Search results for: thermo-hydraulic performance factor
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17366

Search results for: thermo-hydraulic performance factor

3716 Prevalence of Obesity and Associated Risk Factors in South African Employees

Authors: Jeanne Grace, Shereen Currie

Abstract:

Background: Obesity associated comorbidities increase the risk of morbidity and mortality among employees in the workplace. Objectives: The study aimed to determine the prevalence of obesity and comorbidities like diabetes, hypertension, and hypercholesterolemia associated with obesity within the workplace in South Africa. Methods: A total of 17359 male (n = 8561) and female (n = 8798) employees, aged between 18-64 years (40.8 ± 11.0), from various corporate and industrial companies in South Africa participated in the study. Subjects were assigned to one of five body mass index (BMI) categories, according to their BMI: normal weight, BMI of 18.5‒24.9 kg/m² (n = 7338); overweight, BMI of 25.0‒29.9 kg/m² (n = 6323); obese class I, BMI of 30.0-34.9 kg/m² (n = 2552); obese class II, BMI of 35.0-39.9 kg/m² (n = 782); and obese class III, BMI of ≥ 40 kg/m² (n = 364). Height, weight, blood pressure, random blood glucose, and total cholesterol were measured. Results: The prevalence of normal weight men was 29.2% and women 55.0%; overweight men 46.4% and women 26.7%, obese men 24.4% and women 18.3%. A significant association (p<0.01) of BMI with diabetes, systolic and diastolic hypertension, and hypercholesterolemia were noted. Conclusion: Obesity is strongly associated with adverse comorbidities that may impact employees’ quality of life and performance. If unaddressed, it can increase comorbidities, not only affecting the bottom line of companies but causing morbidity and mortality, including sudden death.

Keywords: body mass index, cholesterol, blood glucose, workplace

Procedia PDF Downloads 191
3715 Regional Dynamics of Innovation and Entrepreneurship in the Optics and Photonics Industry

Authors: Mustafa İlhan Akbaş, Özlem Garibay, Ivan Garibay

Abstract:

The economic entities in innovation ecosystems form various industry clusters, in which they compete and cooperate to survive and grow. Within a successful and stable industry cluster, the entities acquire different roles that complement each other in the system. The universities and research centers have been accepted to have a critical role in these systems for the creation and development of innovations. However, the real effect of research institutions on regional economic growth is difficult to assess. In this paper, we present our approach for the identification of the impact of research activities on the regional entrepreneurship for a specific high-tech industry: optics and photonics. The optics and photonics has been defined as an enabling industry, which combines the high-tech photonics technology with the developing optics industry. The recent literature suggests that the growth of optics and photonics firms depends on three important factors: the embedded regional specializations in the labor market, the research and development infrastructure, and a dynamic small firm network capable of absorbing new technologies, products and processes. Therefore, the role of each factor and the dynamics among them must be understood to identify the requirements of the entrepreneurship activities in optics and photonics industry. There are three main contributions of our approach. The recent studies show that the innovation in optics and photonics industry is mostly located around metropolitan areas. There are also studies mentioning the importance of research center locations and universities in the regional development of optics and photonics industry. These studies are mostly limited with the number of patents received within a short period of time or some limited survey results. Therefore the first contribution of our approach is conducting a comprehensive analysis for the state and recent history of the photonics and optics research in the US. For this purpose, both the research centers specialized in optics and photonics and the related research groups in various departments of institutions (e.g. Electrical Engineering, Materials Science) are identified and a geographical study of their locations is presented. The second contribution of the paper is the analysis of regional entrepreneurship activities in optics and photonics in recent years. We use the membership data of the International Society for Optics and Photonics (SPIE) and the regional photonics clusters to identify the optics and photonics companies in the US. Then the profiles and activities of these companies are gathered by extracting and integrating the related data from the National Establishment Time Series (NETS) database, ES-202 database and the data sets from the regional photonics clusters. The number of start-ups, their employee numbers and sales are some examples of the extracted data for the industry. Our third contribution is the utilization of collected data to investigate the impact of research institutions on the regional optics and photonics industry growth and entrepreneurship. In this analysis, the regional and periodical conditions of the overall market are taken into consideration while discovering and quantifying the statistical correlations.

Keywords: entrepreneurship, industrial clusters, optics, photonics, emerging industries, research centers

Procedia PDF Downloads 411
3714 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 89
3713 Modal Analysis of FGM Plates Using Finite Element Method

Authors: S. J. Shahidzadeh Tabatabaei, A. M. Fattahi

Abstract:

Modal analysis of an FGM plate containing the ceramic phase of Al2O3 and metal phase of stainless steel 304 was performed using ABAQUS, with the assumptions that the material has an elastic mechanical behavior and its Young modulus and density are varying in thickness direction. For this purpose, a subroutine was written in FORTRAN and linked with ABAQUS. First, a simulation was performed in accordance to other researcher’s model, and then after comparing the obtained results, the accuracy of the present study was verified. The obtained results for natural frequency and mode shapes indicate good performance of user-written subroutine as well as FEM model used in present study. After verification of obtained results, the effect of clamping condition and the material type (i.e. the parameter n) was investigated. In this respect, finite element analysis was carried out in fully clamped condition for different values of n. The results indicate that the natural frequency decreases with increase of n, since with increase of n, the amount of ceramic phase in FGM plate decreases, while the amount of metal phase increases, leading to decrease of the plate stiffness and hence, natural frequency, as the Young modulus of Al2O3 is equal to 380 GPa and the Young modulus of stainless steel 304 is equal to 207 GPa.

