Search results for: antibacterial agents
640 Studying the Value-Added Chain for the Fish Distribution Process at Quang Binh Fishing Port in Vietnam
Authors: Van Chung Nguyen
Abstract:
The purpose of this study is to study the current status of the value chain for fish distribution at Quang Binh Fishing Port with 360 research samples in which the research subjects are fishermen, traders, retailers, and businesses. The research uses the approach of applying the value chain theoretical framework of Kaplinsky and Morris to quantify and describe market channels and actors participating in the value chain and analyze the value-added process of these companies according to market channels. The analysis results show that fishermen directly catch fish with high economic efficiency, but processing enterprises and, especially retailers, are the agents to obtain higher added value. Processing enterprises play a role that is not really clear due to outdated processing technology; in contrast, retailers have the highest added value. This shows that the added value of the fish supply chain at Quang Binh fishing port is still limited, leading to low output quality. Therefore, the selling price of fish to the market is still high compared to the abundant fish resources, leading to low consumption and limiting exports due to the quality of processing enterprises. This reduces demand and fishing capacity, and productivity is lower than potential. To improve the fish value chain at fishing ports, it is necessary to focus on improving product quality, strengthening linkages between actors, building brands and product consumption markets at the same time, improving the capacity of export processing enterprises.Keywords: Quang Binh fishing port, value chain, market, distributions channel
Procedia PDF Downloads 73639 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf
Authors: Gulnur Arabaci
Abstract:
Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.Keywords: inhibition, metal, red poppy, poly phenol oxidase (PPO)
Procedia PDF Downloads 328638 Characterization of Bacteriophage for Biocontrol of Pseudomonas syringae, Causative Agent of Canker in Prunus spp.
Authors: Mojgan Rabiey, Shyamali Roy, Billy Quilty, Ryan Creeth, George Sundin, Robert W. Jackson
Abstract:
Bacterial canker is a major disease of Prunus species such as cherry (Prunus avium). It is caused by Pseudomonas syringae species including P. syringae pv. syringae (Pss) and P. syringae pv. morsprunorum race 1 (Psm1) and race 2 (Psm2). Concerns over the environmental impact of, and developing resistance to, copper controls call for alternative approaches to disease management. One method of control could be achieved using naturally occurring bacteriophage (phage) infective to the bacterial pathogens. Phages were isolated from soil, leaf, and bark of cherry trees in five locations in the South East of England. The phages were assessed for their host range against strains of Pss, Psm1, and Psm2. The phages exhibited a differential ability to infect and lyse different Pss and Psm isolates as well as some other P. syringae pathovars. However, the phages were unable to infect beneficial bacteria such as Pseudomonas fluorescens. A subset of 18 of these phages were further characterised genetically (Random Amplification of Polymorphic DNA-PCR fingerprinting and sequencing) and using electron microscopy. The phages are tentatively identified as belonging to the order Caudovirales and the families Myoviridae, Podoviridae, and Siphoviridae, with genetic material being dsDNA. Future research will fully sequence the phage genomes. The efficacy of the phage, both individually and in cocktails, to reduce disease progression in vivo will be investigated to understand the potential for practical use of these phages as biocontrol agents.Keywords: bacteriophage, pseudomonas, bacterial cancker, biological control
Procedia PDF Downloads 151637 Degradation and Detoxification of Tetracycline by Sono-Fenton and Ozonation
Authors: Chikang Wang, Jhongjheng Jian, Poming Huang
Abstract:
Among a wide variety of pharmaceutical compounds, tetracycline antibiotics are one of the largest groups of pharmaceutical compounds extensively used in human and veterinary medicine to treat and prevent bacterial infections. Because it is water soluble, biologically active, stable and bio-refractory, release to the environment threatens aquatic life and increases the risk posed by antibiotic-resistant pathogens. In practice, due to its antibacterial nature, tetracycline cannot be effectively destructed by traditional biological methods. Hence, in this study, two advanced oxidation processes such as ozonation and sono-Fenton processes were conducted individually to degrade the tetracycline for investigating their feasibility on tetracycline degradation. Effect of operational variables on tetracycline degradation, release of nitrogen and change of toxicity were also proposed. Initial tetracycline concentration was 50 mg/L. To evaluate the efficiency of tetracycline degradation by ozonation, the ozone gas was produced by an ozone generator (Model LAB2B, Ozonia) and introduced into the reactor with different flows (25 - 500 mL/min) at varying pH levels (pH 3 - pH 11) and reaction temperatures (15 - 55°C). In sono-Fenton system, an ultrasonic transducer (Microson VCX 750, USA) operated at 20 kHz combined with H₂O₂ (2 mM) and Fe²⁺ (0.2 mM) were carried out at different pH levels (pH 3 - pH 11), aeration gas and flows (air and oxygen; 0.2 - 1.0 L/min), tetracycline concentrations (10 - 200 mg/L), reaction temperatures (15 - 55°C) and ultrasonic powers (25 - 200 Watts), respectively. Sole ultrasound was ineffective on tetracycline degradation, where the degradation efficiencies were lower than 10% with 60 min reaction. Contribution of Fe²⁺ and H₂O₂ on the degradation of tetracycline was significant, where the maximum tetracycline degradation efficiency in sono-Fenton process was as high as 91.3% followed by 45.8% mineralization. Effect of initial pH level on tetracycline degradation was insignificant from pH 3 to pH 6 but significantly decreased as the pH was greater than pH 7. Increase of the ultrasonic power was slightly increased the degradation efficiency of tetracycline, which indicated that the hydroxyl radicals dominated the oxidation of tetracycline. Effects of aeration of air or oxygen with different flows and reaction temperatures were insignificant. Ozonation showed better efficiencies in tetracycline degradation, where the optimum reaction condition was found at pH 3, 100 mL O₃/min and 25°C with 94% degradation and 60% mineralization. The toxicity of tetracycline was significantly decreased due to the mineralization of tetracycline. In addition, less than 10% of nitrogen content was released to solution phase as NH₃-N, and the most degraded tetracycline cannot be full mineralized to CO₂. The results shown in this study indicated that both the sono-Fenton process and ozonation can effectively degrade the tetracycline and reduce its toxicity at profitable condition. The costs of two systems needed to be further investigated to understand the feasibility in tetracycline degradation.Keywords: degradation, detoxification, mineralization, ozonation, sono-Fenton process, tetracycline
Procedia PDF Downloads 268636 RF Plasma Discharge Equipment for Conservation Treatments of Paper Supports
