome of managers’ perceptions of the combined complexity, instability and unpredictability in the organizational environment. An environment that is perceived to be complex, changing rapidly, and difficult to predict creates high levels of uncertainty about the appropriate organizational responses to external circumstances. In an uncertain and complex environment, organizations experiencing cutthroat competition may be successful by developing their corporate entrepreneurial ability. Corporate entrepreneurship is a process that includes many elements such as innovation, creating new business, renewal, risk-taking and being predictive. Successful corporate entrepreneurship is a critical factor which has a significant contribution to gain a sustainable competitive advantage, to renew the organization and to adapt the environment. In this context, the objective of this study is to investigate the effect of perceived environmental uncertainty of managers on corporate entrepreneurship performance. The research was conducted on 222 business executives in one of the major industrial zones of Turkey, Konya Organized Industrial Zone (KOS). According to the results, it has been observed that there is a positive statistically significant relationship between perceived environmental uncertainty and corporate entrepreneurial activities.

Keywords: corporate entrepreneurship, entrepreneurship, industrial zone, perceived environmental uncertainty, uncertainty

Procedia PDF Downloads 314
640 A Plan of Smart Management for Groundwater Resources

Authors: Jennifer Chen, Pei Y. Hsu, Yu W. Chen

Abstract:

Groundwater resources play a vital role in regional water supply because over 1/3 of total demand is satisfied by groundwater resources. Because over-pumpage might cause environmental impact such as land subsidence, a sustainable management of groundwater resource is required. In this study, a blueprint of smart management for groundwater resource is proposed and planned. The framework of the smart management can be divided into two major parts, hardware and software parts. First, an internet of groundwater (IoG) which is inspired by the internet of thing (IoT) is proposed to observe the migration of groundwater usage and the associated response, groundwater levels. Second, algorithms based on data mining and signal analysis are proposed to achieve the goal of providing highly efficient management of groundwater. The entire blueprint is a 4-year plan and this year is the first year. We have finished the installation of 50 flow meters and 17 observation wells. An underground hydrological model is proposed to determine the associated drawdown caused by the measured pumpages. Besides, an alternative to the flow meter is also proposed to decrease the installation cost of IoG. An accelerometer and 3G remote transmission are proposed to detect the on and off of groundwater pumpage.

Keywords: groundwater management, internet of groundwater, underground hydrological model, alternative of flow meter

Procedia PDF Downloads 379
639 Evaluation of Machine Learning Algorithms and Ensemble Methods for Prediction of Students’ Graduation

Authors: Soha A. Bahanshal, Vaibhav Verdhan, Bayong Kim

Abstract:

Graduation rates at six-year colleges are becoming a more essential indicator for incoming fresh students and for university rankings. Predicting student graduation is extremely beneficial to schools and has a huge potential for targeted intervention. It is important for educational institutions since it enables the development of strategic plans that will assist or improve students' performance in achieving their degrees on time (GOT). A first step and a helping hand in extracting useful information from these data and gaining insights into the prediction of students' progress and performance is offered by machine learning techniques. Data analysis and visualization techniques are applied to understand and interpret the data. The data used for the analysis contains students who have graduated in 6 years in the academic year 2017-2018 for science majors. This analysis can be used to predict the graduation of students in the next academic year. Different Predictive modelings such as logistic regression, decision trees, support vector machines, Random Forest, Naïve Bayes, and KNeighborsClassifier are applied to predict whether a student will graduate. These classifiers were evaluated with k folds of 5. The performance of these classifiers was compared based on accuracy measurement. The results indicated that Ensemble Classifier achieves better accuracy, about 91.12%. This GOT prediction model would hopefully be useful to university administration and academics in developing measures for assisting and boosting students' academic performance and ensuring they graduate on time.

