Search results for: diurnal temperature cycle model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23222

Search results for: diurnal temperature cycle model

9572 Effect of Nano/Micro Alumina Matrix on Alumina-Cubic Boron Nitride Composites Consolidated by Spark Plasma Sintering

Authors: A. S. Hakeem, B. Ahmed, M. Ehsan, A. Ibrahim, H. M. Irshad, T. Laoui

Abstract:

Alumina (Al2O3) - cubic boron nitride (cBN) ceramic composites were sintered by spark plasma sintering (SPS) using α-Al2O3 particle sizes; 150 µm, 150 nm and cBN particle size of 42 µm. Alumina-cBN composites containing 10, 20 and 30wt% cBN with and without Ni coated were sintering at an elevated temperature of 1400°C at a constant uniaxial pressure of 50 MPa. The effect of matrix particle size, cBN and Ni content on mechanical properties and thermal properties, i.e., thermal conductivity, diffusivity, expansion, densification, phase transformation, microstructure, hardness and toughness of the Al2O3-cBN/(Ni) composites under specific sintering conditions were investigated. The highest relative densification of 150 nm-Al2O3 containing 30wt% cBN (Ni coated) composite was 99% at TSPS = 1400°C. In case of 150 µm- Al2O3 compositions, the phase transformation of cBN to hBN were observed, and the relative densification decreased. Thermal conductivity depicts maximum value in case of 150 nm- Al2O3-30wt% cBN-Ni composition. The Vickers hardness of this composition at TSPS = 1400°C also showed the highest value of 29 GPa.

Keywords: alumina composite, cubic boron nitride, mechanical properties, phase transformation, Spark plasma sintering

Procedia PDF Downloads 330
9571 Transesterification of Refined Palm Oil to Biodiesel in a Continuous Spinning Disc Reactor

Authors: Weerinda Appamana, Jirapong Keawkoon, Yamonporn Pacthong, Jirathiti Chitsanguansuk, Yanyong Sookklay

Abstract:

In the present work, spinning disc reactor has been used for the intensification of synthesis of biodiesel from refined palm oil (RPO) based on the transesterification reaction. Experiments have been performed using different spinning disc surface and under varying operating parameters viz. molar ratio of oil to methanol (over the range of 1:4.5–1:9), rotational speed (over the range of 500–2,000 rpm), total flow rate (over the range of 260-520 ml/min), and KOH catalyst loading of 1.50% by weight of oil. Maximum FAME (fatty acid methyl esters) yield (97.5 %) of biodiesel from RPO was obtained at oil to methanol ratio of 1:6, temperature of 60 °C, and rotational speed of 1500 rpm and flow rate of 520 mL/min using groove disc at KOH catalyst loading of 1.5 wt%. Also, higher yield efficiency (biodiesel produced per unit energy consumed) was obtained for using the spinning disc reactor based approach as compared to the ultrasound hydrodynamic cavitation and conventional mechanical stirrer reactors. It obviously offers a significant reduction in the reaction time for the transesterification, especially when compared with the reaction time of 90 minutes required for the conventional mechanical stirrer. It can be concluded that the spinning disk reactor is a promising alternative method for continuous biodiesel production.

Keywords: spinning disc reactor, biodiesel, process intensification, yield efficiency

Procedia PDF Downloads 146
9570 Assessing the Benefits of Super Depo Sutorejo as a Model of integration of Waste Pickers in a Sustainable City Waste Management

Authors: Yohanes Kambaru Windi, Loetfia Dwi Rahariyani, Dyah Wijayanti, Eko Rustamaji

Abstract:

Surabaya, the second largest city in Indonesia, has been struggling for years with waste production and its management. Nearly 11,000 tons of waste are generated daily by domestic, commercial and industrial areas. It is predicted that approximately 1,300 tons of waste overflew the Benowo Landfill daily in 2013 and projected that the landfill operation will be critical in 2015. The Super Depo Sutorejo (SDS) is a pilot project on waste management launched by the government of Surabaya in March 2013. The project is aimed to reduce the amount of waste dumped in landfill by sorting the recyclable and organic waste for composting by employing waste pickers to sort the waste before transported to landfill. This study is intended to assess the capacity of SDS to process and reduce waste and its complementary benefits. It also overviews the benefits of the project to the waste pickers in term of satisfaction to the job. Waste processing data-sheets were used to assess the difference between input and outputs waste. A survey was distributed to 30 waste pickers and interviews were conducted as a further insight on a particular issue. The analysis showed that SDS enable to reduce waste up to 50% before dumped in the final disposal area. The cost-benefits analysis using cost differential calculation revealed the economic benefit is considerable low, but composting may substitute tangible benefits for maintain the city’s parks. Waste pickers are mostly satisfied with their job (i.e. Salary, health coverage, job security), services and facilities available in SDS and enjoyed rewarding social life within the project. It is concluded that SDS is an effective and efficient model for sustainable waste management and reliable to be developed in developing countries. It is a strategic approach to empower and open up working opportunity for the poor urban community and prolong the operation of landfills.

Keywords: cost-benefits, integration, satisfaction, waste management

Procedia PDF Downloads 462
9569 Preparation of Silicon-Based Oxide Hollow Nanofibers Using Single-Nozzle Electrospinning

Authors: Juiwen Liang, Choliang Chung

Abstract:

In this study, the silicon-base oxide nanofibers with hollow structure were prepared using single-nozzle electrospinning and heat treatment. Firstly, precursor solution was prepared: the Polyvinylpyrrolidone (PVP) and Tetraethyl orthosilicate (TEOS) dissolved in ethanol and to make sure the concentration of solution in appropriate using single-nozzle electrospinning to produce the nanofibers. Secondly, control morphology of the electrostatic spinning nanofibers was conducted, and design the temperature profile to created hollow nanofibers, exploring the morphology and properties of nanofibers. The characterized of nanofibers, following instruments were used: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscopy (TEM), Photoluminescence (PL), X-ray Diffraction (XRD). The AFM was used to scan the nanofibers, and 3D Graphics were applied to explore the surface morphology of fibers. FE-SEM and TEM were used to explore the morphology and diameter of nanofibers and hollow nanofiber. The excitation and emission spectra explored by PL. Finally, XRD was used for identified crystallization of ceramic nanofibers. Using electrospinning technique followed by subsequent heat treatment, we have successfully prepared silicon-base oxide nanofibers with hollow structure. Thus, the microstructure and morphology of electrostatic spinning silicon-base oxide hollow nanofibers were explored. Major characteristics of the nanofiber in terms of crystalline, optical properties and crystal structure were identified.