Keywords: FGM plates, modal analysis, natural frequency, finite element method

Procedia PDF Downloads 343
3712 Review and Evaluation of Trending Canonical Correlation Analyses-Based Brain Computer Interface Methods

Authors: Bayar Shahab

Abstract:

The fast development of technology that has advanced neuroscience and human interaction with computers has enabled solutions to various problems, and issues of this new era have been found and are being found like no other time in history. Brain-computer interface so-called BCI has opened the door to several new research areas and have been able to provide solutions to critical and important issues such as supporting a paralyzed patient to interact with the outside world, controlling a robot arm, playing games in VR with the brain, driving a wheelchair or even a car and neurotechnology enabled the rehabilitation of the lost memory, etc. This review work presents state-of-the-art methods and improvements of canonical correlation analyses (CCA), which is an SSVEP-based BCI method. These are the methods used to extract EEG signal features or, to be said in a different way, the features of interest that we are looking for in the EEG analyses. Each of the methods from oldest to newest has been discussed while comparing their advantages and disadvantages. This would create a great context and help researchers to understand the most state-of-the-art methods available in this field with their pros and cons, along with their mathematical representations and usage. This work makes a vital contribution to the existing field of study. It differs from other similar recently published works by providing the following: (1) stating most of the prominent methods used in this field in a hierarchical way (2) explaining pros and cons of each method and their performance (3) presenting the gaps that exist at the end of each method that can open the understanding and doors to new research and/or improvements.

Keywords: BCI, CCA, SSVEP, EEG

Procedia PDF Downloads 147
3711 Evaluation the Influence of Trunk Bracing in Joint Contact Forces in Subjects with Scoliosis

Authors: Azadeh Jafari, Mohammad Taghi Karimi, Azadeh Nadi

Abstract:

Background: Scoliosis is the lateral curvature of the spine which may influence the abilities of the subjects during standing and walking. Most of the scoliotic subjects use orthosis to reduce the curve and to decrease the risk of curve progression. There was lack of information regarding the effects of orthosis on kinematic and joint contact force. Therefore, this research was done to highlight the effects of orthosis on the aforementioned parameters. Method: 5 scoliotic subjects were recruited in this study, with single curve less than 40 (females with age 13.2 ± 1.7). They were asked to walk with and without orthosis. The kinematic of the joints, force applied on the legs, moments transmitted through the joints and joint contact forces were evaluated in this study. Moreover, the lengths of muscles were determined by use of computer muscle control approach in OpenSim. Results: There was a significant difference between the second peak of vertical ground reaction force while walking with and without orthosis (p-value < 0.05). There was no difference between spatiotemporal gait parameters while walking with and without orthosis (P-value > 0.05). The mean values of joint contact forces (vertical component) increased by the use of orthosis, but the difference was not significant (p-value > 0.05). Conclusion: Although the kinematic of most of the body joints was not influenced by the use of orthosis, the joint contact force may be increased by orthosis. The increase in joint contact force may be due to the performance of orthosis which restricts the motions of pelvic and increases compensatory mechanism used by the subjects to decrease the side effects of the orthosis.

Keywords: scoliosis, joint contact force, kinetic, kinematic

Procedia PDF Downloads 212
3710 The Role of Graphene Oxide on Titanium Dioxide Performance for Photovoltaic Applications

Authors: Abdelmajid Timoumi, Salah Alamri, Hatem Alamri

Abstract:

TiO₂ Graphene Oxide (TiO₂-GO) nanocomposite was prepared using the spin coating technique of suspension of Graphene Oxide (GO) nanosheets and Titanium Tetra Isopropoxide (TIP). The prepared nanocomposites samples were characterized by X-ray diffractometer, Scanning Electron Microscope and Atomic Force Microscope to examine their structures and morphologies. UV-vis transmittance and reflectance spectroscopy was employed to estimate band gap energies. From the TiO₂-GO samples, a 0.25 μm thin layer on a piece of glass 2x2 cm was created. The X-ray diffraction analysis revealed that the as-deposited layers are amorphous in nature. The surface morphology images demonstrate that the layers grew in distributed with some spherical/rod-like and partially agglomerated TiGO on the surface of the composite. The Atomic Force Microscopy indicated that the films are smooth with slightly larger surface roughness. The analysis of optical absorption data of the layers showed that the values of band gap energy decreased from 3.46 eV to 1.40 eV, depending on the grams of GO doping. This reduction might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO₂ band structure. Observed results have shown that the inclusion of GO in the TiO₂ matrix have exhibited significant and excellent properties, which would be promising for application in the photovoltaic application.

Keywords: titanium dioxide, graphene oxide, thin films, solar cells

Procedia PDF Downloads 165
3709 Synthesis of Amorphous Nanosilica Anode Material from Philippine Waste Rice Hull for Lithium Battery Application

Authors: Emie A. Salamangkit-Mirasol, Rinlee Butch M. Cervera

Abstract:

Rice hull or rice husk (RH) is an agricultural waste obtained from milling rice grains. Since RH has no commercial value and is difficult to use in agriculture, its volume is often reduced through open field burning which is an environmental hazard. In this study, amorphous nanosilica from Philippine waste RH was prepared via acid precipitation method. The synthesized samples were fully characterized for its microstructural properties. X-ray diffraction pattern reveals that the structure of the prepared sample is amorphous in nature while Fourier transform infrared spectrum showed the different vibration bands of the synthesized sample. Scanning electron microscopy (SEM) and particle size analysis (PSA) confirmed the presence of agglomerated silica particles. On the other hand, transmission electron microscopy (TEM) revealed an amorphous sample with grain sizes of about 5 to 20 nanometer range and has about 95 % purity according to EDS analyses. The elemental mapping also suggests that leaching of rice hull ash effectively removed the metallic impurity such as potassium element in the material. Hence, amorphous nanosilica was successfully prepared via a low-cost acid precipitation method from Philippine waste rice hull. In addition, initial electrode performance of the synthesized samples as an anode material in Lithium Battery have been investigated.