Authors: Emil Ghiocel Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca
Abstract:
The application of cold radio-frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for RF cold plasma application on paper documents, developed within a research project. The equipment allows the application of decontamination and cleaning treatments on any type of paper support, as well as the coating with a protective polymer. The equipment consists in a Pyrex vessel, inside which are placed two plane-parallel electrodes, capacitively coupled to a radio-frequency generator. The operating parameters of the equipment are: 1.2 MHz frequency, 50V/cm electric field intensity, current intensity in the discharge 100 mA, 40 W power in the discharge, the pressure varying from 5∙10-1 mbar to 5.5∙10-1 mbar, depending on the fragility of the material, operating in gaseous nitrogen. In order to optimize the equipment treatments in nitrogen plasma have been performed on samples infested with microorganisms, then the decontamination and the changes in surface properties (color, pH) were assessed. The analyses results presented in the table revealed only minor modifications of surface pH the colorimetric analysis showing a slight change to yellow. The equipment offers the possibility of performing decontamination, cleaning and protective coating of paper-based documents in successive stages, thus avoiding the recontamination with harmful biological agents.Keywords: nitrogen plasma, cultural heritage, paper support, radio-frequency
Procedia PDF Downloads 523635 Notions of Social Justice and Educational Globalization: Evaluations of Israeli Teachers and Students across Sectors
Authors: Clara Sabbagh, Nura Resh
Abstract:
The study delves into students’ and teachers’ notions of social justice (social justice judgments or SJJ), examining how they are shaped by both educational globalization and local (nation-state) conditions. Using the Israeli school setting as a case study, we discuss the status of hegemonic Zionism and two influential perspectives of educational globalization – world culture and the post-colonial critique of neo-liberalism – and derive competing hypotheses about the notions of social justice embedded in them. Against this background, we investigate how SJJ are affected by generation – Israeli teachers and students – and by educational sectors that mirror the society’s major divide: Jewish and Israeli Arab. In order to examine these issues, we used a representative sample of 2000 Israeli students, as well as a sample of 800 social studies teachers. We applied MANOVA repeated-measure for examining to what extent SSJ are dependent upon the type of resource that is distributed (repeated measures) and generational (teachers vs students) and sectorial (Jewish vs. Arab) group variables. As expected, findings revealed that the local context does matter. In other words, rather than being consistent with any of the three perspectives above, findings suggest that respondents elaborate the intersection between global and local traditions by creating various forms of mingled notions of social justice. In other words, Israeli (Jewish and Arab) teachers and students can be conceived as agents who play an important role in recreating national heritages and who differently interpret the ways educational globalization impacts their lives.Keywords: educational globalization, social justice, teachers, Israel, Arab
Procedia PDF Downloads 225634 Response of Newzealand Rabbits to Drinking Water Treated with PolyDADMAC
Authors: Amna Beshir Medani Ahmed, Samia Mohammed Ali El Badwi, Ahmed El Amin Mohammed
Abstract:
This work has been managed to yield toxicity information on water treatment agents in the Sudan namely polyDADMAC, using New Zealand rabbits at multiple daily oral doses for a period of 10 weeks. Thirty-three heads of New Zealand rabbits were divided into 11 groups, each of three. Group 1 animals were the undosed controls. Test groups of either species were given polyDADMAC at similar dose rates of 0.5, 2.5, 4.5, 10, 15, 20, 25, 50, 100 and 150 mg/kg body weight respectively for groups 2,3,4,5,6,7,8,9,10 and 11. Clinical signs were closely observed with postmortem and histopathological examinations. Chemical investigations included enzymatic concentrations of ALP, GOT, CK, GPT and LDH together with hematological changes in Hb, PCV, RBCs and WBCs. Mortalities occurred to variable degrees irrespective of the dose level. On polyDADMAC challenge, the test species showed clinical signs of dullness, loss of weight, anorexia, diarrhea, difficulty in respiration, hind limb paralysis and recumbency. Notably oral dosing with polyDADMAC caused lung emphysema, hepatic and renal dysfunctions, irregularity in enzymatic activities and serum metabolites, sloughing of intestinal epithelium, decreased electrolytes in serum, and splenic haemosiderosis. On evaluation of the above results, polyDADMAC was considered toxic to New Zealand rabbits at all dose rates tried. Practical implications of the results were highlighted and suggestions for future work were put forward.Keywords: polydiallyldiethylaluminiumchloride (polyDADMAC), nubian goats, toxicity of drinking water, treatment of drinking water using chemicals
Procedia PDF Downloads 372633 Functionalized Titanium Dioxide Nanoparticles for Targeting and Disrupting Amyloid Fibrils
Authors: Elad Arad, Raz Jelinek, Hanna Rapaport
Abstract:
Amyloidoses are a family of diseases characterized by abnormal protein folding that leads to aggregation. They accumulate to form fibrillar plaques which are implicated in the pathogenesis of Alzheimer, prion, diabetes type II and other diseases. To the best of our knowledge, despite extensive research efforts devoted to plaque aggregates inhibition, there is yet no cure for this phenomenon. Titanium and its alloys are found in growing interest for biomedical applications. Variety of surface modifications enable porous, adhesive, bioactive coatings for its surface. Titanium oxides (titania) are also being developed for photothermal and photodynamic treatments. Inspired by this, we set to explore the effect of functionalized titania nanoparticles in combination with external stimuli, as potential photothermal ablating agents against amyloids. Titania nanoparticles were coated with bi-functional catechol derivatives (dihydroxy-phenylalanine propanoic acid, noted DPA) to gain targeting properties. In conjunction with UV-radiation, these nanoparticles may selectively destroy the vicinity of their target. Titania modified 5 nm nanoparticles coated with DPA were further conjugated to the amyloid-targeting Congo Red (CR). These Titania-DPA-CR nanoparticles were found to target mature amyloid fibril of both amyloid-β (Aβ 1-42 a.a). Moreover, irradiation of the peptides in presence of the modified nanoparticles decreased the aggregate content and oligomer fraction. This work provides insights into the use of modified titania nanoparticles for amyloid plaque targeting and photothermal destruction. It may shed light on future modifications and functionalization of titania nanoparticles for different applications.Keywords: titanium dioxide, amyloids, photothermal treatment, catechol, Congo-red
Procedia PDF Downloads 146632 Phenotypic Characterization of Listeria Spp Isolated from Chicken Carcasses Marketed in Northeast of Iran