Keywords: prediction, decision trees, machine learning, support vector machine, ensemble model, student graduation, GOT graduate on time

Procedia PDF Downloads 73
638 The Hallmarks of War Propaganda: The Case of Russia-Ukraine Conflict

Authors: Veronika Solopova, Oana-Iuliana Popescu, Tim Landgraf, Christoph Benzmüller

Abstract:

Beginning in 2014, slowly building geopolitical tensions in Eastern Europe led to a full-blown conflict between the Russian Federation and Ukraine that generated an unprecedented amount of news articles and data from social media data, reflecting the opposing ideologies and narratives as a background and the essence of the ongoing war. These polarized informational campaigns have led to countless mutual accusations of misinformation and fake news, shaping an atmosphere of confusion and mistrust for many readers all over the world. In this study, we analyzed scraped news articles from Ukrainian, Russian, Romanian and English-speaking news outlets, on the eve of 24th of February 2022, compared to day five of the conflict (28th of February), to see how the media influenced and mirrored the changes in public opinion. We also contrast the sources opposing and supporting the stands of the Russian government in Ukrainian, Russian and Romanian media spaces. In a data-driven way, we describe how the narratives are spread throughout Eastern and Central Europe. We present predictive linguistic features surrounding war propaganda. Our results indicate that there are strong similarities in terms of rhetoric strategies in the pro-Kremlin media in both Ukraine and Russia, which, while being relatively neutral according to surface structure, use aggressive vocabulary. This suggests that automatic propaganda identification systems have to be tailored for each new case, as they have to rely on situationally specific words. Both Ukrainian and Russian outlets lean towards strongly opinionated news, pointing towards the use of war propaganda in order to achieve strategic goals.

Keywords: linguistic, news, propaganda, Russia, ukraine

Procedia PDF Downloads 123
637 The Implementation of the Multi-Agent Classification System (MACS) in Compliance with FIPA Specifications

Authors: Mohamed R. Mhereeg

Abstract:

The paper discusses the implementation of the MultiAgent classification System (MACS) and utilizing it to provide an automated and accurate classification of end users developing applications in the spreadsheet domain. However, different technologies have been brought together to build MACS. The strength of the system is the integration of the agent technology with the FIPA specifications together with other technologies, which are the .NET widows service based agents, the Windows Communication Foundation (WCF) services, the Service Oriented Architecture (SOA), and Oracle Data Mining (ODM). Microsoft's .NET windows service based agents were utilized to develop the monitoring agents of MACS, the .NET WCF services together with SOA approach allowed the distribution and communication between agents over the WWW. The Monitoring Agents (MAs) were configured to execute automatically to monitor excel spreadsheets development activities by content. Data gathered by the Monitoring Agents from various resources over a period of time was collected and filtered by a Database Updater Agent (DUA) residing in the .NET client application of the system. This agent then transfers and stores the data in Oracle server database via Oracle stored procedures for further processing that leads to the classification of the end user developers.

Keywords: MACS, implementation, multi-agent, SOA, autonomous, WCF

Procedia PDF Downloads 275
636 The Determinants of Corporate Hedging Strategy

Authors: Ademola Ajibade

Abstract:

Previous studies have explored several rationales for hedging strategies, but the evidence provided by these studies remains ambiguous. Using a hand-collected dataset of 2460 observations of non-financial firms in eight African countries covering 2013-2022, this paper investigates the determinants and extent of corporate hedge use. In particular, this paper focuses on the link between country-specific conditions and the corporate hedging behaviour of firms. To our knowledge, this represents the first African studies investigating the association between country-specific factors and corporate hedging policy. The evidence based on both univariate and multivariate reveal that country-level corruption and government quality are important indicators of the decisions and extent of hedge use among African firms. However, the connection between country-specific factors as a rationale for corporate hedge use is stronger for firms located in highly corrupt countries. This suggest that firms located in corrupt countries are more motivated to hedge due to the large exposure they face. In addition, we test the risk management theories and observe that CEOs educational qualification and experience shape corporate hedge behaviour. We implement a lagged variables in a panel data setting to address endogeneity concern and implement an interaction term between governance indices and firm-specific variables to test for robustness. Generally, our findings reveal that institutional factors shape risk management decisions and have a predictive power in explaining corporate hedging strategy.