Keywords: agricultural waste, anode material, nanosilica, rice hull

Procedia PDF Downloads 285
3708 Pentosan Polysulfate Sodium: A Potential Treatment to Improve Bone and Joint Manifestations of Mucopolysaccharidosis I

Authors: Drago Bratkovic, Curtis Gravance, David Ketteridge, Ravi Krishnan, Michael Imperiale

Abstract:

The mucopolysaccharidoses (MPSs) are a group of lysosomal storage diseases that have a common defect in the catabolism of glycosaminoglycans (GAGs). MPS I is the most common of the MPS diseases. Manifestations of MPS I include coarsening of facial features, corneal clouding, developmental delay, short stature, skeletal manifestations, hearing loss, cardiac valve disease, hepatosplenomegaly, and umbilical and inguinal hernias. Treatments for MPS I restore or activate the missing or deficient enzyme in the case of enzyme replacement therapy (ERT) and haematopoietic stem cell transplantation (HSCT). Pentosan polysulfate sodium (PPS) is a potential treatment to improve bone and joint manifestations of MPS I. The mechanisms of action of PPS that are relevant to the treatment of MPS I are the ability to: (i) Reduce systemic and accumulated GAG, (ii) Reduce inflammatory effects via the inhibition of NF-kB, resulting in the reduction in pro-inflammatory mediators. (iii) Reduce the expression of the pain mediator nerve growth factor in osteocytes from degenerating joints. (iv) Inhibit the cartilage degrading enzymes related to joint dysfunction in MPS I. PPS is being evaluated as an adjunctive therapy to ERT and/or HSCT in an open-label, single-centre, phase 2 study. Patients are ≥ 5 years of age with a diagnosis of MPS I and previously received HSCT and/or ERT. Three white, female, patients with MPS I-Hurler, ages 14, 15, and 19 years, and one, white male patient aged 15 years are enrolled. All were diagnosed at ≤2 years of age. All patients received HSCT ≤ 6 months after diagnosis. Two of the patients were treated with ERT prior to HSCT, and 1 patient received ERT commencing 3 months prior to HSCT. Two patients received 0.75mg/kg and 2 patients received 1.5mg/kg of PPS. PPS was well tolerated at doses of 0.75 and 1.5 mg/kg to 47 weeks of continuous dosing. Of the 19 adverse events (AEs), 2 were related to PPS. One AE was moderate (pre-syncope) and 1 was mild (injection site bruising), experienced in the same patient. All AEs were reported as mild or moderate. There have been no SAEs. One subject experienced a COVID-19 infection and PPS was interrupted. The MPS I signature GAG fragments, sulfated disaccharide and UA-HNAc S, tended to decrease in 3 patients from baseline through Week 25. Week 25 GAG data are pending for the 4th patient. Overall, most biomarkers (inflammatory, cartilage degeneration, and bone turnover) evaluated in the 3 patients with 25-week assessments have indicated either no change or a reduction in levels compared to baseline. In 3 patients, there was a trend toward improvement in the 2MWT from baseline to Week 48 with > 100% increase in 1 patient (01-201). In the 3 patients that had Week 48 assessments, patients and proxies reported improvement in PGIC, including “worthwhile difference” (n=1), or “made all the difference” (n=2).

Keywords: MPS I, pentosan polysulfate sodium, clinical study, 2MWT, QoL

Procedia PDF Downloads 116
3707 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.

Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas

Procedia PDF Downloads 411
3706 High Performance of Square GAA SOI MOSFET Using High-k Dielectric with Metal Gate

Authors: Fatima Zohra Rahou, A. Guen Bouazza, B. Bouazza

Abstract:

Multi-gate SOI MOSFETs has shown better results in subthreshold performances. The replacement of SiO2 by high-k dielectric can fulfill the requirements of Multi-gate MOSFETS with a scaling trend in device dimensions. The advancement in fabrication technology has also boosted the use of different high -k dielectric materials as oxide layer at different places in MOSFET structures. One of the most important multi-gate structures is square GAA SOI MOSFET that is a strong candidate for the next generation nanoscale devices; show an even stronger control of short channel effects. In this paper, GAA SOI MOSFET structure with using high -k dielectrics materials Al2O3 (k~9), HfO2 (k~20), La2O3 (k~30) and metal gate TiN are simulated by using 3-D device simulator DevEdit and Atlas of SILVACO TCAD tools. Square GAA SOI MOSFET transistor with High-k HfO2 gate dielectrics and TiN metal gate exhibits significant improvements performances compared to Al2O3 and La2O3 dielectrics for the same structure. Simulation results of GAA SOI MOSFET transistor with HfO2 dielectric show the increase in saturation current and Ion/Ioff ratio while leakage current, subthreshold slope and DIBL effect are decreased.

Keywords: technology SOI, short-channel effects (SCEs), multi-gate SOI MOSFET, square GAA SOI MOSFET, high-k dielectric, Silvaco software

Procedia PDF Downloads 266
3705 Random Forest Classification for Population Segmentation

Authors: Regina Chua

Abstract:

To reduce the costs of re-fielding a large survey, a Random Forest classifier was applied to measure the accuracy of classifying individuals into their assigned segments with the fewest possible questions. Given a long survey, one needed to determine the most predictive ten or fewer questions that would accurately assign new individuals to custom segments. Furthermore, the solution needed to be quick in its classification and usable in non-Python environments. In this paper, a supervised Random Forest classifier was modeled on a dataset with 7,000 individuals, 60 questions, and 254 features. The Random Forest consisted of an iterative collection of individual decision trees that result in a predicted segment with robust precision and recall scores compared to a single tree. A random 70-30 stratified sampling for training the algorithm was used, and accuracy trade-offs at different depths for each segment were identified. Ultimately, the Random Forest classifier performed at 87% accuracy at a depth of 10 with 20 instead of 254 features and 10 instead of 60 questions. With an acceptable accuracy in prioritizing feature selection, new tools were developed for non-Python environments: a worksheet with a formulaic version of the algorithm and an embedded function to predict the segment of an individual in real-time. Random Forest was determined to be an optimal classification model by its feature selection, performance, processing speed, and flexible application in other environments.