Authors: Abdollah Jamshidi, Tayebeh Zeinali, Mehrnaz Rad, Jamshid Razmyar
Abstract:
Listeria infections occur worldwide in variety of animals and man. Listeriae are widely distributed in nature. The organism has been isolated from the feces of humans and several animals, different soils, plants, aquatic environments and food of animal and vegetable origin. Listeria monocytogenes is recognized as important food-borne pathogens due to its high mortality rate. This organism is able to growth at refrigeration temperature, and high osmotic pressure. Poultry can become contaminated environmentally or through healthy carrier birds. In recent decades, prophylactic use of antimicrobial agents may be lead to emergence of antibiotic resistant organisms, which can be transmitted to human through consumption of contaminated foods. In this study, from 200 fresh chicken carcasses samples which were collected randomly from different supermarkets and butcheries, 80 samples were detected as contaminate with Listeria spp. and 19% of the isolates identified as Listeria monocytogene using multiplex PCR assay. Conventional methods were used to differentiate other species of the listeria genus. The results showed the most prevalent isolates as L. monocytogenes (48.75%). Other isolates were detected as Listeria innocua (28.75%), Listeria murrayi (20%), Listeria grayi (3.75%) and Listeria welshimeri (2.5%).The Majority of the isolates had multidrug resistance to commonly used antibiotics. Most of them were resistant to erythromycin (50%), followed by Tetracycline (44.44%), Clindamycin (41.66%), and Trimethoprim (25%). Some of them showed resistance to chloramphenicol (17.65%). The results indicate the resistance of the isolates to antimicrobials commonly used to treat human listeriosis, which could be a potential health hazard for consumers.Keywords: listeria species, L. monocytogenes, antibiotic resistance, chicken carcass
Procedia PDF Downloads 382631 An Application of Path Planning Algorithms for Autonomous Inspection of Buried Pipes with Swarm Robots
Authors: Richard Molyneux, Christopher Parrott, Kirill Horoshenkov
Abstract:
This paper aims to demonstrate how various algorithms can be implemented within swarms of autonomous robots to provide continuous inspection within underground pipeline networks. Current methods of fault detection within pipes are costly, time consuming and inefficient. As such, solutions tend toward a more reactive approach, repairing faults, as opposed to proactively seeking leaks and blockages. The paper presents an efficient inspection method, showing that autonomous swarm robotics is a viable way of monitoring underground infrastructure. Tailored adaptations of various Vehicle Routing Problems (VRP) and path-planning algorithms provide a customised inspection procedure for complicated networks of underground pipes. The performance of multiple algorithms is compared to determine their effectiveness and feasibility. Notable inspirations come from ant colonies and stigmergy, graph theory, the k-Chinese Postman Problem ( -CPP) and traffic theory. Unlike most swarm behaviours which rely on fast communication between agents, underground pipe networks are a highly challenging communication environment with extremely limited communication ranges. This is due to the extreme variability in the pipe conditions and relatively high attenuation of acoustic and radio waves with which robots would usually communicate. This paper illustrates how to optimise the inspection process and how to increase the frequency with which the robots pass each other, without compromising the routes they are able to take to cover the whole network.Keywords: autonomous inspection, buried pipes, stigmergy, swarm intelligence, vehicle routing problem
Procedia PDF Downloads 166630 Anti-diabetic Potential of Olive (Olea Europaea) Leaves Extract: In Vitro and in Vivo Evaluation
Authors: Sobhy El-Sohaimy, Abduvali Toshev, Hanem Mansour
Abstract:
(1) Objective: The main objective of the current study was to evaluate in an In Vitro and In Vivo, the potential activity of olive leaves extract (OLE) in the treatment and/or preventing the diabetes mellitus type II and related implications; (2) Methodology: Five groups of male rats were used in the current study: group (1)- negative control (normal); group (2)- positive control, streptozotocin (STZ) induced rats; group (3)-diabetic rats treated with metformin (200 mg/kg) plus OLE (200 mg/kg); group 4- diabetic rats treated with metformin (200 mg/kg); group 5- diabetic rats treated with OLE (200 mg/kg). A four-week regime of oral treatment was administered once daily; (3) Results: Diabetic rats treated with metformin + OLE clearly showed normal blood glucose level (121.67 ± 5.49 mg/dl), and glycated hemoglobin (HbA1c) (3.70 ± 0.10%). The combination of metformin + OLE obviously showed a superior improvement in the lipid profile (TG, TC, HDL and LDL) compared to both metformin and OLE individually. The histological examination revealed that the combination of metformin + Olive leaves extract successfully repaired of the liver, kidneys, and pancreatic tissues in diabetic rats to be near to the normal status; (4) Conclusion: Finally, it can be concluded that, the combination of metformin and OLE exhibited a superior improvement than metformin and OLE individually which emphasized the promising adjuvant role of the OLE in the treatment protocol of diabetes mellitus type II.Keywords: olive (olea europaea) leaves extracts, hypoglycemic agents, cytotoxicity, nitic oxide scavenging activity, α-glucose oxidase inhibitor
Procedia PDF Downloads 74629 Co-Administration Effects of Conjugated Linoleic Acid and L-Carnitine on Weight Gain and Biochemical Profile in Diet Induced Obese Rats
Authors: Maryam Nazari, Majid Karandish, Alihossein Saberi
Abstract:
Obesity as a global health challenge motivates pharmaceutical industries to produce anti-obesity drugs. However, effectiveness of these agents is remained unclear. Because of popularity of dietary supplements, the aim of this study was tp investigate the effects of Conjugated Linoleic Acid (CLA) and L-carnitine (LC) on serum glucose, triglyceride, cholesterol and weight changes in diet induced obese rats. 48 male Wistar rats were randomly divided into two groups: Normal fat diet (n=8), and High fat diet (HFD) (n=32). After eight weeks, the second group which was maintained on HFD until the end of study, was subdivided into four categories: a) 500 mg Corn Oil (as control group), b) 500 mg CLA, c) 200 mg LC, d) 500 mg CLA+ 200 mg LC.All doses are planned per kg body weights, which were administered by oral gavage for four weeks. Body weights were measured and recorded weekly by means of a digital scale. At the end of the study, blood samples were collected for biochemical markers measurement. SPSS Version 16 was used for statistical analysis. At the end of 8th week, a significant difference in weight was observed between HFD and NFD group. After 12 weeks, LC significantly reduced weight gain by 4.2%. Trend of weight gain in CLA and CLA+LC groups was insignificantly decelerated. CLA+LC reduced triglyceride level significantly, but just CLA had significant influence on total cholesterol and insignificant decreasing effect on FBS. Our results showed that an obesogenic diet in a relative short time led to obesity and dyslipidemia which can be modified by LC and CLA to some extent.Keywords: conjugated linoleic acid, high fat diet, L-Carnitine, obesity