Keywords: corporate hedging, governance quality, corruption, derivatives

Procedia PDF Downloads 92
635 Prediction of Damage to Cutting Tools in an Earth Pressure Balance Tunnel Boring Machine EPB TBM: A Case Study L3 Guadalajara Metro Line (Mexico)

Authors: Silvia Arrate, Waldo Salud, Eloy París

Abstract:

The wear of cutting tools is one of the most decisive elements when planning tunneling works, programming the maintenance stops and saving the optimum stock of spare parts during the evolution of the excavation. Being able to predict the behavior of cutting tools can give a very competitive advantage in terms of costs and excavation performance, optimized to the needs of the TBM itself. The incredible evolution of data science in recent years gives the option to implement it at the time of analyzing the key and most critical parameters related to machinery with the purpose of knowing how the cutting head is performing in front of the excavated ground. Taking this as a case study, Metro Line 3 of Guadalajara in Mexico will develop the feasibility of using Specific Energy versus data science applied over parameters of Torque, Penetration, and Contact Force, among others, to predict the behavior and status of cutting tools. The results obtained through both techniques are analyzed and verified in the function of the wear and the field situations observed in the excavation in order to determine its effectiveness regarding its predictive capacity. In conclusion, the possibilities and improvements offered by the application of digital tools and the programming of calculation algorithms for the analysis of wear of cutting head elements compared to purely empirical methods allow early detection of possible damage to cutting tools, which is reflected in optimization of excavation performance and a significant improvement in costs and deadlines.

Keywords: cutting tools, data science, prediction, TBM, wear

Procedia PDF Downloads 49
634 Synthetic Data-Driven Prediction Using GANs and LSTMs for Smart Traffic Management

Authors: Srinivas Peri, Siva Abhishek Sirivella, Tejaswini Kallakuri, Uzair Ahmad

Abstract:

Smart cities and intelligent transportation systems rely heavily on effective traffic management and infrastructure planning. This research tackles the data scarcity challenge by generating realistically synthetic traffic data from the PeMS-Bay dataset, enhancing predictive modeling accuracy and reliability. Advanced techniques like TimeGAN and GaussianCopula are utilized to create synthetic data that mimics the statistical and structural characteristics of real-world traffic. The future integration of Spatial-Temporal Generative Adversarial Networks (ST-GAN) is anticipated to capture both spatial and temporal correlations, further improving data quality and realism. Each synthetic data generation model's performance is evaluated against real-world data to identify the most effective models for accurately replicating traffic patterns. Long Short-Term Memory (LSTM) networks are employed to model and predict complex temporal dependencies within traffic patterns. This holistic approach aims to identify areas with low vehicle counts, reveal underlying traffic issues, and guide targeted infrastructure interventions. By combining GAN-based synthetic data generation with LSTM-based traffic modeling, this study facilitates data-driven decision-making that improves urban mobility, safety, and the overall efficiency of city planning initiatives.

Keywords: GAN, long short-term memory (LSTM), synthetic data generation, traffic management

Procedia PDF Downloads 15
633 Evaluation of Firearm Injury Syndromic Surveillance in Utah

Authors: E. Bennion, A. Acharya, S. Barnes, D. Ferrell, S. Luckett-Cole, G. Mower, J. Nelson, Y. Nguyen

Abstract:

Objective: This study aimed to evaluate the validity of a firearm injury query in the Early Notification of Community-based Epidemics syndromic surveillance system. Syndromic surveillance data are used at the Utah Department of Health for early detection of and rapid response to unusually high rates of violence and injury, among other health outcomes. The query of interest was defined by the Centers for Disease Control and Prevention and used chief complaint and discharge diagnosis codes to capture initial emergency department encounters for firearm injury of all intents. Design: Two epidemiologists manually reviewed electronic health records of emergency department visits captured by the query from April-May 2020, compared results, and sent conflicting determinations to two arbiters. Results: Of the 85 unique records captured, 67 were deemed probable, 19 were ruled out, and two were undetermined, resulting in a positive predictive value of 75.3%. Common reasons for false positives included non-initial encounters and misleading keywords. Conclusion: Improving the validity of syndromic surveillance data would better inform outbreak response decisions made by state and local health departments. The firearm injury definition could be refined to exclude non-initial encounters by negating words such as “last month,” “last week,” and “aftercare”; and to exclude non-firearm injury by negating words such as “pellet gun,” “air gun,” “nail gun,” “bullet bike,” and “exit wound” when a firearm is not mentioned.