Keywords: machine learning, supervised learning, data science, random forest, classification, prediction, predictive modeling

Procedia PDF Downloads 100
3704 Islamic Banking Adoption Model from Technology Prospective

Authors: Amer Alzaidi

Abstract:

Islamic banking is an alternative solution to those people who are worried about Riba (interest) in all forms of transaction while using banking services and products. Today, banks around the world have Islamic banking services and products the in one form or another. The use of Islamic banking is not only restricted to Muslims world but have reached to non-Muslim countries like UK, USA, Australia and Canada as well. Compared to conventional banking, the adoption rate of Islamic banking is low because of unawareness of customers, financial cost, and performance issues. The interest in Islamic banking by financial institutions as well as low adoption rate motivated us to look this matter into detail in order to identify Critical Success Factors, which are positively motivating customers to use Islamic banking services/ products and Critical Risk Factors, which have significantly negative effect on the adoption of Islamic banking. The CSFs and CRFs will be initially identified from the literature using methodology called Systematic Literature Review, followed by the empirical analysis of these factors using survey research method. Later, we will develop Islamic Banking Adoption Model (IBAM) to help banks to assess their Islamic banking strategic positioning and to improve their operational efficiency. The first potential contribution of this research study will be the development of IBAM protocol that will provide us guidelines for conducting our actual SLR. The second major contribution of this research will be the development of Islamic Banking Adoption Model (IBAM), and the third contribution of this research study will be the evaluation of the developed IBMA.

Keywords: Islamic banking, adoption model, protocol, technology

Procedia PDF Downloads 282
3703 Heat Stress a Risk Factor for Poor Maternal Health- Evidence from South India

Authors: Vidhya Venugopal, Rekha S.

Abstract:

Introduction: Climate change and the growing frequency of higher average temperatures and heat waves have detrimental health effects, especially for certain vulnerable groups with limited socioeconomic status (SES) or physiological capacity to adapt to or endure high temperatures. Little research has been conducted on the effects of heat stress on pregnant women and fetuses in tropical regions such as India. Very high ambient temperatures may worsen Adverse Pregnancy Outcomes (APOs) and are a major worry in the scenario of climate change. The relationship between rising temperatures and APO must be better understood in order to design more effective interventions. Methodology: We conducted an observational cohort study involving 865 pregnant women in various districts of Tamil Nadu districts between 2014 and 2021. Physiological Heat Strain Indicators (HSI) such as morning and evening Core Body Temperature (CBT) and Urine Specific Gravity (USG) were monitored using an infrared thermometer and refractometer, respectively. A validated, modified version of the HOTHAPS questionnaire was utilised to collect self-reported health symptoms. A follow-up was undertaken with the mothers to collect information regarding birth outcomes and APOs, such as spontaneous abortions, stillbirths, Preterm Birth (PTB), birth abnormalities, and Low Birth Weight (LBW). Major findings of the study: According to the findings of our study, ambient temperatures (mean WBGT°C) were substantially higher (>28°C) for approximately 46% of women performing moderate daily life activities. 82% versus 43% of these women experienced dehydration and heat-related complaints. 34% of women had USG >1.020, which is symptomatic of dehydration. APOs, which include spontaneous abortions, were prevalent at 2.2%, stillbirth/preterm birth/birth abnormalities were prevalent at 2.2%, and low birth weight was prevalent at 16.3%. With exposures to WBGT>28°C, the incidence of miscarriage or unexpected abortion rose by approximately 2.7 times (95% CI: 1.1-6.9). In addition, higher WBGT exposures were associated with a 1.4-fold increased risk of unfavorable birth outcomes (95% Confidence Interval [CI]: 1.02-1.09). The risk of spontaneous abortions was 2.8 times higher among women who conceived during the hotter months (February – September) compared to those women who conceived in the cooler months (October – January) (95% CI: 1.04-7.4). Positive relationships between ambient heat and APOs found in this study necessitate further exploration into the underlying factors for extensive cohort studies to generate information to enable the formulation of policies that can effectively protect these women against excessive heat stress for enhanced maternal and fetal health.

Keywords: heat exposures, community, pregnant women, physiological strain, adverse outcome, interventions

Procedia PDF Downloads 87
3702 The Myth of Mohini and Ardhanarishvara: A Queer Reading

Authors: Anindita Roy

Abstract:

This paper offers a queer reading of the myth of Mohini and Ardhanarishvara in Indian mythology to explore the transformative capacity of gender performativity with a view to focusing on the notion of female and male as harmonious contributors in culture and nature. The qualitative study of these two narratives ponders on the issues of dualism in Indian mythology. These myths approach different queer experiences in different ways - the first, an incarnation of Vishnu into Mohini by body swapping and the latter, the myth of Ardhanarishvara in which one sacred body upholds two different biological identities together- male and female. Emphasizing on the transformation of sex, the present paper re-reads how these queer-transformations can become transformative in the society. The study is explained in three parts. The first one focuses on the two select myths to explore the idea of gender as performance and the concept of queer ecofeminism where nature/culture, heterosexuality/queer female/male dualism exist in a paradigm. The second segment analyzes whether these myths destabilize or promote the access of queer and the experience of ‘other’ in the society and resistance against domination. The third section inquires to rethink the whole world about the value and hierarchy of men over women, heterosexuality over queer, culture over nature to call for a recovery of the female/male, nature/culture principles as complementary. What the paper intends to investigate is if and how gender transformations in religious myths have the capacity to transform personal and social notions and practices of different hierarchies.