Procedia PDF Downloads 157628 Suture Biomaterials Development from Natural Fibers: Muga Silk (Antheraea assama) and Ramie (Boehmeria nivea)
Authors: Raghuram Kandimalla, Sanjeeb Kalita, Bhaswati Choudhury, Jibon Kotoky
Abstract:
The quest for developing an ideal suture material prompted our interest to develop a novel suture with advantageous characteristics to market available ones. We developed novel suture biomaterial from muga silk (Antheraea assama) and ramie (Boehmeria nivea) plant fiber. Field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), attenuated total reflection fourier transform infrared spectroscopy (ATR-FTIR) and thermo gravimetric analysis (TGA) results revealed the physicochemical properties of the fibers which supports the suitability of fibers for suture fabrication. Tensile properties of the prepared sutures were comparable with market available sutures and it found to be biocompatible towards human erythrocytes and nontoxic to mammalian cells. The prepared sutures completely healed the superficial deep wound incisions within seven days in adult male wister rats leaving no rash and scar. Histopathology studies supports the wound healing ability of sutures, as rapid synthesis of collagen, connective tissue and other skin adnexal structures were observed within seven days of surgery. Further muga suture surface modified by exposing the suture to oxygen plasma which resulted in formation of nanotopography on suture surface. Broad spectrum antibiotic amoxicillin was functionalized on the suture surface to prepare an advanced antimicrobial muga suture. Surface hydrophilicity induced by oxygen plasma results in an increase in drug-impregnation efficiency of modified muga suture by 16.7%. In vitro drug release profiles showed continuous and prolonged release of amoxicillin from suture up to 336 hours. The advanced muga suture proves to be effective against growth inhibition of Staphylococcus aureus and Escherichia coli, whereas normal muga suture offers no antibacterial activity against both types of bacteria. In vivo histopathology studies and colony-forming unit count data revealed accelerated wound healing activity of advanced suture over normal one through rapid synthesis and proliferation of collagen, hair follicle and connective tissues.Keywords: sutures, biomaterials, silk, Ramie
Procedia PDF Downloads 317627 Functional Diversity of Pseudomonas: Role in Stimulation of Bean Germination and Common Blight Biocontrol
Authors: Slimane Mokrani, Nabti El hafid
Abstract:
Description of the subject: Currently, several efforts focus on the study of biodiversity, microbial biotechnology, and the use of ecological strategies. Objectives: The aim of this present work is to determine the functional diversity of bacteria in rhizospheric and non-rhizospheric soils of different plants. Methods: Bacteria were isolated from soil and identified based on physiological and biochemical characters and genotypic taxonomy performed by 16S rDNA and BOX-PCR. As well as the characterization of various PGPR traits. Then, they are tested for their effects on the stimulation of seed germination and the growth of Phaseolus vulgaris L. As well as their biological control activities with regard to the phytopathogenic bacterial isolate Xapf. Results and Discussion: The biochemical and physiological identification of 75 bacterial isolates made it possible to associate them with the two groups of fluorescent Pseudomonas (74.67%) and non-fluorescent Pseudomonas (25.33%). The identification by 16S rDNA of 27 strains made it possible to attribute the majority of the strains to the genus Pseudomonas (81.48%), Serratia (7.41%) and Bacillus (11.11%). The bacterial strains showed a high capacity to produce IAA, siderophores, HCN and to solubilize phosphate. A significant stimulation of germination and growth was observed by applying the Pseudomonas strains. Furthermore, significant reductions in the severity and intensity of the disease caused caused by Xapf were observed. Conclusion: The bacteria described in this present study endowed with different PGPR activities seem to be very promising for their uses as biological control agents and bio-fertilization.Keywords: biofertilization, biological control, phaseolus vulgaris L, pseudomonas, Xanthomonas axonopodis pv. phaseoli var. fuscans and common blight
Procedia PDF Downloads 81626 Simulation and Controller Tunning in a Photo-Bioreactor Applying by Taguchi Method
Authors: Hosein Ghahremani, MohammadReza Khoshchehre, Pejman Hakemi
Abstract:
This study involves numerical simulations of a vertical plate-type photo-bioreactor to investigate the performance of Microalgae Spirulina and Control and optimization of parameters for the digital controller by Taguchi method that MATLAB software and Qualitek-4 has been made. Since the addition of parameters such as temperature, dissolved carbon dioxide, biomass, and ... Some new physical parameters such as light intensity and physiological conditions like photosynthetic efficiency and light inhibitors are involved in biological processes, control is facing many challenges. Not only facilitate the commercial production photo-bioreactor Microalgae as feed for aquaculture and food supplements are efficient systems but also as a possible platform for the production of active molecules such as antibiotics or innovative anti-tumor agents, carbon dioxide removal and removal of heavy metals from wastewater is used. Digital controller is designed for controlling the light bioreactor until Microalgae growth rate and carbon dioxide concentration inside the bioreactor is investigated. The optimal values of the controller parameters of the S/N and ANOVA analysis software Qualitek-4 obtained With Reaction curve, Cohen-Con and Ziegler-Nichols method were compared. The sum of the squared error obtained for each of the control methods mentioned, the Taguchi method as the best method for controlling the light intensity was selected photo-bioreactor. This method compared to control methods listed the higher stability and a shorter interval to be answered.Keywords: photo-bioreactor, control and optimization, Light intensity, Taguchi method
Procedia PDF Downloads 392625 Enhanced Photocatalytic Activities of TiO2/Ag2O Heterojunction Nanotubes Arrays Obtained by Electrochemical Method
Authors: Magdalena Diaka, Paweł Mazierski, Joanna Żebrowska, Michał Winiarski, Tomasz Klimczuk, Adriana Zaleska-Medynska
Abstract:
During the last years, TiO2 nanotubes have been widely studied due to their unique highly ordered array structure, unidirectional charge transfer and higher specific surface area compared to conventional TiO2 powder. These photoactive materials, in the form of thin layer, can be activated by low powered and low cost irradiation sources (such as LEDs) to remove VOCs, microorganism and to deodorize air streams. This is possible due to their directly growth on a support material and high surface area, which guarantee enhanced photon absorption together with an extensive adsorption of reactant molecules on the photocatalyst surface. TiO2 nanotubes exhibit also lots of other attractive properties, such as potential enhancement of electron percolation pathways, light conversion, and ion diffusion at the semiconductor-electrolyte interface. Pure TiO2 nanotubes were previously used to remove organic compounds from the gas phase as well as in water splitting reaction. The major factors limiting the use of TiO2 nanotubes, which have not been fully overcome, are their relatively large band gap (3-3,2 eV) and high recombination rate of photogenerated electron–hole pairs. Many different strategies were proposed to solve this problem, however titania nanostructures containing incorporated metal oxides like Ag2O shows very promising, new optical and photocatalytic properties. Unfortunately, there is still very limited number of reports regarding application of TiO2/MxOy nanostructures. In the present work, we prepared TiO2/Ag2O nanotubes obtained by anodization of Ti-Ag alloys containing 5, 10 and 15 wt. % Ag. Photocatalysts prepared in this way were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), luminescence spectroscopy and UV-Vis spectroscopy. The activities of new TiO2/Ag2O were examined by photocatalytic degradation of toluene in gas phase reaction and phenol in aqueous phase using 1000 W Xenon lamp (Oriel) and light emitting diodes (LED) as a irradiation sources. Additionally efficiency of bacteria (Pseudomonas aeruginosa) removal from the gas phase was estimated. The number of surviving bacteria was determined by the serial twofold dilution microtiter plate method, in Tryptic Soy Broth medium (TSB, GibcoBRL).Keywords: photocatalysis, antibacterial properties, titania nanotubes, new TiO2/MxOy nanostructures
Procedia PDF Downloads 293624 Potential Drug-Drug Interactions at a Referral Hematology-Oncology Ward in Iran: A Cross-Sectional Study
Authors: Sara Ataei, Molouk Hadjibabaie, Shirinsadat Badri, Amirhossein Moslehi, Iman Karimzadeh, Ardeshir Ghavamzadeh
Abstract:
Purpose: To assess the pattern and probable risk factors for moderate and major drug–drug interactions in a referral hematology-oncology ward in Iran. Methods: All patients admitted to hematology–oncology ward of Dr. Shariati Hospital during a 6-month period and received at least two anti-cancer or non-anti-cancer medications simultaneously were included. All being scheduled anti-cancer and non-anti-cancer medications both prescribed and administered during ward stay were considered for drug–drug interaction screening by Lexi-Interact On- Desktop software. Results: One hundred and eighty-five drug–drug interactions with moderate or major severity were detected from 83 patients. Most of drug–drug interactions (69.73 %) were classified as pharmacokinetics. Fluconazole (25.95 %) was the most commonly offending medication in drug–drug interactions. Interaction of sulfamethoxazole-trimethoprim with fluconazole was the most common drug–drug interaction (27.27 %). Vincristine with imatinib was the only identified interaction between two anti-cancer agents. The number of administered medications during ward stay was considered as an independent risk factor for developing a drug–drug interaction. Conclusions: Potential moderate or major drug–drug interactions occur frequently in patients with hematological malignancies or related diseases. Performing larger standard studies are required to assess the real clinical and economical effects of drug–drug interactions on patients with hematological and non-hematological malignancies.Keywords: drug–drug interactions, hematology–oncology ward, hematological malignancies
Procedia PDF Downloads 453623 Understanding the Mechanisms of Salmonella typhimurium Resistance to Cannabidiol
Authors: Iddrisu Ibrahim, Joseph Atia Ayariga, Junhuan Xu, Daniel Abugri, Boakai Robertson, Olufemi S. Ajayi
Abstract:
The emergence of multidrug resistance poses a huge risk to public health globally. Yet these recalcitrant pathogens continue to rise in incidence rate, with resistance rates significantly outpacing the speed of antibiotic development. This, therefore, presents an aura of related health issues such as untreatable nosocomial infections arising from organ transplants and surgeries, as well as community-acquired infections that are related to people with compromised immunity, e.g., diabetic and HIV patients, etc. There is a global effort to fight multidrug-resistant pathogens spearheaded by the World Health Organization, thus calling for research into novel antimicrobial agents to fight multiple drug resistance. Previously, our laboratory demonstrated that Cannabidiol (CBD) was an effective antimicrobial against Salmonella typhimurium (S. typhimurium). However, we observed resistance development over time. To understand the mechanisms S. typhimurium uses to develop resistance to Cannabidiol (CBD), we studied the abundance of bacteria lipopolysaccharide (LPS) and membrane sterols of both susceptible and resistant S. typhimurium. Using real-time quantitative polymerase chain reaction (RT-qPCR), we also analyzed the expression of selected genes known for aiding resistance development in S. typhimurium. We discovered that there was a significantly higher expression of blaTEM, fimA, fimZ, and integrons in the CBD-resistant bacteria, and these were also accompanied by a shift in abundance in cell surface molecules such as lipopolysaccharide (LPS) and sterols.Keywords: antimicrobials, resistance, cannabidiol, gram-negative bacteria, integrons, blaTEM, Fim, LPS, ergosterols
Procedia PDF Downloads 101622 Hepatoprotective Activity of Sharbat Deenar, against Carbon Tetrachloride-Induced Hepatotoxicity in Rats
Authors: Nazmul Huda, Ashik Mosaddik, Abdul Awal, Shafiqur Rahman, Rukhsana Shaheen, Mustofa Nabi
Abstract:
Polyherbal formulation Sharbat Deenar is a very popular unani medicine in Bangladesh. It is usually used for different kinds of liver disorders. In absence of reliable and inadequate hepatoprotective agents in conventional medicine, the herbal preparations are preferred for liver diseases. The present study was designed to evaluate the hepatoprotective activity of Sharbat Deenar on carbon tetrachloride (CCl4) induced hepatotoxicity in male Long-Evans albino rats. Group I served as normal control and received neither formulation nor carbon tetrachloride. Group II received only CCl4 1mL/kg body weight of rat intraperitoneally for consecutive 14 days. Group III received CCl4 1mL/kg body weight of rat intraperitoneally and Silymarin, in dose 50mg/kg body weight of rat orally. Group IV received CCl4 1mL/kg body weight of rat intraperitoneally and Sharbat Deenar 1mL/kg body weight of rat for the same 14 consecutive days. At the end of the study, hepatoprotective activity was evaluated by the levels of total bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST) and alkaline phosphatase (ALP). Histopathological study of rat liver was also carried out. The results showed that polyherbal formulation Sharbat Deenar exhibited a significant hepatoprotective effect. Such an outcome seems to be the synergistic effect of all ingredients of tested herbal formulation. Although this study suggests that Sharbat Deenar may be used to cure or minimize various liver diseases, it needs further study to attain the clarity of mechanism and safety.Keywords: polyherbal formulation, sharbat deenar, carbon tetrachloride, silymarin, hepatoprotective
Procedia PDF Downloads 550621 Chemical Analysis, Antioxidant Activity and Antimicrobial Activity of Isolated Compounds and Essential Oil from Callistemon citrinus Leaf