Keywords: evaluation, health information system, firearm injury, syndromic surveillance

Procedia PDF Downloads 168
632 Consumer Value and Purchase Behaviour: The Mediating Role of Consumers' Expectations of Corporate Social Responsibility in Durban, South Africa

Authors: Abosede Ijabadeniyi, Jeevarathnam P. Govender

Abstract:

Prevailing strategic Corporate Social Responsibility (CSR) research is predominantly centred around the predictive implications of the construct on behavioural outcomes. This phenomenon limits the depth of our understanding of the trajectory of strategic CSR. The purpose of this paper is to investigate the mediating effects of CSR expectations on the relationship between consumer value and purchase behaviour by identifying the implications of the multidimensionality of CSR (economic, legal, ethical and philanthropic) on the latter. Drawing from the stakeholder theory and its interplay with the prevalence of Ubuntu values; the underlying force which governs the values of South African camaraderie, we hypothesise that the multidimensionality of CSR expectations has positive mediating effects in the relationship between consumer value and purchase behaviour. Partial Least Square (PLS) path modelling was employed, using six measures of the average path coefficient (APC) to test the relationship between the constructs. Results from a sample of mall shoppers of (n=411), based on a survey conducted across five major malls in Durban, South Africa, indicate that only the legal dimension of CSR serves as a mediating factor in the relationship among the constructs. South Africa’s unique history of segregation, leading to the proliferation of spontaneous organisational approach to CSR and higher expectations of organisational legitimacy are identified as antecedents of consumers’ reliance on the law (legal CSR) to redress the ills of the past, sustainable development, and socially responsible behaviour. The paper also highlights theoretical and managerial implications for future research.

Keywords: consumer value, corporate marketing, corporate social responsibility, purchase behaviour, Ubuntu

Procedia PDF Downloads 372
631 Socioterritorial Inequalities in a Region of Chile. Beyond the Geography

Authors: Javier Donoso-Bravo, Camila Cortés-Zambrano

Abstract:

In this paper, we analyze socioterritorial inequalities in the region of Valparaiso (Chile) using secondary data to account for these inequalities drawing on economic, social, educational, and environmental dimensions regarding the thirty-six municipalities of the region. We looked over a wide-ranging set of secondary data from public sources regarding economic activities, poverty, employment, income, years of education, post-secondary education access, green areas, access to potable water, and others. We found sharp socioterritorial inequalities especially based on the economic performance in each territory. Analysis show, on the one hand, the existence of a dual and unorganized development model in some territories with a strong economic activity -especially in the areas of finance, real estate, mining, and vineyards- but, at the same time, with poor social indicators. On the other hand, most of the territories show a dispersed model with very little dynamic economic activities and very poor social development. Finally, we discuss how socioterritorial inequalities in the region of Valparaiso reflect the level of globalization of the economic activities carried on in every territory.

Keywords: socioterritorial inequalities, development model, Chile, secondary data, Region of Valparaiso

Procedia PDF Downloads 103
630 A Physiological Approach for Early Detection of Hemorrhage

Authors: Rabie Fadil, Parshuram Aarotale, Shubha Majumder, Bijay Guargain

Abstract:

Hemorrhage is the loss of blood from the circulatory system and leading cause of battlefield and postpartum related deaths. Early detection of hemorrhage remains the most effective strategy to reduce mortality rate caused by traumatic injuries. In this study, we investigated the physiological changes via non-invasive cardiac signals at rest and under different hemorrhage conditions simulated through graded lower-body negative pressure (LBNP). Simultaneous electrocardiogram (ECG), photoplethysmogram (PPG), blood pressure (BP), impedance cardiogram (ICG), and phonocardiogram (PCG) were acquired from 10 participants (age:28 ± 6 year, weight:73 ± 11 kg, height:172 ± 8 cm). The LBNP protocol consisted of applying -20, -30, -40, -50, and -60 mmHg pressure to the lower half of the body. Beat-to-beat heart rate (HR), systolic blood pressure (SBP), diastolic blood pressure (DBP), and mean aerial pressure (MAP) were extracted from ECG and blood pressure. Systolic amplitude (SA), systolic time (ST), diastolic time (DT), and left ventricle Ejection time (LVET) were extracted from PPG during each stage. Preliminary results showed that the application of -40 mmHg i.e. moderate stage simulated hemorrhage resulted significant changes in HR (85±4 bpm vs 68 ± 5bpm, p < 0.01), ST (191 ± 10 ms vs 253 ± 31 ms, p < 0.05), LVET (350 ± 14 ms vs 479 ± 47 ms, p < 0.05) and DT (551 ± 22 ms vs 683 ± 59 ms, p < 0.05) compared to rest, while no change was observed in SA (p > 0.05) as a consequence of LBNP application. These findings demonstrated the potential of cardiac signals in detecting moderate hemorrhage. In future, we will analyze all the LBNP stages and investigate the feasibility of other physiological signals to develop a predictive machine learning model for early detection of hemorrhage.