Keywords: dualism, Indian myth, queer, transformativity

Procedia PDF Downloads 180
3701 Concept Mapping of Teachers Regarding Conflict Management

Authors: Tahir Mehmood, Mumtaz Akhter

Abstract:

The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.

Keywords: conflict management, open and distance learning, teachers, students

Procedia PDF Downloads 417
3700 A Correlations Study on Nursing Staff's Shifts Systems, Workplace Fatigue, and Quality of Working Life

Authors: Jui Chen Wu, Ming Yi Hsu

Abstract:

Background and Purpose: Shift work of nursing staff is inevitable in hospital to provide continuing medical care. However, shift work is considered as a health hazard that may cause physical and psychological problems. Serious workplace fatigue of nursing shift work might impact on family, social and work life, moreover, causes serious reduction of quality of medical care, or even malpractice. This study aims to explore relationships among nursing staff’s shift, workplace fatigue and quality of working life. Method: Structured questionnaires were used in this study to explore relationships among shift work, workplace fatigue and quality of working life in nursing staffs. We recruited 590 nursing staffs in different Community Teaching hospitals in Taiwan. Data analysed by descriptive statistics, single sample t-test, single factor analysis, Pearson correlation coefficient and hierarchical regression, etc. Results: The overall workplace fatigue score is 50.59 points. In further analysis, the score of personal burnout, work-related burnout, over-commitment and client-related burnout are 57.86, 53.83, 45.95 and 44.71. The basic attributes of nursing staff are significantly different from those of workplace fatigue with different ages, licenses, sleeping quality, self-conscious health status, number of care patients of chronic diseases and number of care people in the obstetric ward. The shift variables revealed no significant influence on workplace fatigue during the hierarchical regression analysis. About the analysis on nursing staff’s basic attributes and shift on the quality of working life, descriptive results show that the overall quality of working life of nursing staff is 3.23 points. Comparing the average score of the six aspects, the ranked average score are 3.47 (SD= .43) in interrelationship, 3.40 (SD= .46) in self-actualisation, 3.30 (SD= .40) in self-efficacy, 3.15 (SD= .38) in vocational concept, 3.07 (SD= .37) in work aspects, and 3.02 (SD= .56) in organization aspects. The basic attributes of nursing staff are significantly different from quality of working life in different marriage situations, education level, years of nursing work, occupation area, sleep quality, self-conscious health status and number of care in medical ward. There are significant differences between shift mode and shift rate with the quality of working life. The results of the hierarchical regression analysis reveal that one of the shifts variables 'shift mode' which does affect staff’s quality of working life. The workplace fatigue is negatively correlated with the quality of working life, and the over-commitment in the workplace fatigue is positively related to the vocational concept of the quality of working life. According to the regression analysis of nursing staff’s basic attributes, shift mode, workplace fatigue and quality of working life related shift, the results show that the workplace fatigue has a significant impact on nursing staff’s quality of working life. Conclusion: According to our study, shift work is correlated with workplace fatigue in nursing staffs. This results work as important reference for human resources management in hospitals to establishing a more positive and healthy work arrangement policy.

Keywords: nursing staff, shift, workplace fatigue, quality of working life

Procedia PDF Downloads 275
3699 Automated End-to-End Pipeline Processing Solution for Autonomous Driving

Authors: Ashish Kumar, Munesh Raghuraj Varma, Nisarg Joshi, Gujjula Vishwa Teja, Srikanth Sambi, Arpit Awasthi

Abstract:

Autonomous driving vehicles are revolutionizing the transportation system of the 21st century. This has been possible due to intensive research put into making a robust, reliable, and intelligent program that can perceive and understand its environment and make decisions based on the understanding. It is a very data-intensive task with data coming from multiple sensors and the amount of data directly reflects on the performance of the system. Researchers have to design the preprocessing pipeline for different datasets with different sensor orientations and alignments before the dataset can be fed to the model. This paper proposes a solution that provides a method to unify all the data from different sources into a uniform format using the intrinsic and extrinsic parameters of the sensor used to capture the data allowing the same pipeline to use data from multiple sources at a time. This also means easy adoption of new datasets or In-house generated datasets. The solution also automates the complete deep learning pipeline from preprocessing to post-processing for various tasks allowing researchers to design multiple custom end-to-end pipelines. Thus, the solution takes care of the input and output data handling, saving the time and effort spent on it and allowing more time for model improvement.

Keywords: augmentation, autonomous driving, camera, custom end-to-end pipeline, data unification, lidar, post-processing, preprocessing

Procedia PDF Downloads 132
3698 Addressing Urban Security Challenges in Nigeria through Neighborhood Renewal: A Reflection of Mokola World Bank Slum Upgrading Pilot Project

Authors: Tabiti S. Tabiti, A. M. Jinadu, Daramola Japheth

Abstract:

Urban insecurity is among the challenges militating against sustainable urban governance; in the first place it distorts the peace of urban areas making them unsafe. On the other hand it hinders the effective performance of urban functions. Urban security challenges manifest in different forms such as, street violence, theft and robbery, accidents of different types kidnapping, killings etc.. Efforts to address urban security challenges in Nigeria have been concentrated in legislative, law enforcement and the use of community vigilante groups. However in this study, the place of physical planning strategy through effective neighbourhood renewal as practiced in Mokola is presented as an effective complementary approach for addressing urban insecurity. On this backdrop, the paper recommends the need for gradual rehabilitation of urban slum neighborhoods by the state government in collaboration with World Bank and other development financiers. The local governments should be made autonomy in Nigeria so as to make them more responsible to the people. Other recommendations suggested in the paper include creating enabling environment that will promote economic empowerment and public enlightment on personal and community sanitation. It is certain that if these recommendations are adopted the challenge of urban insecurity will reduce significantly in Nigerian cities.