Keywords: electrospinning, single-nozzle, hollow, nanofibers

Procedia PDF Downloads 337
9568 In Silico Modeling of Drugs Milk/Plasma Ratio in Human Breast Milk Using Structures Descriptors

Authors: Navid Kaboudi, Ali Shayanfar

Abstract:

Introduction: Feeding infants with safe milk from the beginning of their life is an important issue. Drugs which are used by mothers can affect the composition of milk in a way that is not only unsuitable, but also toxic for infants. Consuming permeable drugs during that sensitive period by mother could lead to serious side effects to the infant. Due to the ethical restrictions of drug testing on humans, especially women, during their lactation period, computational approaches based on structural parameters could be useful. The aim of this study is to develop mechanistic models to predict the M/P ratio of drugs during breastfeeding period based on their structural descriptors. Methods: Two hundred and nine different chemicals with their M/P ratio were used in this study. All drugs were categorized into two groups based on their M/P value as Malone classification: 1: Drugs with M/P>1, which are considered as high risk 2: Drugs with M/P>1, which are considered as low risk Thirty eight chemical descriptors were calculated by ACD/labs 6.00 and Data warrior software in order to assess the penetration during breastfeeding period. Later on, four specific models based on the number of hydrogen bond acceptors, polar surface area, total surface area, and number of acidic oxygen were established for the prediction. The mentioned descriptors can predict the penetration with an acceptable accuracy. For the remaining compounds (N= 147, 158, 160, and 174 for models 1 to 4, respectively) of each model binary regression with SPSS 21 was done in order to give us a model to predict the penetration ratio of compounds. Only structural descriptors with p-value<0.1 remained in the final model. Results and discussion: Four different models based on the number of hydrogen bond acceptors, polar surface area, and total surface area were obtained in order to predict the penetration of drugs into human milk during breastfeeding period About 3-4% of milk consists of lipids, and the amount of lipid after parturition increases. Lipid soluble drugs diffuse alongside with fats from plasma to mammary glands. lipophilicity plays a vital role in predicting the penetration class of drugs during lactation period. It was shown in the logistic regression models that compounds with number of hydrogen bond acceptors, PSA and TSA above 5, 90 and 25 respectively, are less permeable to milk because they are less soluble in the amount of fats in milk. The pH of milk is acidic and due to that, basic compounds tend to be concentrated in milk than plasma while acidic compounds may consist lower concentrations in milk than plasma. Conclusion: In this study, we developed four regression-based models to predict the penetration class of drugs during the lactation period. The obtained models can lead to a higher speed in drug development process, saving energy, and costs. Milk/plasma ratio assessment of drugs requires multiple steps of animal testing, which has its own ethical issues. QSAR modeling could help scientist to reduce the amount of animal testing, and our models are also eligible to do that.

Keywords: logistic regression, breastfeeding, descriptors, penetration

Procedia PDF Downloads 58
9567 Development of A MG-Gd-Er-Zn-Zr Alloy with Ultrahigh Strength and Ductility via Extrusion, Pre-Deformation, and Two-Stage Aging

Authors: Linyue Jia, Wenbo Du, Zhaohui Wang, Ke Liu, Shubo Li

Abstract:

Due to the great potential for weight reduction in aerospace and automotive industries, magnesium-rare earth (Mg-RE) based alloys with outstanding mechanical performance have been widely investigated for decades. However, magnesium alloys are still restricted in engineering applications because of their lower strength and ductility. Hence, there are large spaces and challenges in achieving high-performance Mg alloys. This work reports an Mg-Gd-Er-Zn-Zr alloy with ultrahigh strength and good ductility developed via hot extrusion, pre-deformation, and two-stage aging. The extruded alloy comprises fine dynamically recrystallized (DRXed) grains and coarse worked grains with a large aspect ratio. Pre-deformation has little effect on the microstructure and macro-texture and serves primarily to introduce a large number of dislocations, resulting in strain hardening and higher precipitation strengthening during subsequent aging due to more nucleation sites. As a result, the alloy exhibits a yield strength (YS) of 506 MPa, an ultimate tensile strength (UTS) of 549 MPa, and elongation (EL) of 8.2% at room temperature, showing superior strength-ductility balance than the other wrought Mg-RE alloys previously reported. The current study proposes a combination of pre-deformation and two-stage aging to further improve the mechanical properties of wrought Mg alloys for engineering applications.

Keywords: magnesium alloys, mechanical properties, microstructure, pre-deformation, two-stage aging

Procedia PDF Downloads 151
9566 The Dilemma of Translanguaging Pedagogy in a Multilingual University in South Africa

Authors: Zakhile Somlata

Abstract:

In the context of international linguistic and cultural diversity, all languages can be used for all purposes. Africa in general and South Africa, in particular, is not an exception to multilingual and multicultural society. The multilingual and multicultural nature of South African society has a direct bearing to the heterogeneity of South African Universities in general. Universities as the centers of research, innovation, and transformation of the entire society should be at the forefront in leading multilingualism. The universities in South Africa had been using English and to a certain extent Afrikaans as the only academic languages during colonialism and apartheid regime. The democratic breakthrough of 1994 brought linguistic relief in South Africa. The Constitution of the Republic of South Africa recognizes 11 official languages that should enjoy parity of esteem for the realization of multilingualism. The elevation of the nine previously marginalized indigenous African languages as academic languages in higher education is central to multilingualism. It is high time that Afrocentric model instead of Eurocentric model should be the one which underpins education system in South Africa at all levels. Almost all South African universities have their language policies that seek to promote access and success of students through multilingualism, but the main dilemma is the implementation of language policies. This study is significant to respond to two objectives: (i) To evaluate how selected institutions use language policies for accessibility and success of students. (ii) To study how selected universities integrate African languages for both academic and administrative purposes. This paper reflects the language policy practices in one selected University of Technology (UoT) in South Africa. The UoT has its own language policy which depicts linguistic diversity of the institution and its commitment to promote multilingualism. Translanguaging pedagogy which accommodates minority languages' usage in the teaching and learning process plays a pivotal role in promoting multilingualism. This research paper employs mixed methods (quantitative and qualitative research) approach. Qualitative data has been collected from the key informants (insiders and experts), while quantitative data has been collected from a cohort of third-year students. A mixed methods approach with its convergent parallel design allows the data to be collected separately, analysed separately but with the comparison of the results. Language development initiatives have been discussed within the framework of language policy and policy implementation strategies. Theoretically, this paper is rooted in language as a problem, language as a right and language as a resource. The findings demonstrate that despite being a multilingual institution, there is a perpetuation of marginalization of African languages to be used as academic languages. Findings further display the hegemony of English. The promotion of status quo compromises the promotion of multilingualism, Africanization of Higher Education and intellectualization of indigenous African languages in South Africa under a democratic dispensation.