Keywords: blood pressure, hemorrhage, lower-body negative pressure, LBNP, machine learning

Procedia PDF Downloads 167
629 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: distributed optical strain sensing, rock bolt, bedding shear, sandstone tunnel

Procedia PDF Downloads 161
628 Weighted Risk Scores Method Proposal for Occupational Safety Risk Assessment

Authors: Ulas Cinar, Omer Faruk Ugurlu, Selcuk Cebi

Abstract:

Occupational safety risk management is the most important element of a safe working environment. Effective risk management can only be possible with accurate analysis and evaluations. Scoring-based risk assessment methods offer considerable ease of application as they convert linguistic expressions into numerical results. It can also be easily adapted to any field. Contrary to all these advantages, important problems in scoring-based methods are frequently discussed. Effective measurability is one of the most critical problems. Existing methods allow experts to choose a score equivalent to each parameter. Therefore, experts prefer the score of the most likely outcome for risk. However, all other possible consequences are neglected. Assessments of the existing methods express the most probable level of risk, not the real risk of the enterprises. In this study, it is aimed to develop a method that will present a more comprehensive evaluation compared to the existing methods by evaluating the probability and severity scores, all sub-parameters, and potential results, and a new scoring-based method is proposed in the literature.

Keywords: occupational health and safety, risk assessment, scoring based risk assessment method, underground mining, weighted risk scores

Procedia PDF Downloads 136
627 Helping the Development of Public Policies with Knowledge of Criminal Data

Authors: Diego De Castro Rodrigues, Marcelo B. Nery, Sergio Adorno

Abstract:

The project aims to develop a framework for social data analysis, particularly by mobilizing criminal records and applying descriptive computational techniques, such as associative algorithms and extraction of tree decision rules, among others. The methods and instruments discussed in this work will enable the discovery of patterns, providing a guided means to identify similarities between recurring situations in the social sphere using descriptive techniques and data visualization. The study area has been defined as the city of São Paulo, with the structuring of social data as the central idea, with a particular focus on the quality of the information. Given this, a set of tools will be validated, including the use of a database and tools for visualizing the results. Among the main deliverables related to products and the development of articles are the discoveries made during the research phase. The effectiveness and utility of the results will depend on studies involving real data, validated both by domain experts and by identifying and comparing the patterns found in this study with other phenomena described in the literature. The intention is to contribute to evidence-based understanding and decision-making in the social field.

Keywords: social data analysis, criminal records, computational techniques, data mining, big data

Procedia PDF Downloads 86
626 Hybridized Approach for Distance Estimation Using K-Means Clustering

Authors: Ritu Vashistha, Jitender Kumar

Abstract:

Clustering using the K-means algorithm is a very common way to understand and analyze the obtained output data. When a similar object is grouped, this is called the basis of Clustering. There is K number of objects and C number of cluster in to single cluster in which k is always supposed to be less than C having each cluster to be its own centroid but the major problem is how is identify the cluster is correct based on the data. Formulation of the cluster is not a regular task for every tuple of row record or entity but it is done by an iterative process. Each and every record, tuple, entity is checked and examined and similarity dissimilarity is examined. So this iterative process seems to be very lengthy and unable to give optimal output for the cluster and time taken to find the cluster. To overcome the drawback challenge, we are proposing a formula to find the clusters at the run time, so this approach can give us optimal results. The proposed approach uses the Euclidian distance formula as well melanosis to find the minimum distance between slots as technically we called clusters and the same approach we have also applied to Ant Colony Optimization(ACO) algorithm, which results in the production of two and multi-dimensional matrix.