Keywords: neighbourhood renewal, pilot project, slum upgrading, urban security

Procedia PDF Downloads 440
3697 Experiments on Weakly-Supervised Learning on Imperfect Data

Authors: Yan Cheng, Yijun Shao, James Rudolph, Charlene R. Weir, Beth Sahlmann, Qing Zeng-Treitler

Abstract:

Supervised predictive models require labeled data for training purposes. Complete and accurate labeled data, i.e., a ‘gold standard’, is not always available, and imperfectly labeled data may need to serve as an alternative. An important question is if the accuracy of the labeled data creates a performance ceiling for the trained model. In this study, we trained several models to recognize the presence of delirium in clinical documents using data with annotations that are not completely accurate (i.e., weakly-supervised learning). In the external evaluation, the support vector machine model with a linear kernel performed best, achieving an area under the curve of 89.3% and accuracy of 88%, surpassing the 80% accuracy of the training sample. We then generated a set of simulated data and carried out a series of experiments which demonstrated that models trained on imperfect data can (but do not always) outperform the accuracy of the training data, e.g., the area under the curve for some models is higher than 80% when trained on the data with an error rate of 40%. Our experiments also showed that the error resistance of linear modeling is associated with larger sample size, error type, and linearity of the data (all p-values < 0.001). In conclusion, this study sheds light on the usefulness of imperfect data in clinical research via weakly-supervised learning.

Keywords: weakly-supervised learning, support vector machine, prediction, delirium, simulation

Procedia PDF Downloads 203
3696 Investigating Mathematical Knowledge of Teaching for Secondary Preservice Teachers in Papua New Guinea Based on Probabilities

Authors: Murray Olowa

Abstract:

This article examines the studies investigating the Mathematical Knowledge for Teaching (MKT) of secondary preservice teachers in Papua New Guinea based on probabilities. This research was conducted due to the continuous issues faced in the country in both primary and secondary education, like changes in curriculum, emphasis on mathematics and science education, and a decline in mathematics performance. Moreover, the mathematics curriculum doesn’t capture Pedagogical Content Knowledge (PCK) or Subject Matter Knowledge (SMK). The two main domains that have been identified are SMK and PCK, which have been further sub-divided into Common Content Knowledge (CCK), Specialised Content Knowledge (SCK) and Horizon Content Knowledge (HCK), and Knowledge of Content and Students (KCS), Knowledge of Content and Teaching (KCT) and Knowledge of Content and Curriculum (KCC), respectively. The data collected from 15-_year-_ ones and 15-_year-_fours conducted at St Peter Chanel Secondary Teachers College revealed that there is no significant difference in subject matter knowledge between year one and year four since the P-value of 0.22>0.05. However, it was revealed that year fours have higher pedagogical content knowledge than year one since P-value was 0.007<0.05. Finally, the research has proven that year fours have higher MKT than year one. This difference occurred due to final year preservice teachers’ hard work and engagement in mathematics curriculum and teaching practice.

Keywords: mathematical knowledge for teaching, subject matter knowledge, pedagogical content knowledge, Papua New Guinea, preservice teachers, probability

Procedia PDF Downloads 107
3695 Comparison Study of Machine Learning Classifiers for Speech Emotion Recognition

Authors: Aishwarya Ravindra Fursule, Shruti Kshirsagar

Abstract:

In the intersection of artificial intelligence and human-centered computing, this paper delves into speech emotion recognition (SER). It presents a comparative analysis of machine learning models such as K-Nearest Neighbors (KNN),logistic regression, support vector machines (SVM), decision trees, ensemble classifiers, and random forests, applied to SER. The research employs four datasets: Crema D, SAVEE, TESS, and RAVDESS. It focuses on extracting salient audio signal features like Zero Crossing Rate (ZCR), Chroma_stft, Mel Frequency Cepstral Coefficients (MFCC), root mean square (RMS) value, and MelSpectogram. These features are used to train and evaluate the models’ ability to recognize eight types of emotions from speech: happy, sad, neutral, angry, calm, disgust, fear, and surprise. Among the models, the Random Forest algorithm demonstrated superior performance, achieving approximately 79% accuracy. This suggests its suitability for SER within the parameters of this study. The research contributes to SER by showcasing the effectiveness of various machine learning algorithms and feature extraction techniques. The findings hold promise for the development of more precise emotion recognition systems in the future. This abstract provides a succinct overview of the paper’s content, methods, and results.

Keywords: comparison, ML classifiers, KNN, decision tree, SVM, random forest, logistic regression, ensemble classifiers

Procedia PDF Downloads 48
3694 Using Machine Learning as an Alternative for Predicting Exchange Rates

Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior

Abstract:

This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.

Keywords: exchage rate, prediction, machine learning, deep learning

Procedia PDF Downloads 36
3693 Investigation of the Possibility of Using Carbon Onion Nanolubrication with DLC Cutting Tool to Reduce the Machining Power Consumption

Authors: Ahmed A. D. Sarhan, M. Sayuti, M. Hamdi

Abstract:

Due to rapid consumption of world's fossil fuel resources and impracticality of large-scale application and production of renewable energy, the significance of energy efficiency improvement of current available energy modes has been widely realized by both industry and academia. In the CNC machining field, the key solution for this issue is by increasing the effectiveness of the existing lubrication systems as it could reduce the power required to overcome the friction component in machining process. For more improvement, introducing the nanolubrication could produce much less power consumption as the rolling action of billions units of nanoparticle in the tool chip interface could reduce the cutting forces significantly. In this research, the possibility of using carbon onion nanolubrication with DLC cutting tool is investigated to reduce the machining power consumption. Carbon onion nanolubrication has been successfully developed with high tribology performance and mixed with ordinary mineral oil. The proper sonification method is used to provide a way to mix and suspend the particles thoroughly and efficiently. Furthermore, Diamond-Like Carbon (DLC) cutting tool is used and expected to play significant role in reducing friction and cutting forces and increasing abrasion resistance. The results showed significant reduction of the cutting force and the working power compared with the other conditions of using carbon black and normal lubrication systems.