Keywords: afro-centric model, hegemony of English, language as a resource, translanguaging pedagogy

Procedia PDF Downloads 183
9565 Mixed-Sub Fractional Brownian Motion

Authors: Mounir Zili

Abstract:

We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-markovian and that it has non-stationary increments. We will also give the conditions under which it is a semi-martingale. Finally, the main features of its sample paths will be specified.

Keywords: fractal dimensions, mixed gaussian processes, sample paths, sub-fractional brownian motion

Procedia PDF Downloads 405
9564 Development of Catalyst, Incorporating Phosphinite Ligands, for Transfer Hydrogenation

Authors: S. Assylbekova, D. Zolotareva, A. Dauletbakov, Ye. Belyankova, S. Bayazit, A. Basharimova, A. Zazybin, A. Isimberlenova, A. Kakimova, M. Aydemir, A. Kairullinova

Abstract:

Transfer hydrogenation (TH) is a key process in organic chemistry, especially in pharmaceutical and agrochemical synthesis, offering a safer and more sustainable approach compared to traditional methods. This work is devoted to the synthesis and use of ruthenium catalysts containing phosphinite ligands in TH reactions. Ruthenium complexes are particularly noteworthy for their effectiveness in asymmetric TH. Their stability and adaptability to different reaction environments make them ideal for both laboratory-scale and industrial applications. Phosphinite ligands (P(OR)R'2) are used in the synthesis of complexes to improve their properties. These ligands are known for their ability to finely tune the electronic and steric properties of metal centers. The electron-donating nature of the phosphorus atom, combined with the variability in the R and R' groups, allows for significant customization of the catalyst's properties. The purpose and difference of the work is to study the incorporation of a hydrophilic ionic liquid into the composition of a phosphinite ligand, which will then be converted into a catalyst. The technique involves the synthesis of a phosphinite ligand with an ionic liquid at room temperature under an inert atmosphere and then a ruthenium complex. Next, the TH reactions of acetophenone and its derivatives are carried out using the resulting catalyst. The conversion of ketone to alcohol is analyzed using a gas chromatograph. This study contributes to the understanding of the influence of catalyst physico-chemical properties on transfer hydrogenation results.

Keywords: transfer hydrogenation, ruthenium, catalysts, phosphinite ligands

Procedia PDF Downloads 41
9563 Development of a Novel Ankle-Foot Orthotic Using a User Centered Approach for Improved Satisfaction

Authors: Ahlad Neti, Elisa Arch, Martha Hall

Abstract:

Studies have shown that individuals who use Ankle-Foot-Orthoses (AFOs) have a high level of dissatisfaction regarding their current AFOs. Studies point to the focus on technical design with little attention given to the user perspective as a source of AFO designs that leave users dissatisfied. To design a new AFO that satisfies users and thereby improves their quality of life, the reasons for their dissatisfaction and their wants and needs for an improved AFO design must be identified. There has been little research into the user perspective on AFO use and desired improvements, so the relationship between AFO design and satisfaction in daily use must be assessed to develop appropriate metrics and constraints prior to designing a novel AFO. To assess the user perspective on AFO design, structured interviews were conducted with 7 individuals (average age of 64.29±8.81 years) who use AFOs. All interviews were transcribed and coded to identify common themes using Grounded Theory Method in NVivo 12. Qualitative analysis of these results identified sources of user dissatisfaction such as heaviness, bulk, and uncomfortable material and overall needs and wants for an AFO. Beyond the user perspective, certain objective factors must be considered in the construction of metrics and constraints to ensure that the AFO fulfills its medical purpose. These more objective metrics are rooted in a common medical device market and technical standards. Given the large body of research concerning these standards, these objective metrics and constraints were derived through a literature review. Through these two methods, a comprehensive list of metrics and constraints accounting for both the user perspective on AFO design and the AFO’s medical purpose was compiled. These metrics and constraints will establish the framework for designing a new AFO that carries out its medical purpose while also improving the user experience. The metrics can be categorized into several overarching areas for AFO improvement. Categories of user perspective related metrics include comfort, discreteness, aesthetics, ease of use, and compatibility with clothing. Categories of medical purpose related metrics include biomechanical functionality, durability, and affordability. These metrics were used to guide an iterative prototyping process. Six concepts were ideated and compared using system-level analysis. From these six concepts, two concepts – the piano wire model and the segmented model – were selected to move forward into prototyping. Evaluation of non-functional prototypes of the piano wire and segmented models determined that the piano wire model better fulfilled the metrics by offering increased stability, longer durability, fewer points for failure, and a strong enough core component to allow a sock to cover over the AFO while maintaining the overall structure. As such, the piano wire AFO has moved forward into the functional prototyping phase, and healthy subject testing is being designed and recruited to conduct design validation and verification.