Keywords: ant colony optimization, data clustering, centroids, data mining, k-means

Procedia PDF Downloads 128
625 Managing the Baltic Sea Region Resilience: Prevention, Treatment Actions and Circular Economy

Authors: J. Burlakovs, Y. Jani, L. Grinberga, M. Kriipsalu, O. Anne, I. Grinfelde, W. Hogland

Abstract:

The worldwide future sustainable economies are oriented towards the sea: the maritime economy is becoming one of the strongest driving forces in many regions as population growth is the highest in coastal areas. For hundreds of years sea resources were depleted unsustainably by fishing, mining, transportation, tourism, and waste. European Sustainable Development Strategy is identifying and developing actions to enable the EU to achieve a continuous, long-term improvement of the quality of life through the creation of sustainable communities. The aim of this paper is to provide insight in Baltic Sea Region case studies on implemented actions on tourism industry waste and beach wrack management in coastal areas, hazardous contaminants and plastic flow treatment from waste, wastewaters and stormwaters. These projects mentioned in study promote successful prevention of contaminant flows to the sea environments and provide perspectives for creation of valuable new products from residuals for future circular economy are the step forward to green innovation winning streak.

Keywords: resilience, hazardous waste, phytoremediation, water management, circular economy

Procedia PDF Downloads 174
624 A West Coast Estuarine Case Study: A Predictive Approach to Monitor Estuarine Eutrophication

Authors: Vedant Janapaty

Abstract:

Estuaries are wetlands where fresh water from streams mixes with salt water from the sea. Also known as “kidneys of our planet”- they are extremely productive environments that filter pollutants, absorb floods from sea level rise, and shelter a unique ecosystem. However, eutrophication and loss of native species are ailing our wetlands. There is a lack of uniform data collection and sparse research on correlations between satellite data and in situ measurements. Remote sensing (RS) has shown great promise in environmental monitoring. This project attempts to use satellite data and correlate metrics with in situ observations collected at five estuaries. Images for satellite data were processed to calculate 7 bands (SIs) using Python. Average SI values were calculated per month for 23 years. Publicly available data from 6 sites at ELK was used to obtain 10 parameters (OPs). Average OP values were calculated per month for 23 years. Linear correlations between the 7 SIs and 10 OPs were made and found to be inadequate (correlation = 1 to 64%). Fourier transform analysis on 7 SIs was performed. Dominant frequencies and amplitudes were extracted for 7 SIs, and a machine learning(ML) model was trained, validated, and tested for 10 OPs. Better correlations were observed between SIs and OPs, with certain time delays (0, 3, 4, 6 month delay), and ML was again performed. The OPs saw improved R² values in the range of 0.2 to 0.93. This approach can be used to get periodic analyses of overall wetland health with satellite indices. It proves that remote sensing can be used to develop correlations with critical parameters that measure eutrophication in situ data and can be used by practitioners to easily monitor wetland health.

Keywords: estuary, remote sensing, machine learning, Fourier transform

Procedia PDF Downloads 104
623 Obstetric Outcome after Hysteroscopic Septum Resection in Patients with Uterine Septa of Various Sizes

Authors: Nilanchali Singh, Alka Kriplani, Reeta Mahey, Garima Kachhawa

Abstract:

Objective: Resection of larger uterine septa does improve obstetric performance but whether smaller septa need resection and their impact on obstetric outcome is not clear. We wanted to evaluate the role of septal resection of septa of various sizes in obstetric performance. Methods: This retrospective cohort study comprised of 107 patients with uterine septum. The patients were categorized on the basis of extent of uterine septum into four groups: a) Subsepta (< 1/3rd), b) Septum > 1/3 to ½, c) Septum>1/2 to whole uterine cervix, d) Septum traversing whole of uterine cavity and cervix. Out of these 107 patients, 74 could be contacted telephonically and outcomes recorded. Sensitivity and specificity of investigative modalities were calculated. Results: Infertility was seen in maximum number of cases in complete septa (100%), whereas abortions were seen more commonly, in subsepta (18%). MRI had maximum sensitivity and positive predictive value, followed by hysteron-salpingography. Tubal block, fibroid, endometriosis, pelvic adhesions, ovarian pathologies were seen in some but no definite association of these pathologies was seen with any subgroup of septa. Almost five-year follow-up was recorded in all the subgroups. Significant reduction in infertility was seen in all septal subgroup (p=0.046, 0.032 & 0.05) patients except in subsepta (< 1/3rd uterine cavity) after septum resection. Abortions were significantly reduced (p=0.048) in third subgroup (i.e. septum > ½ to upto internal os) after hysteroscopic septum resection. Take home baby rate was 33% in subsepta and around 50% in the remaining subgroups of septa. Conclusions: Septal resection improves obstetric performance in patients with uterine septa of various sizes. Whether septal resection improves obstetric performance in patients with subsepta or very small septa, is controversial. Larger studies addressing this issue need to be planned.