Keywords: carbon onion, nanolubrication, machining power consumption, DLC cutting tool

Procedia PDF Downloads 437
3692 Quantification of Peptides (linusorbs) in Gluten-free Flaxseed Fortified Bakery Products

Authors: Youn Young Shim, Ji Hye Kim, Jae Youl Cho, Martin JT Reaney

Abstract:

Flaxseed (Linumusitatissimum L.) is gaining popularity in the food industry as a superfood due to its health-promoting properties. Linusorbs (LOs, a.k.a. Cyclolinopeptide) are bioactive compounds present in flaxseed exhibiting potential health effects. The study focused on the effects of processing and storage on the stability of flaxseed-derived LOs added to various bakery products. The flaxseed meal fortified gluten-free (GF) bakery bread was prepared, and the changes of LOs during the bread-making process (meal, fortified flour, dough, and bread) and storage (0, 1, 2, and 4 weeks) at different temperatures (−18 °C, 4 °C, and 22−23 °C) were analyzed by high-performance liquid chromatography-diode array detection. The total oxidative LOs and LO1OB2 were almost kept stable in flaxseed meals at storage temperatures of 22−23 °C, −18 °C, and 4 °C for up to four weeks. Processing steps during GF-bread production resulted in the oxidation of LOs. Interestingly, no LOs were detected in the dough sample; however, LOs appeared when the dough was stored at −18 °C for one week, suggesting that freezing destroyed the sticky structure of the dough and resulted in the release of LOs. The final product, flaxseed meal fortified bread, could be stored for up to four weeks at −18 °C and 4 °C, and for one week at 22−23 °C. All these results suggested that LOs may change during processing and storage and that flaxseed flour-fortified bread should be stored at low temperatures to preserve effective LOs components.

Keywords: linum usitatissimum L., flaxseed, linusorb, stability, gluten-free, peptides, cyclolinopeptide

Procedia PDF Downloads 184
3691 Process of Dimensioning Small Type Annular Combustors

Authors: Saleh B. Mohamed, Mohamed H. Elhsnawi, Mesbah M. Salem

Abstract:

Current and future applications of small gas turbine engines annular type combustors have requirements presenting difficult disputes to the combustor designer. Reduced cost and fuel consumption and improved durability and reliability as well as higher temperatures and pressures for such application are forecast. Coupled with these performance requirements, irrespective of the engine size, is the demand to control the pollutant emissions, namely the oxides of nitrogen, carbon monoxide, smoke and unburned hydrocarbons. These technical and environmental challenges have made the design of small size combustion system a very hard task. Thus, the main target of this work is to generalize a calculation method of annular type combustors for small gas turbine engines that enables to understand the fundamental concepts of the coupled processes and to identify the proper procedure that formulates and solves the problems in combustion fields in as much simplified and accurate manner as possible. The combustion chamber in task is designed with central vaporizing unit and to deliver 516.3 KW of power. The geometrical constraints are 142 mm & 140 mm overall length and casing diameter, respectively, while the airflow rate is 0.8 kg/sec and the fuel flow rate is 0.012 kg/sec. The relevant design equations are programmed by using MathCAD language for ease and speed up of the calculation process.

Keywords: design of gas turbine, small engine design, annular type combustors, mechanical engineering

Procedia PDF Downloads 412
3690 Impact of Saline Water and Water Restriction in Laying Hens

Authors: Reza Vakili

Abstract:

This experiment was conducted to investigate the effect of duration water restriction of drinking water and salinity level on production performance, egg quality and biochemical and hematological blood indices of laying hens. A total of 240 Hy-Line laying hens were used in a completely randomized design with a 2 × 2 factorial arrangement of treatments. Experimental treatments were: 1) free access to drinking water and a low level of salinity (TDS below 500 mg/L) (FAW+LS), 2) free access to water and a high level of salinity (TDS above 1500 mg/L), (FAW+HS), 3) 12 h nightly water restriction and a low level of salinity (LAW+LS), and 4) 12 h water restriction and a high level of salinity (LAW+HS). Intake of feed, percentage of egg production and egg weight and mass were not affected by water restriction or salinity level (P > 0.05), however, a trend (P < 0.01) for lower water consumption was detected in water-restricted hens, regardless of salinity level (213 vs 187). A tendency for lower eggshell and yolk weights was observed in hens that had limited access to water with high salinity compared to those had free access to high saline water (P = 0.08). Serum total protein and glucose concentrations significantly reduced (P < 0.05) in hens drank high salinity water, regardless of water restriction. Moreover, saline water increased the concentration of uric acid, creatinine, and cholesterol when compared to low salinity drank-hens (P < 0.05). The concentrations of ALT and AST increased with salinity level (P < 0.05) and water restriction caused an increment in AST content (P < 0.05). In conclusion, Hy-Line laying hens could withstand water restriction, whilst could not tolerate water salinity of about 1500 mg/L.