Keywords: ankle-foot orthotic, assistive technology, human centered design, medical devices

Procedia PDF Downloads 139
9562 Secondhand Clothing and the Future of Fashion

Authors: Marike Venter de Villiers, Jessica Ramoshaba

Abstract:

In recent years, the fashion industry has been associated with the exploitation of both people and resources. This is largely due to the emergence of the fast fashion concept, which entails rapid and continual style changes where clothes quickly lose their appeal, become out-of-fashion, and are then disposed of. This cycle often entails appalling working conditions in sweatshops with low wages, child labor, and a significant amount of textile waste that ends up in landfills. Although the awareness of the negative implications of ‘mindless fashion production and consumption’ is growing, fast fashion remains to be a popular choice among the youth. This is especially prevalent in South Africa, a poverty-stricken country where a vast number of young adults are unemployed and living in poverty. Despite being in poverty, the celebrity conscious culture and fashion products frequently portrayed on the growing intrusive social media platforms in South Africa pressurizes the consumers to purchase fashion and luxury products. Young adults are therefore more vulnerable to the temptation to purchase fast fashion products. A possible solution to the detrimental effects that the fast fashion industry has on the environment is the revival of the secondhand clothing trend. Although the popularity of secondhand clothing has gained momentum among selected consumer segments, the adoption rate of such remains slow. The main purpose of this study was to explore consumers’ perceptions of the secondhand clothing trend and to gain insight into factors that inhibit the adoption of secondhand clothing. This study also aimed to investigate whether consumers are aware of the negative implications of the fast fashion industry and their likelihood to shift their clothing purchases to that of secondhand clothing. By means of a quantitative study, fifty young females were asked to complete a semi-structured questionnaire. The researcher approached females between the ages of 18 and 35 in a face-to-face setting. The results indicated that although they had an awareness of the negative consequences of fast fashion, they lacked detailed insight into the pertinent effects of fast fashion on the environment. Further, a number of factors inhibit their decision to buy from secondhand stores: firstly, the accessibility to the latest trends was not always available in secondhand stores; secondly, the convenience of shopping from a chain store outweighs the inconvenience of searching for and finding a secondhand store; and lastly, they perceived secondhand clothing to pose a hygiene risk. The findings of this study provide fashion marketers, and secondhand clothing stores, with insight into how they can incorporate the secondhand clothing trend into their strategies and marketing campaigns in an attempt to make the fashion industry more sustainable.

Keywords: eco-friendly fashion, fast fashion, secondhand clothing, eco-friendly fashion

Procedia PDF Downloads 122
9561 Discovering Social Entrepreneurship: A Qualitative Study on Stimulants and Obstacles for Social Entrepreneurs in the Hague

Authors: Loes Nijskens

Abstract:

The city of The Hague is coping with several social issues: high unemployment rates, segregation and environmental pollution. The amount of social enterprises in The Hague that want to tackle these issues is increasing, but no clear image exists of the stimulants and obstacles social entrepreneurs encounter. In this qualitative study 20 starting and established social entrepreneurs, investors and stimulators of social entrepreneurship have been interviewed. The findings indicate that the majority of entrepreneurs situated in The Hague focuses on creating jobs (the so called social nurturers) and diminishing food waste. Moreover, the study found smaller groups of social connectors, (who focus on stimulating the social cohesion in the city) and social traders (who create a market for products from developing countries). For the social nurturers, working together with local government to find people with a distance to the labour market is a challenge. The entrepreneurs are missing a governance approach within the local government, wherein space is provided to develop suitable legislation and projects in cooperation with several stakeholders in order to diminish social problems. All entrepreneurs in the sample face(d) the challenge of having a clear purpose of their business in the beginning. Starting social entrepreneurs tend to be idealistic without having defined a business model. Without a defined business model it is difficult to find proper funding for their business. The more advanced enterprises cope with the challenge of measuring social impact. The larger they grow, the more they have to ‘defend’ themselves towards the local government and their customers, of mainly being social. Hence, the more experienced social nurturers still find it difficult to work together with the local government. They tend to settle their business in other municipalities, where they find more effective public-private partnerships. Al this said, the eco-system for social enterprises in The Hague is on the rise. To stimulate the amount and growth of social enterprises the cooperation between entrepreneurs and local government, the developing of social business models and measuring of impact needs more attention.

Keywords: obstacles, social enterprises, stimulants, the Hague

Procedia PDF Downloads 207
9560 An Approach to Integrated Water Resources Management, a Plan for Action to Climate Change in India

Authors: H. K. Ramaraju

Abstract:

World is in deep trouble and deeper denial. Worse, the denial is now entirely on the side of action. It is well accepted that climate change is a reality. Scientists say we need to cap temperature increases at 2°C to avoid catastrophe, which means capping emissions at 450 ppm .We know global average temperatures have already increased by 0.8°C and there is enough green house gas in the atmosphere to lead to another 0.8°C increase. There is still a window of opportunity, a tiny one, to tackle the crisis. But where is the action? In the 1990’s, when the world did even not understand, let alone accept, the crises, it was more willing to move to tackle climate change. Today we are in reverse in gear. The rich world has realized it is easy to talk big, but tough to take steps to actually reduce emissions. The agreement was that these countries would reduce so that the developing World could increase. Instead, between 1990 and 2006, their carbon dioxide emissions increased by a whopping 14.5 percent, even green countries of Europe are unable to match words with action. Stop deforestation and take a 20 percent advantage in our carbon balance sheet, with out doing anything at home called REDD (reducing emissions from deforestation and forest degradation) and push for carbon capture and storage (CCS) technologies. There are warning signs elsewhere and they need to be read correctly and acted up on , if not the cases like flood –act of nature or manmade disaster. The full length paper orient in proper understanding of the issues and identifying the most appropriate course of action.

Keywords: catastrophe, deforestation, emissions, waste water

Procedia PDF Downloads 280
9559 Unsaturated Sites Constructed Grafted Polymer Nanoparticles to Promote CO₂ Separation in Mixed-Matrix Membranes

Authors: Boyu Li

Abstract:

Mixed matrix membranes (MMMs), as a separation technology, can improve CO₂ recycling efficiency and reduce the environmental impacts associated with huge emissions. Nevertheless, many challenges must be overcome to design excellent selectivity and permeability performance MMMs. Herein, this work demonstrates the design of nano-scale GNPs (Cu-BDC@PEG) with strong compatibility and high free friction volume (FFV) is an effective way to construct non-interfacial voids MMMs with a desirable combination of selectivity and permeability. Notably, the FFV boosted thanks to the chain length and shape of the GNPs. With this, the permeability and selectivity of Cu-BDC@PEG/PVDF MMMs had also been significantly improved. As such, compatible Cu-BDC@PEG proves very efficient for resolving challenges of MMMs with poor compatibility on the basis of the interfacial defect. Poly (Ethylene Glycol) (PEG) with oxygen groups can be finely coordinated with Cu-MOFs to disperse Cu-BDC@PEG homogenously and form hydrogen bonds with matrix to achieve continuous phase. The resultant MMMs exhibited a simultaneous enhancement of gas permeability (853.1 Barrer) and ideal CO₂/N selectivity (41.7), which has surpassed Robenson's upper bound. Moreover, Cu-BDC@PEG/PVDF has a high-temperature resistance and a long time sustainably. This attractive separation performance of Cu-BDC@PEG/PVDF offered an exciting platform for the development of composite membranes for sustainable CO₂ separations.