Keywords: septal resection, obstetric outcome, infertility, septum size

Procedia PDF Downloads 319
622 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values

Keywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)

Procedia PDF Downloads 542
621 A Recognition Method for Spatio-Temporal Background in Korean Historical Novels

Authors: Seo-Hee Kim, Kee-Won Kim, Seung-Hoon Kim

Abstract:

The most important elements of a novel are the characters, events and background. The background represents the time, place and situation that character appears, and conveys event and atmosphere more realistically. If readers have the proper knowledge about background of novels, it may be helpful for understanding the atmosphere of a novel and choosing a novel that readers want to read. In this paper, we are targeting Korean historical novels because spatio-temporal background especially performs an important role in historical novels among the genre of Korean novels. To the best of our knowledge, we could not find previous study that was aimed at Korean novels. In this paper, we build a Korean historical national dictionary. Our dictionary has historical places and temple names of kings over many generations as well as currently existing spatial words or temporal words in Korean history. We also present a method for recognizing spatio-temporal background based on patterns of phrasal words in Korean sentences. Our rules utilize postposition for spatial background recognition and temple names for temporal background recognition. The knowledge of the recognized background can help readers to understand the flow of events and atmosphere, and can use to visualize the elements of novels.

Keywords: data mining, Korean historical novels, Korean linguistic feature, spatio-temporal background

Procedia PDF Downloads 279
620 Application of Bayesian Model Averaging and Geostatistical Output Perturbation to Generate Calibrated Ensemble Weather Forecast

Authors: Muhammad Luthfi, Sutikno Sutikno, Purhadi Purhadi

Abstract:

Weather forecast has necessarily been improved to provide the communities an accurate and objective prediction as well. To overcome such issue, the numerical-based weather forecast was extensively developed to reduce the subjectivity of forecast. Yet the Numerical Weather Predictions (NWPs) outputs are unfortunately issued without taking dynamical weather behavior and local terrain features into account. Thus, NWPs outputs are not able to accurately forecast the weather quantities, particularly for medium and long range forecast. The aim of this research is to aid and extend the development of ensemble forecast for Meteorology, Climatology, and Geophysics Agency of Indonesia. Ensemble method is an approach combining various deterministic forecast to produce more reliable one. However, such forecast is biased and uncalibrated due to its underdispersive or overdispersive nature. As one of the parametric methods, Bayesian Model Averaging (BMA) generates the calibrated ensemble forecast and constructs predictive PDF for specified period. Such method is able to utilize ensemble of any size but does not take spatial correlation into account. Whereas space dependencies involve the site of interest and nearby site, influenced by dynamic weather behavior. Meanwhile, Geostatistical Output Perturbation (GOP) reckons the spatial correlation to generate future weather quantities, though merely built by a single deterministic forecast, and is able to generate an ensemble of any size as well. This research conducts both BMA and GOP to generate the calibrated ensemble forecast for the daily temperature at few meteorological sites nearby Indonesia international airport.

Keywords: Bayesian Model Averaging, ensemble forecast, geostatistical output perturbation, numerical weather prediction, temperature

Procedia PDF Downloads 282
619 Measurements and Predictions of Hydrates of CO₂-rich Gas Mixture in Equilibrium with Multicomponent Salt Solutions

Authors: Abdullahi Jibril, Rod Burgass, Antonin Chapoy

Abstract:

Carbon dioxide (CO₂) is widely used in reservoirs to enhance oil and gas production, mixing with natural gas and other impurities in the process. However, hydrate formation frequently hinders the efficiency of CO₂-based enhanced oil recovery, causing pipeline blockages and pressure build-ups. Current hydrate prediction methods are primarily designed for gas mixtures with low CO₂ content and struggle to accurately predict hydrate formation in CO₂-rich streams in equilibrium with salt solutions. Given that oil and gas reservoirs are saline, experimental data for CO₂-rich streams in equilibrium with salt solutions are essential to improve these predictive models. This study investigates the inhibition of hydrate formation in a CO₂-rich gas mixture (CO₂, CH₄, N₂, H₂ at 84.73/15/0.19/0.08 mol.%) using multicomponent salt solutions at concentrations of 2.4 wt.%, 13.65 wt.%, and 27.3 wt.%. The setup, test fluids, methodology, and results for hydrates formed in equilibrium with varying salt solution concentrations are presented. Measurements were conducted using an isochoric pressure-search method at pressures up to 45 MPa. Experimental data were compared with predictions from a thermodynamic model based on the Cubic-Plus-Association equation of state (EoS), while hydrate-forming conditions were modeled using the van der Waals and Platteeuw solid solution theory. Water activity was evaluated based on hydrate suppression temperature to assess consistency in the inhibited systems. Results indicate that hydrate stability is significantly influenced by inhibitor concentration, offering valuable guidelines for the design and operation of pipeline systems involved in offshore gas transport of CO₂-rich streams.

Keywords: CO₂-rich streams, hydrates, monoethylene glycol, phase equilibria

Procedia PDF Downloads 23
618 Mass Production of Endemic Diatoms in Polk County, Florida Concomitant with Biofuel Extraction

Authors: Melba D. Horton

Abstract:

Algae are identified as an alternative source of biofuel because of their ubiquitous distribution in aquatic environments. Diatoms are unique forms of algae characterized by silicified cell walls which have gained prominence in various technological applications. Polk County is home to a multitude of ponds and lakes but has not been explored for the presence of diatoms. Considering the condition of the waters brought about by predominant phosphate mining activities in the area, this research was conducted to determine if endemic diatoms are present and explore their potential for low-cost mass production. Using custom-built photobioreactors, water samples from various lakes provided by the Polk County Parks and Recreation and from nearby ponds were used as the source of diatoms together with other algae obtained during collection. Results of the initial culture cycles were successful, but later an overgrowth of other algae crashed the diatom population. Experiments were conducted in the laboratory to tease out some factors possibly contributing to the die-off. Generally, the total biomass declines after two culture cycles and the causative factors need further investigation. The lipid yield is minimum; however, the high frustule production after die-off adds value to the overall benefit of the harvest.

Keywords: diatoms, algae, biofuel, lipid, photobioreactor, frustule

Procedia PDF Downloads 189
617 Transcriptomic Analysis of Non-Alcoholic Fatty Liver Disease in Cafeteria Diet Induced Obese Rats

Authors: Mohammad Jamal

Abstract:

Non-alcoholic fatty liver disease (NAFLD) has become one of the most chronic liver diseases, prevalent among people with morbid obesity. NAFLD does not develop clinically significant liver disease, however cirrhosis and liver cancer develop in subset and currently there are no approved therapies for the treatment of NAFLD. The study is aimed to understand the various key genes involved in the mechanism of NAFLD which can be valuable for developing diagnostic and predictive biomarkers based on their histologic stage of liver. The study was conducted on 16 male Sprague Dawley rats. The animals were divided in two groups: control group (n=8) fed on ad libitum normal chow and regular water and the cafeteria group (CAF)) (n=8) fed on high fatty/ carbohydrate diet. The animals received their respective diet from 4 weeks onwards from D.O.B until 25 weeks. Liver was extracted and RT² Profiler PCR Array was used to assess the NAFLD related genes. Histological evaluation was performed using H&E stain in liver tissue sections. Our PCR array results showed that genes involved in anti-inflammatory activity (Ifng, IL10), fatty acid uptake/oxidation (Fabp5), apoptosis (Fas), lipogenesis (Gck and Srebf1), Insulin signalling (Igfbp1) and metabolic pathway (pdk4) were upregulated in the liver of cafeteria fed obese rats. Bloated hepatocytes, displaced nucleus and higher lipid content were seen in the liver of cafeteria fed obese rats. Although Liver biopsies remain the gold standard in evaluating NAFLD, however an approach towards non-invasive markers could be used in understanding the physiology, therapeutic potential, and the targets to combat NAFLD.

Keywords: biomarkers, cafeteria diet, obesity, NAFLD

Procedia PDF Downloads 143