Authors: Manal M. Hamed, Mosad A. Ghareeb, Abdel-Aleem H. Abdel-Aleem, Amal M. Saad, Mohamed S. Abdel-Aziz, Asmaa H. Hadad
Abstract:
Natural products derived from medicinal plants provide unlimited opportunities for a new medication leads because of the unmatched accessibility of chemical variation. Six compounds were isolated from the n-butanol extract of Callistemon citrinus (Family Myrtaceae), they were identified as; nepetolide (1), callislignan A (2), 6,8-dimethoxy-4,5-dimethyl-3-methyleneisochroman-1-one (3), 3-methyl-7-O-benzoyl-β-D-glucopyranoside (4), 5, 7, 3', 5'-tetrahydroxy-6, 8-di-C-methyl flavanone (5), and (2R,3R,4S,5S)-2,4-bis(4-hydroxyphenyl)-3,5-dihydroxy-tetrahydropyran (6). The isolated compounds were evaluated as antioxidant and antimicrobial agents. The antioxidant activities of the compounds were determined using DPPH-radical scavenging and total antioxidant capacity (TAC) assays. The results indicated that compound (5) was most active in its capacity to scavenge free radicals in the DPPH assay [SC50 value, 4.65 ± 0.74μg/mL] compared to the standard ascorbic acid and exhibited the highest activity in the TAC assay (610.45 ± 1.67mg AAE/g compound). The pure isolates were tested for their antimicrobial activity against four pathogenic microbial strains including Staphylococcus aureus, Methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa and Candida albicans. Also, the GC/MS analysis of its leaves essential oil presented nine identified compounds representing 91% of the total oil constituents. The outcomes got from this study give a reasonable justification for the medicinal uses of Callistemon citrinus plant.Keywords: Callistemon citrinus, flavanone, antioxidant activity, antimicrobial activity, essential oil, Myrtaceae
Procedia PDF Downloads 295620 In-silico Antimicrobial Activity of Bioactive Compounds of Ricinus communis against DNA Gyrase of Staphylococcus aureus as Molecular Target
Authors: S. Rajeswari
Abstract:
Medicinal Plant extracts and their bioactive compounds have been used for antimicrobial activities and have significant remedial properties. In the recent years, a wide range of investigations have been carried out throughout the world to confirm antimicrobial properties of different medicinally important plants. A number of plants showed efficient antimicrobial activities, which were comparable to that of synthetic standard drugs or antimicrobial agents. The large family Euphorbiaceae contains nearly about 300 genera and 7,500 speciesand one among is Ricinus communis or castor plant which has high traditional and medicinal value for disease free healthy life. Traditionally the plant is used as laxative, purgative, fertilizer and fungicide etc. whereas the plant possess beneficial effects such as anti-oxidant, antihistamine, antinociceptive, antiasthmatic, antiulcer, immunomodulatory anti diabetic, hepatoprotective, anti inflammatory, antimicrobial, and many other medicinal properties. This activity of the plant possess due to the important phytochemical constituents like flavonoids, saponins, glycosides, alkaloids and steroids. The presents study includes the phytochemical properties of Ricinus communis and to prediction of the anti-microbial activity of Ricinus communis using DNA gyrase of Staphylococcus aureus as molecular target. Docking results of varies chemicals compounds of Ricinus communis against DNA gyrase of Staphylococcus aureus by maestro 9.8 of Schrodinger show that the phytochemicals are effective against the target protein DNA gyrase. our studies suggest that the phytochemical from Ricinus communis such has INDICAN (G.Score 4.98) and SUPLOPIN-2(G.Score 5.74) can be used as lead molecule against Staphylococcus infections.Keywords: euphorbiaceae, antimicrobial activity, Ricinus communis, Staphylococcus aureus
Procedia PDF Downloads 479619 Hemoglobin Levels at a Standalone Dialysis Unit
Authors: Babu Shersad, Partha Banerjee
Abstract:
Reduction in haemoglobin levels has been implicated to be a cause for reduced exercise tolerance and cardiovascular complications of chronic renal diseases. Trends of hemoglobin levels in patients on haemodialysis could be an indicator of efficacy of hemodialysis and an indicator of quality of life in haemodialysis patients. In the UAE, the rate of growth (of patients on dialysis) is 10 to 15 per cent per year. The primary mode of haemodialysis in the region is based on in-patient hospital-based hemodialysis units. The increase in risk of cardiovascular and cerebrovascular morbidity as well as mortality in pre-dialysis Chronic Renal Disease has been reported. However, data on the health burden on haemodialysis in standalone dialysis facilities is very scarce. This is mainly due to the paucity of ambulatory centres for haemodialysis in the region. AMSA is the first center to offer standalone dialysis in the UAE and a study over a one year period was performed. Patient data was analyzed using a questionnaire for 45 patients with an average of 2.5 dialysis sessions per week. All patients were on chronic haemodialysis as outpatients. The trends of haemoglobin levels as an independent variable were evaluated. These trends were interpreted in comparison with other parameters of renal function (creatinine, uric acid, blood pressure and ferritin). Trends indicate an increase in hemoglobin levels with increased supplementation of iron and erythropoietin over time. The adequacy of hemodialysis shows improvement concomitantly. This, in turn, correlates with better patient outcomes and has a direct impact on morbidity and mortality. This study is a pilot study and further studies are indicated so that objective parameters can be studied and validated for hemodialysis in the region.Keywords: haemodialysis, haemoglobin in haemodialysis, haemodialysis parameters, erythropoietic agents in haemodialysis
Procedia PDF Downloads 288618 Managing Organizational Change for a Transformation Project: The Billing and Customer Relationship Management Journey
Authors: Sharifah I. N. A. Syed Azmi, Nazarina Mohd Nasir
Abstract:
The Billing & Customer Relationship Management (BCRM) project is an important enabler towards realizing customer experience transformation. It involves technological shifts for future scalability, revision of multiple business processes and adoption of change by the users and impacted employees. This massive transition, if not managed properly, may result in the decline of business performance due to productivity drop. Organizational change management is an essential element in BCRM project implementation to ensure the system is well understood and embraced by all stakeholders. In order to move impacted employees from unaware state or denial mode to full-acceptance mindset and committing themselves in using the new system, their involvement in the whole change process starting from the initial stage is imperative. Through the BCRM Change Management Plan, a holistic approach was taken whereby the strategy and program for five key components namely executive sponsorship, continuous communication, process change readiness, organizational readiness and individual readiness were all carefully established. Roles of the project sponsor, change agents, change ambassadors and community of practice (CoP) were clearly defined in gaining high commitment and support across the entire organization. Continuous communication and engagement initiatives throughout project implementation have been carried out to reach all stakeholders. The business readiness was constantly monitored and assessed including effectiveness of end-user training, thorough review of process documentation and completion of roles realignment exercise.Keywords: BCRM, change management, organizational change, transformation project