Keywords: metal organic framework, CO₂ separation, mixed matrix membrane, polymer

Procedia PDF Downloads 93
9558 Synthesis and Characterization of Cobalt Oxide and Cu-Doped Cobalt Oxide as Photocatalyst for Model Dye Degradation

Authors: Vrinda P. S. Borker

Abstract:

Major water pollutants are dyes from effluents of industries. Different methods have been tried to degrade or treat the effluent before it is left to the environment. In order to understand the degradation process and later apply it to effluents, solar degradation study of methylene blue (MB) and methyl red (MR), the model dyes was carried out in the presence of photo-catalysts, the oxides of cobalt oxide Co₃O₄, and copper doped cobalt oxides (Co₀.₉Cu₀.₁)₃O₄ and (Co₀.₉₅Cu₀.₀₅)₃O₄. They were prepared from oxalate complex and hydrazinated oxalate complex of cobalt as well as mix metals, copper, and cobalt. The complexes were synthesized and characterized by FTIR. Complexes were decomposed to form oxides and were characterized by XRD. They were found to be monophasic. Solar degradation of MR and MB was carried out in presence of these oxides in acidic and basic medium. Degradation was faster in alkaline medium in the presence of Co₃O₄ obtained from hydrazinated oxalate. Doping of nanomaterial oxides modifies their characteristics. Doped cobalt oxides are found to photo-decolourise MR in alkaline media efficiently. In the absence of photocatalyst, solar degradation of alkaline MR does not occur. In acidic medium, MR is minimally decolorized even in the presence of photocatalysts. The industrial textile effluent contains chemicals like NaCl and Na₂CO₃ along with the unabsorbed dye. It is reported that these two chemicals hamper the degradation of dye. The chemicals like K₂S₂O₈ and H₂O₂ are reported to enhance degradation. The solar degradation study of MB in presence of photocatalyst (Co₀.₉Cu₀.₁)₃O₄ and these four chemicals reveals that presence of K₂S₂O₈ and H₂O₂ enhances degradation. It proves that H₂O₂ generates hydroxyl ions required for degradation of dye and the sulphate anion radical being strong oxidant attacks dye molecules leading to its fragmentation rapidly. Thus addition of K₂S₂O₈ and H₂O₂ during solar degradation in presence of (Co₀.₉Cu₀.₁)₃O₄ helps to break the organic moiety efficiently.

Keywords: cobalt oxides, Cu-doped cobalt oxides, H₂O₂ in dye degradation, photo-catalyst, solar dye degradation

Procedia PDF Downloads 163
9557 A Complex Network Approach to Structural Inequality of Educational Deprivation

Authors: Harvey Sanchez-Restrepo, Jorge Louca

Abstract:

Equity and education are major focus of government policies around the world due to its relevance for addressing the sustainable development goals launched by Unesco. In this research, we developed a primary analysis of a data set of more than one hundred educational and non-educational factors associated with learning, coming from a census-based large-scale assessment carried on in Ecuador for 1.038.328 students, their families, teachers, and school directors, throughout 2014-2018. Each participating student was assessed by a standardized computer-based test. Learning outcomes were calibrated through item response theory with two-parameters logistic model for getting raw scores that were re-scaled and synthetized by a learning index (LI). Our objective was to develop a network for modelling educational deprivation and analyze the structure of inequality gaps, as well as their relationship with socioeconomic status, school financing, and student's ethnicity. Results from the model show that 348 270 students did not develop the minimum skills (prevalence rate=0.215) and that Afro-Ecuadorian, Montuvios and Indigenous students exhibited the highest prevalence with 0.312, 0.278 and 0.226, respectively. Regarding the socioeconomic status of students (SES), modularity class shows clearly that the system is out of equilibrium: the first decile (the poorest) exhibits a prevalence rate of 0.386 while rate for decile ten (the richest) is 0.080, showing an intense negative relationship between learning and SES given by R= –0.58 (p < 0.001). Another interesting and unexpected result is the average-weighted degree (426.9) for both private and public schools attending Afro-Ecuadorian students, groups that got the highest PageRank (0.426) and pointing out that they suffer the highest educational deprivation due to discrimination, even belonging to the richest decile. The model also found the factors which explain deprivation through the highest PageRank and the greatest degree of connectivity for the first decile, they are: financial bonus for attending school, computer access, internet access, number of children, living with at least one parent, books access, read books, phone access, time for homework, teachers arriving late, paid work, positive expectations about schooling, and mother education. These results provide very accurate and clear knowledge about the variables affecting poorest students and the inequalities that it produces, from which it might be defined needs profiles, as well as actions on the factors in which it is possible to influence. Finally, these results confirm that network analysis is fundamental for educational policy, especially linking reliable microdata with social macro-parameters because it allows us to infer how gaps in educational achievements are driven by students’ context at the time of assigning resources.

Keywords: complex network, educational deprivation, evidence-based policy, large-scale assessments, policy informatics

Procedia PDF Downloads 106
9556 Storage Durations Affect the Physico-Chemical Characteristics of Physalis Minima L.

Authors: Norhanizan U., S. H. Ahmad, N. A. P. Abdullah, G. B. Saleh

Abstract:

Physalis minima from the family of Solanaceae is one of the promising fruits which contains the high amount of vitamin C and other antioxidants as well. However, it is a perishable fruit where the deterioration process will commence if the fruits are not stored in proper conditions. There is not much work has been carried out to study the effects of storage durations on Physalis fruit. Therefore, this study was conducted to determine the effects of 0, 3, 6, and 9 days of storage on postharvest quality of Physalis minima fruits. Total of 120g of uniform sizes of fruits (2.3 to 2.5g) were used for each replication and the experiment was repeated thrice. The fruits were divided equally into four groups with each group labeled according to the days of storage. The fruits were then stored in the cool room for nine days with temperature maintain at 12 ° C. The fruits were analyzed for weight loss, firmness, color (L*, C* and hue angle), titratable acidity (TA), soluble solids concentrations (SSC), pH and ascorbic acids. Data were analyzed using analysis of variance and means was separated using least significant difference (LSD). The storage durations affect the quality characteristics of the fruits. On the day 9, the average of fruit weight loss and fruit firmness decreased about 21 and 24% respectively. The level of ascorbic acids and titrable acidity were also decreased while the soluble solids concentration increased during storage. Thus, in order to retain the quality of the fruits, it is recommended that the Physalis fruit can be stored only up to 6 days at 12 ° C.