Keywords: chemical pollutants, eggs, laying hens, salinity, water quality

Procedia PDF Downloads 33
3689 Introducing Global Navigation Satellite System Capabilities into IoT Field-Sensing Infrastructures for Advanced Precision Agriculture Services

Authors: Savvas Rogotis, Nikolaos Kalatzis, Stergios Dimou-Sakellariou, Nikolaos Marianos

Abstract:

As precision holds the key for the introduction of distinct benefits in agriculture (e.g., energy savings, reduced labor costs, optimal application of inputs, improved products, and yields), it steadily becomes evident that new initiatives should focus on rendering Precision Agriculture (PA) more accessible to the average farmer. PA leverages on technologies such as the Internet of Things (IoT), earth observation, robotics and positioning systems (e.g., the Global Navigation Satellite System – GNSS - as well as individual positioning systems like GPS, Glonass, Galileo) that allow: from simple data georeferencing to optimal navigation of agricultural machinery to even more complex tasks like Variable Rate Applications. An identified customer pain point is that, from one hand, typical triangulation-based positioning systems are not accurate enough (with errors up to several meters), while on the other hand, high precision positioning systems reaching centimeter-level accuracy, are very costly (up to thousands of euros). Within this paper, a Ground-Based Augmentation System (GBAS) is introduced, that can be adapted to any existing IoT field-sensing station infrastructure. The latter should cover a minimum set of requirements, and in particular, each station should operate as a fixed, obstruction-free towards the sky, energy supplying unit. Station augmentation will allow them to function in pairs with GNSS rovers following the differential GNSS base-rover paradigm. This constitutes a key innovation element for the proposed solution that encompasses differential GNSS capabilities into an IoT field-sensing infrastructure. Integrating this kind of information supports the provision of several additional PA beneficial services such as spatial mapping, route planning, and automatic field navigation of unmanned vehicles (UVs). Right at the heart of the designed system, there is a high-end GNSS toolkit with base-rover variants and Real-Time Kinematic (RTK) capabilities. The GNSS toolkit had to tackle all availability, performance, interfacing, and energy-related challenges that are faced for a real-time, low-power, and reliable in the field operation. Specifically, in terms of performance, preliminary findings exhibit a high rover positioning precision that can even reach less than 10-centimeters. As this precision is propagated to the full dataset collection, it enables tractors, UVs, Android-powered devices, and measuring units to deal with challenging real-world scenarios. The system is validated with the help of Gaiatrons, a mature network of agro-climatic telemetry stations with presence all over Greece and beyond ( > 60.000ha of agricultural land covered) that constitutes part of “gaiasense” (www.gaiasense.gr) smart farming (SF) solution. Gaiatrons constantly monitor atmospheric and soil parameters, thus, providing exact fit to operational requirements asked from modern SF infrastructures. Gaiatrons are ultra-low-cost, compact, and energy-autonomous stations with a modular design that enables the integration of advanced GNSS base station capabilities on top of them. A set of demanding pilot demonstrations has been initiated in Stimagka, Greece, an area with a diverse geomorphological landscape where grape cultivation is particularly popular. Pilot demonstrations are in the course of validating the preliminary system findings in its intended environment, tackle all technical challenges, and effectively highlight the added-value offered by the system in action.

Keywords: GNSS, GBAS, precision agriculture, RTK, smart farming

Procedia PDF Downloads 119
3688 An Overbooking Model for Car Rental Service with Different Types of Cars

Authors: Naragain Phumchusri, Kittitach Pongpairoj

Abstract:

Overbooking is a very useful revenue management technique that could help reduce costs caused by either undersales or oversales. In this paper, we propose an overbooking model for two types of cars that can minimize the total cost for car rental service. With two types of cars, there is an upgrade possibility for lower type to upper type. This makes the model more complex than one type of cars scenario. We have found that convexity can be proved in this case. Sensitivity analysis of the parameters is conducted to observe the effects of relevant parameters on the optimal solution. Model simplification is proposed using multiple linear regression analysis, which can help estimate the optimal overbooking level using appropriate independent variables. The results show that the overbooking level from multiple linear regression model is relatively close to the optimal solution (with the adjusted R-squared value of at least 72.8%). To evaluate the performance of the proposed model, the total cost was compared with the case where the decision maker uses a naïve method for the overbooking level. It was found that the total cost from optimal solution is only 0.5 to 1 percent (on average) lower than the cost from regression model, while it is approximately 67% lower than the cost obtained by the naïve method. It indicates that our proposed simplification method using regression analysis can effectively perform in estimating the overbooking level.

Keywords: overbooking, car rental industry, revenue management, stochastic model

Procedia PDF Downloads 175
3687 Synergizing Additive Manufacturing and Artificial Intelligence: Analyzing and Predicting the Mechanical Behavior of 3D-Printed CF-PETG Composites

Authors: Sirine Sayed, Mostapha Tarfaoui, Abdelmalek Toumi, Youssef Qarssis, Mohamed Daly, Chokri Bouraoui

Abstract:

This paper delves into the combination of additive manufacturing (AM) and artificial intelligence (AI) to solve challenges related to the mechanical behavior of AM-produced parts. The article highlights the fundamentals and benefits of additive manufacturing, including creating complex geometries, optimizing material use, and streamlining manufacturing processes. The paper also addresses the challenges associated with additive manufacturing, such as ensuring stable mechanical performance and material properties. The role of AI in improving the static behavior of AM-produced parts, including machine learning, especially the neural network, is to make regression models to analyze the large amounts of data generated during experimental tests. It investigates the potential synergies between AM and AI to achieve enhanced functions and personalized mechanical properties. The mechanical behavior of parts produced using additive manufacturing methods can be further improved using design optimization, structural analysis, and AI-based adaptive manufacturing. The article concludes by emphasizing the importance of integrating AM and AI to enhance mechanical operations, increase reliability, and perform advanced functions, paving the way for innovative applications in different fields.

Keywords: additive manufacturing, mechanical behavior, artificial intelligence, machine learning, neural networks, reliability, advanced functionalities

Procedia PDF Downloads 19