Procedia PDF Downloads 141617 Effects of Probiotic Pseudomonas fluorescens on the Growth Performance, Immune Modulation, and Histopathology of African Catfish (Clarias gariepinus)
Authors: Nelson R. Osungbemiro, O. A. Bello-Olusoji, M. Oladipupo
Abstract:
This study was carried out to determine the effects of probiotics Pseudomonas fluorescens on the growth performance, histology examination and immune modulation of African Catfish, (Clarias gariepinus) challenged with Clostridium botulinum. P. fluorescens, and C. botulinum isolates were removed from the gut, gill and skin organs of procured adult samples of Clarias gariepinus from commercial fish farms in Akure, Ondo State, Nigeria. The physical and biochemical tests were performed on the bacterial isolates using standard microbiological techniques for their identification. Antibacterial activity tests on P. fluorescens showed inhibition zone with mean value of 3.7 mm which indicates high level of antagonism. The experimental diets were prepared at different probiotics bacterial concentration comprises of five treatments of different bacterial suspension, including the control (T1), T2 (10³), T3 (10⁵), T4 (10⁷) and T5 (10⁹). Three replicates for each treatment type were prepared. Growth performance and nutrients utilization indices were calculated. The proximate analysis of fish carcass and experimental diet was carried out using standard methods. After feeding for 70 days, haematological values and histological test were done following standard methods; also a subgroup from each experimental treatment was challenged by inoculating Intraperitonieally (I/P) with different concentration of pathogenic C. botulinum. Statistically, there were significant differences (P < 0.05) in the growth performance and nutrient utilization of C. gariepinus. Best weight gain and feed conversion ratio were recorded in fish fed T4 (10⁷) and poorest value obtained in the control. Haematological analyses of C. gariepinus fed the experimental diets indicated that all the fish fed diets with P. fluorescens had marked significantly (p < 0.05) higher White Blood Cell than the control diet. The results of the challenge test showed that fish fed the control diet had the highest mortality rate. Histological examination of the gill, intestine, and liver of fish in this study showed several histopathological alterations in fish fed the control diets compared with those fed the P. fluorescens diets. The study indicated that the optimum level of P. fluorescens required for C. gariepinus growth and white blood cells formation is 10⁷ CFU g⁻¹, while carcass protein deposition required 10⁵ CFU g⁻¹ of P. fluorescens concentration. The study also confirmed P. fluorescens as efficient probiotics that is capable of improving the immune response of C. gariepinus against the attack of a virulent fish pathogen, C. botulinum.Keywords: Clarias gariepinus, Clostridium botulinum, probiotics, Pseudomonas fluorescens
Procedia PDF Downloads 163616 A Multi-Agent Smart E-Market Design at Work for Shariah Compliant Islamic Banking
Authors: Wafa Ghonaim
Abstract:
Though quite fast on growth, Islamic financing at large, and its diverse instruments, is a controversial matter among scholars. This is evident from the ongoing debates on its Shariah compliance. Arguments, however, are inciting doubts and concerns among clients about its credibility, which is harming this lucrative sector. The work here investigates, particularly, some issues related to the Tawarruq instrument. The work examines the issues of linking Murabaha and Wakala contracts, the reselling of commodities to same traders, and the transfer of ownerships. The work affirms that a multi-agent smart electronic market design would facilitate Shariah compliance. The smart market exploits the rational decision-making capabilities of autonomous proxy agents that enable the clients, traders, brokers, and the bank buy and sell commodities, and manage transactions and cash flow. The smart electronic market design delivers desirable qualities that terminate the need for Wakala contracts and the reselling of commodities to the same traders. It also resolves the ownership transfer issues by allowing stakeholders to trade independently. The bank administers the smart electronic market and assures reliability of trades, transactions and cash flow. A multi-agent simulation is presented to validate the concept and processes. We anticipate that the multi-agent smart electronic market design would deliver Shariah compliance of personal financing to the aspiration of scholars, banks, traders and potential clients.Keywords: Islamic finance, share'ah compliance, smart electronic markets design, multiagent systems
Procedia PDF Downloads 317615 Structural Insights into the Bypass of the Major Deaminated Purines by Translesion Synthesis DNA Polymerase
Authors: Hunmin Jung, Michael Hawkins, Seongmin Lee
Abstract:
The exocyclic amines of nucleobases can undergo deamination by various DNA damaging agents such as reactive oxygen species, nitric oxide, and water. The deamination of guanine and adenine generates the promutagenic xanthine and hypoxanthine, respectively. The exocyclic amines of bases in DNA are hydrogen bond donors, while the carbonyl moiety generated by the base deamination acts as hydrogen bond acceptors, which can alter base pairing properties of the purines. Xanthine is known to base pair with both cytosine and thymine, while hypoxanthine predominantly pairs with cytosine to promote A to G mutations. Despite the known promutagenicity of the major deaminated purines, structures of DNA polymerase bypassing these lesions have not been reported. To gain insights into the deaminated-induced mutagenesis, we solved crystal structures of human DNA polymerase η (polη) catalyzing across xanthine and hypoxanthine. In the catalytic site of polη, the deaminated guanine (i.e., xanthine) forms three Watson-Crick-like hydrogen bonds with an incoming dCTP, indicating the O2-enol tautomer of xanthine involves in the base pairing. The formation of the enol tautomer appears to be promoted by the minor groove contact by Gln38 of polη. When hypoxanthine is at the templating position, the deaminated adenine uses its O6-keto tautomer to form two Watson-Crick hydrogen bonds with an incoming dCTP, providing the structural basis for the high promutagenicity of hypoxanthine.Keywords: DNA damage, DNA polymerase, deamination, mutagenesis, tautomerization, translesion synthesis
Procedia PDF Downloads 134614 Generation Mechanism of Opto-Acoustic Wave from in vivo Imaging Agent
Authors: Hiroyuki Aoki
Abstract:
The optoacoustic effect is the energy conversion phenomenon from light to sound. In recent years, this optoacoustic effect has been utilized for an imaging agent to visualize a tumor site in a living body. The optoacoustic imaging agent absorbs the light and emits the sound signal. The sound wave can propagate in a living organism with a small energy loss; therefore, the optoacoustic imaging method enables the molecular imaging of the deep inside of the body. In order to improve the imaging quality of the optoacoustic method, the more signal intensity is desired; however, it has been difficult to enhance the signal intensity of the optoacoustic imaging agent because the fundamental mechanism of the signal generation is unclear. This study deals with the mechanism to generate the sound wave signal from the optoacoustic imaging agent following the light absorption by experimental and theoretical approaches. The optoacoustic signal efficiency for the nano-particles consisting of metal and polymer were compared, and it was found that the polymer particle was better. The heat generation and transfer process for optoacoustic agents of metal and polymer were theoretically examined. It was found that heat generated in the metal particle rapidly transferred to the water medium, whereas the heat in the polymer particle was confined in itself. The confined heat in the small particle induces the massive volume expansion, resulting in the large optoacoustic signal for the polymeric particle agent. Thus, we showed that heat confinement is a crucial factor in designing the highly efficient optoacoustic imaging agent.Keywords: nano-particle, opto-acoustic effect, in vivo imaging, molecular imaging
Procedia PDF Downloads 131613 Prospects in Development of Ecofriendly Biopesticides in Management of Postharvest Fungal Deterioration of Cassava (Manihot esculenta Crantz)
Authors: Anderson Chidi Amadioha, Promise Chidi Kenkwo, A. A. Markson
Abstract:
Cassava (Manihot esculenta Crantz) is an important food and cash crop that provide cheap source of carbohydrate for food, feed and raw material for industries hence a commodity for feature economic development of developing countries. Despite the importance, its production potentials is undermined by disease agents that greatly reduce yield and render it unfit for human consumption and industrial use. Pathogenicity tests on fungal isolates from infected cassava revealed Aspergillus flavus, Rhizopus stolonifer, Aspergillus niger, and Trichodderma viride as rot-causing organisms. Water and ethanol extracts of Piper guineense, Ocimum graticimum, Cassia alata, and Tagetes erecta at 50% concentration significantly inhibited the radial growth of the pathogens in vitro and their development and spread in vivo. Low cassava rot incidence and severity was recorded when the extracts were applied before than after spray inoculating with spore suspension (1x105 spores/ml of distilled water) of the pathogenic organisms. The plant materials are readily available, and their extracts are biodegradable and cost effective. The fungitoxic potentials of extracts of these plant materials could be exploited as potent biopesticides in the management of postharvest fungal deterioration of cassava especially in developing countries where synthetic fungicides are not only scarce but also expensive for resource poor farmers who produce over 95% of the food consumed.Keywords: cassava, biopesticides, in vitro, in vivo, pathogens, plant extracts
Procedia PDF Downloads 180612 A Review on the Importance of Nursing Approaches in Nutrition of Children with Cancer
Authors: Ş. Çiftcioğlu, E. Efe
Abstract:
In recent years, cancer has been at the top of diseases that cause death in children. Adequate and balanced nutrition plays an important role in the treatment of cancer. Cancer and cancer treatment is affecting food intake, absorption and metabolism, causing nutritional disorders. Appropriate nutrition is very important for the cancerous child to feel well before, during and after the treatment. There are various difficulties in feeding children with cancer. These are the cancer-related factors. Other factors are environmental and behavioral. As health professionals who spend more time with children in the hospital, nurses should be able to support the children on nutrition and help them to have balanced nutrition. This study aimed to evaluate the importance of nursing approaches in the nutrition of children with cancer. This article is planned as a review article by searching the literature on this field. Anorexia may develop due to psychogenic causes or chemotherapeutic agents or accompanying infections and nutrient uptake may be reduced. In addition, stomatitis, mucositis, taste and odor changes in the mouth, the feeling of nausea, vomiting and diarrhea can also reduce oral intake and result in significant losses in the energy deficit. In assessing the nutritional status of children with cancer, determining weight loss and good nutrition is essential anamnesis of a child. Some anthropometric measurements and biochemical tests should be used to evaluate the nutrition of the child. The nutritional status of pediatric cancer patients has been studied for a long time and malnutrition, in particular under nutrition, in this population has long been recognized. Yet, its management remains variable with many malnourished children going unrecognized and consequently untreated. Nutritional support is important to pediatric cancer patients and should be integrated into the overall treatment of these children.Keywords: cancer treatment, children, complication, nutrition, nursing approaches
Procedia PDF Downloads 220611 Dual Drug Piperine-Paclitaxel Nanoparticles Inhibit Migration and Invasion in Human Breast Cancer Cells
Authors: Monika Verma, Renuka Sharma, B. R. Gulati, Namita Singh
Abstract:
In combination therapy, two chemotherapeutic agents work together in a collaborative action. It has appeared as one of the promising approaches to improve anti-cancer treatment efficacy. In the present investigation, piperine (P-NPS), paclitaxel (PTX NPS), and a combination of both, piperine-paclitaxel nanoparticle (Pip-PTX NPS), were made by the nanoprecipitation method and later characterized by PSA, DSC, SEM, TEM, and FTIR. All nanoparticles exhibited a monodispersed size distribution with a size of below 200 nm, zeta potential ranges from (-30-40mV) and a narrow polydispersity index (>0.3) of the drugs. The average encapsulation efficiency was found to be between 80 and 90%. In vitro release of drugs for nanoparticles was done spectrophotometrically. FTIR and DSC results confirmed the presence of the drug. The Pip-PTX NPS significantly inhibit cell proliferation as compared to the native drugs nanoparticles in the breast cancer cell line MCF-7. In addition, Pip-PTX NPS suppresses cells in colony formation and soft gel agar assay. Scratch migration and Transwell chamber invasion assays revealed that combined nanoparticles reduce the migration and invasion of breast cancer cells. Morphological studies showed that Pip-PTX NPS penetrates the cells and induces apoptosis, which was further confirmed by DNA fragmentation, SEM, and western blot analysis. Taken together, Pip-PTX NPS inhibits cell proliferation, anchorage dependent and anchorage independent cell growth, reduces migration and invasion, and induces apoptosis in cells. These findings support that combination therapy using Pip-PTX NPS represents a potential approach and could be helpful in the future for breast cancer therapy.Keywords: piperine, paclitaxel, breast cancer, apoptosis
Procedia PDF Downloads 101