Keywords: fruit quality, Physalis minima, Solanaceae, storage durations

Procedia PDF Downloads 270
9555 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants

Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer

Abstract:

Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.

Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability

Procedia PDF Downloads 110
9554 Design and Fabrication of a Parabolic trough Collector and Experimental Investigation of Direct Steam Production in Tehran

Authors: M. Bidi, H. Akhbari, S. Eslami, A. Bakhtiari

Abstract:

Due to the high potential of solar energy utilization in Iran, development of related technologies is of great necessity. Linear parabolic collectors are among the most common and most efficient means to harness the solar energy. The main goal of this paper is design and construction of a parabolic trough collector to produce hot water and steam in Tehran. To provide precise and practical plans, 3D models of the collector under consideration were developed using Solidworks software. This collector was designed in a way that the tilt angle can be adjusted manually. To increase concentraion ratio, a small diameter absorber tube is selected and to enhance solar absorbtion, a shape of U-tube is used. One of the outstanding properties of this collector is its simple design and use of low cost metal and plastic materials in its manufacturing procedure. The collector under consideration was installed in Shahid Beheshti University of Tehran and the values of solar irradiation, ambient temperature, wind speed and collector steam production rate were measured in different days and hours of July. Results revealed that a 1×2 m parabolic trough collector located in Tehran is able to produce steam by the rate of 300ml/s under the condition of atmospheric pressure and without using a vacuum cover over the absorber tube.

Keywords: desalination, parabolic trough collector, direct steam production, solar water heater, design and construction

Procedia PDF Downloads 300
9553 Neural Network Based Fluctuation Frequency Control in PV-Diesel Hybrid Power System

Authors: Heri Suryoatmojo, Adi Kurniawan, Feby A. Pamuji, Nursalim, Syaffaruddin, Herbert Innah

Abstract:

Photovoltaic (PV) system hybrid with diesel system is utilized widely for electrification in remote area. PV output power fluctuates due to uncertainty condition of temperature and sun irradiance. When the penetration of PV power is large, the reliability of the power utility will be disturbed and seriously impact the unstable frequency of system. Therefore, designing a robust frequency controller in PV-diesel hybrid power system is very important. This paper proposes new method of frequency control application in hybrid PV-diesel system based on artificial neural network (ANN). This method can minimize the frequency deviation without smoothing PV output power that controlled by maximum power point tracking (MPPT) method. The neural network algorithm controller considers average irradiance, change of irradiance and frequency deviation. In order the show the effectiveness of proposed algorithm, the addition of battery as energy storage system is also presented. To validate the proposed method, the results of proposed system are compared with the results of similar system using MPPT only. The simulation results show that the proposed method able to suppress frequency deviation smaller compared to the results of system using MPPT only.

Keywords: energy storage system, frequency deviation, hybrid power generation, neural network algorithm

Procedia PDF Downloads 485
9552 Determination of Crustal Structure and Moho Depth within the Jammu and Kashmir Region, Northwest Himalaya through Receiver Function

Authors: Shiv Jyoti Pandey, Shveta Puri, G. M. Bhat, Neha Raina

Abstract:

The Jammu and Kashmir (J&K) region of Northwest Himalaya has a long history of earthquake activity which falls within Seismic Zones IV and V. To know the crustal structure beneath this region, we utilized teleseismic receiver function method. This paper presents the results of the analyses of the teleseismic earthquake waves recorded by 10 seismic observatories installed in the vicinity of major thrusts and faults. The teleseismic waves at epicentral distance between 30o and 90o with moment magnitudes greater than or equal to 5.5 that contains large amount of information about the crust and upper mantle structure directly beneath a receiver has been used. The receiver function (RF) technique has been widely applied to investigate crustal structures using P-to-S converted (Ps) phases from velocity discontinuities. The arrival time of the Ps, PpPs and PpSs+ PsPs converted and reverberated phases from the Moho can be combined to constrain the mean crustal thickness and Vp/Vs ratio. Over 500 receiver functions from 10 broadband stations located in the Jammu & Kashmir region of Northwest Himalaya were analyzed. With the help of H-K stacking method, we determined the crustal thickness (H) and average crustal Vp/Vs ratio (K) in this region. We also used Neighbourhood algorithm technique to verify our results. The receiver function results for these stations show that the crustal thickness under Jammu & Kashmir ranges from 45.0 to 53.6 km with an average value of 50.01 km. The Vp/Vs ratio varies from 1.63 to 1.99 with an average value of 1.784 which corresponds to an average Poisson’s ratio of 0.266 with a range from 0.198 to 0.331. High Poisson’s ratios under some stations may be related to partial melting in the crust near the uppermost mantle. The crustal structure model developed from this study can be used to refine the velocity model used in the precise epicenter location in the region, thereby increasing the knowledge to understand current seismicity in the region.

Keywords: H-K stacking, Poisson’s ratios, receiver function, teleseismic

Procedia PDF Downloads 233
9551 An Integrated Mathematical Approach to Measure the Capacity of MMTS

Authors: Bayan Bevrani, Robert L. Burdett, Prasad K. D. V. Yarlagadda

Abstract:

This article focuses upon multi-modal transportation systems (MMTS) and the issues surrounding the determination of system capacity. For that purpose a multi-objective framework is advocated that integrates all the different modes and many different competing capacity objectives. This framework is analytical in nature and facilitates a variety of capacity querying and capacity expansion planning.

Keywords: analytical model, capacity analysis, capacity query, multi-modal transportation system (MMTS)

Procedia PDF Downloads 342
9550 Analysis of Secondary Stage Creep in Thick-Walled Composite Cylinders Subjected to Rotary Inertia

Authors: Tejeet Singh, Virat Khanna

Abstract:

Composite materials have drawn considerable attention of engineers due to their light weight and application at high thermo-mechanical loads. With regard to the prediction of the life of high temperature structural components like rotating cylinders and the evaluation of their deterioration with time, it is essential to have a full knowledge of creep characteristics of these materials. Therefore, in the present study the secondary stage creep stresses and strain rates are estimated in thick-walled composite cylinders subjected to rotary inertia at different angular speeds. The composite cylinder is composed of aluminum matrix (Al) and reinforced with silicon carbide (SiC) particles which are uniformly mixed. The creep response of the material of the cylinder is described by threshold stress based creep law. The study indicates that with the increase in angular speed, the radial, tangential, axial and effective stress increases to a significant value. However, the radial stress remains zero at inner radius and outer radius due to imposed boundary conditions of zero pressure. Further, the stresses are tensile in nature throughout the entire radius of composite cylinder. The strain rates are also influenced in the same manner as that of creep stresses. The creep rates will increase significantly with the increase of centrifugal force on account of rotation.

Keywords: composite, creep, rotating cylinder, angular speed

Procedia PDF Downloads 432
9549 Three-Dimensional Unsteady Natural Convection and Entropy Generation in an Inclined Cubical Trapezoidal Cavity Subjected to Uniformly Heated Bottom Wall

Authors: Farshid Fathinia

Abstract:

Numerical computation of unsteady laminar three-dimensional natural convection and entropy generation in an inclined cubical trapezoidal air-filled cavity is performed for the first time in this work. The vertical right and left sidewalls of the cavity are maintained at constant cold temperatures. The lower wall is subjected to a constant hot temperature, while the upper one is considered insulated. Computations are performed for Rayleigh numbers varied as 103 ≤ Ra ≤ 105, while the trapezoidal cavity inclination angle is varied as 0° ≤ ϕ ≤ 180°. Prandtl number is considered constant at Pr = 0.71. The second law of thermodynamics is applied to obtain thermodynamic losses inside the cavity due to both heat transfer and fluid friction irreversibilities. The variation of local and average Nusselt numbers are presented and discussed.While, streamlines, isotherms and entropy contours are presented in both two and three-dimensional pattern. The results show that when the Rayleigh number increases, the flow patterns are changed especially in three-dimensional results and the flow circulation increases. Also, the inclination angle effect on the total entropy generation becomes insignificant when the Rayleigh number is low.Moreover, when the Rayleigh number increases the average Nusselt number increases.

Keywords: transient natural convection, trapezoidal cavity, three-dimensional flow, entropy generation, second law

Procedia PDF Downloads 335
9548 Synthesis and Applications of Biosorbent from Barley Husk for Adsorption of Heavy Metals and Bacteria from Water

Authors: Sudarshan Kalsulkar, Sunil S. Bhagwat

Abstract:

Biosorption is a physiochemical process that occurs naturally in certain biomass which allows it to passively concentrate and bind contaminants onto its cellular structure. Activated carbons (AC) are one such efficient biosorbents made by utilizing lignocellulosic materials from agricultural waste. Steam activated carbon (AC) was synthesized from Barley husk. Its synthesis parameters of time and temperature were optimized. Its physico-chemical properties like density, surface area, pore volume, Methylene blue and Iodine values were characterized. BET surface area was found to be 42 m²/g. Batch Adsorption tests were carried out to determine the maximum adsorption capacity (qmax) for various metal ions. Cd+2 48.74 mg/g, Pb+2 19.28 mg/g, Hg+2 39.1mg/g were the respective qmax values. pH and time were optimized for adsorption of each ion. Column Adsorptions were carried for each to obtain breakthrough data. Microbial adsorption was carried using E. coli K12 strain. 78% reduction in cell count was observed at operating conditions. Thus the synthesized Barley husk AC can be an economically feasible replacement for commercially available AC prepared from the costlier coconut shells. Breweries and malting industries where barley husk is a primary waste generated on a large scale can be a good source for bulk raw material.

Keywords: activated carbon, Barley husk, biosorption, decontamination, heavy metal removal, water treatment

Procedia PDF Downloads 406
9547 The Angiogenic Activity of α-Mangostin in the Development of Zebrafish Embryo In Vivo

Authors: Titis Indah Adi Rahayu

Abstract:

Angiogenesis is the process of generating new capillary from pre-existing blood vessels. VEGFA is a major regulator in angiogenesis that binds and activates two tyrosine kinase receptors, VEGFR1 (Flt-1) and VEGFR2 (Flk-1/KDR) which regulate pathological and physiological angiogenesis. Disruption of VEGFA and VEGFR2 regulation lead to many diseases. The study of α-Mangostin (derivate of xanthone) as anti-oxidant and anti inflammation has been explored recently and both of them have relation to vasculature however the effect of α-Mangostin in blood vessel formation in healthy tissue in vivo has not been studied. Zebrafish is a powerful model in studying angiogenesis and shared many advantages that is a viable whole animal model for screening small molecules that affect blood vessel formation. Therefore the aim of this study is to evaluate angiogenic activity of α-Mangostin in healthy tissue in vivo in zebrafish embryo in relation of patterning blood vessel. Blood vessel patterning is highly characteristic in the developing of zebrafish embryo and the subintestinal vessel (SIV) can be stained and visualized microscopically as a primary screen for α-Mangostin that effect angiogenesis. The zebrafish embryos are divided into 2 groups. Group one consists of the zebrafish embryos at 1 dpf for 4 days which are tested to α-Mangostin in several concentration 2 µM, 4 µM, 6 µM, 8 µM and 10 µM whereas in group two the zebrafish larva at 4 dpf are exposed to α-Mangostin 1,75 µM, 2,3 µM, 2,9 µM, 3,8 µM dan 5 µM for 2 days. DMSO is served as a control for each group. The level expression of vegfa and vegfr2 are observed quantitatively using real time q-PCR and patterning of SIV are then analized via alkaline phospatase staining. Result shows that the level expression of vegfa and vegfr2 is repressed quantitatively as shown in real time q-PCR in the group of 1-4 days of α-Mangostin exposure where it is increased in the group of 4-6 days of α-Mangostin exposure. The result is then compared to alkaline phospatase staining of SIV using stereo microscope. It indicates that α-Mangostin does not disturb the patterning of SIV formation in zebrafish.

Keywords: angiogenesis, Danio rerio, α-Mangostin, SIV, vegfa, vegfr2

Procedia PDF Downloads 330
9546 Prominence of Biopsychosocial Formulation in Health Care Delivery for Aging Population: Empowering Caregiving through Natural Socio-Environmental Approaches

Authors: Kristine Demilou D. Santiago

Abstract:

An access to a high-quality health care system is what sets apart industrialized nations, such as the United States from other developing countries, which in this case is specifically pertaining to their older population. But what was the underrated factor in the sphere of quality healthcare rendered to elderly people in the Western context? Will this salient factor could push conviction to prorogue the existing gaps between self-denial patient-client and cheek by jowl medications? Are the natural socio-environmental approaches of caregiving the protracted remedy to healthcare disparities for aging population considering their day to day living? The conceptual framework of this model is primarily associated with addressing health and illness of human beings considering the biological, psychological and socio-environmental factors around them. The relevance of biopsychosocial formulation advancing each of the characteristics in the Biopsychosocial (BPS) model in a balance contemplation is the tumult of this study in an attempt to respond to prevailing disparities in caregiving services for old-aged patients on a day to day living. Caregiving services have been the medium path connecting between the patient and its prescribed medications. Moreover, caregivers serve as positive reinforcers in a patient’s environment. Therefore, caregivers play an important role in healthcare delivery to patients. They are considered significant people whom their acts will give an impact to a patient’s view in life. This research study intends to present the supreme importance of biopsychosocial assessment to old-aged patients with mental health illness and conditions. Biopsychosocial assessment will secure the quality of full medication to an old-aged adult suffering from a mental illness. This is because it offers a recognizably wholesome approach to medical healing of old-aged adult patients. The principle of biopsychosocial supersedes the biomedicine being offered to old-aged adults having mental illness, but it does not take away the high relevance of scientific biomedicine in healing patients. The framework presented an overlapping participation of each of its factors in its BPS model that affects in general a person’s health. The correlation between the biological (physiological), psychological (mental) and social (environment) in a person’s health condition requires equal attention according to BPS, and it always coexist with each other. Indisputably said, bio-medicine has been and is being in its unceasing endeavor to provide scientifically proven health care medications for every individual seeking medical treatments. As we grow older and eventually reach the other side of the median population, not only our physiological aspects change, our psychological and socio-environmental changes happen too. Caregiving is a salient responsibility taking place on these inevitable changes.

Keywords: biopsychosocial formulation, caregiving through natural approaches, US health care, BPS in caregiving, caregiving for aging population

Procedia PDF Downloads 88
9545 Incorporation of Copper for Performance Enhancement in Metal-Oxides Resistive Switching Device and Its Potential Electronic Application

Authors: B. Pavan Kumar Reddy, P. Michael Preetam Raj, Souri Banerjee, Souvik Kundu

Abstract:

In this work, the fabrication and characterization of copper-doped zinc oxide (Cu:ZnO) based memristor devices with aluminum (Al) and indium tin oxide (ITO) metal electrodes are reported. The thin films of Cu:ZnO was synthesized using low-cost and low-temperature chemical process. The Cu:ZnO was then deposited onto ITO bottom electrodes using spin-coater technique, whereas the top electrode Al was deposited utilizing physical vapor evaporation technique. Ellipsometer was employed in order to measure the Cu:ZnO thickness and it was found to be 50 nm. Several surface and materials characterization techniques were used to study the thin-film properties of Cu:ZnO. To ascertain the efficacy of Cu:ZnO for memristor applications, electrical characterizations such as current-voltage (I-V), data retention and endurance were obtained, all being the critical parameters for next-generation memory. The I-V characteristic exhibits switching behavior with asymmetrical hysteresis loops. This work imputes the resistance switching to the positional drift of oxygen vacancies associated with respect to the Al/Cu:ZnO junction. Further, a non-linear curve fitting regression techniques were utilized to determine the equivalent circuit for the fabricated Cu:ZnO memristors. Efforts were also devoted in order to establish its potentiality for different electronic applications.

Keywords: copper doped, metal-oxides, oxygen vacancies, resistive switching

Procedia PDF Downloads 151
9544 Effect of Feed Additives, Allium sativum and Argana spinosa Oil on the Growth of Rainbow Trout Fingerlings (Oncorhynchus mykiss)

Authors: El Hassan Abba, Touria Hachi, Mhamed Khaffou, Nezha El Adel, Abdelkhalek Zraouti, Hassan ElIdrissi

Abstract:

The present study has the overall objective of studying the effect of garlic and Argan oil on the growth of Rainbow trout (Oncorhynchus mykiss) fingerlings at the Ras El Ma (Azrou) salmon farming station during the 2023 production period. The fingerlings were distributed in seven tanks at a rate of 1000 per lot. The first control tank (B0) received only the feed without additives. Tanks B1, B2, B3, and B4 received garlic as a feed additive at a rate of 1%, 1.5%, 2% and 2.5% respectively. The fingerlings in tanks B5 and B6, in addition to 2.5% garlic, received 5 and 10ml argon oil, respectively. During this two-month experiment, the weight growth of the fingerlings and the physico-chemical parameters of the water that are favorable for fry rearing (hydrogen potential, temperature, dissolved oxygen, and electrical conductivity) were monitored. The weight growth of fingerlings receiving garlic was positive (mean weight: 4.95g, 5.43g, 5.13g, and 5.06g) compared with control fingerlings (mean weight: 3.88g). The maximum average weight was obtained with 1.5% garlic (average weight: 5.43g). The addition of 5 and 10ml of argon oil to B5 and B6 resulted in a slight increase in weight for the B5 fingerlings (5.37g) compared with the B4 control fingerlings (mean weight: 5.06g) but a minor decrease for the B6 batch (4.73g). The experimental results showed that the use of these feed additives had a positive effect on growth and yield, regardless of the quantities used.

Keywords: Oncorhychus mykiss, fry, feed additive, garlic, argon oil, weight growth

Procedia PDF Downloads 69
9543 Design of a Recombinant Expression System for Bacterial Cellulose Production

Authors: Gizem Buldum, Alexander Bismarck, Athanasios Mantalaris

Abstract:

Cellulose is the most abundant biopolymer on earth and it is currently being utilised in a multitude of industrial applications. Over the last 30 years, attention has been paid to the bacterial cellulose (BC), since BC exhibits unique physical, chemical and mechanical properties when compared to plant-based cellulose, including high purity and biocompatibility. Although Acetobacter xylinum is the most efficient producer of BC, it’s long doubling time results in insufficient yields of the cellulose production. This limits widespread and continued use of BC. In this study, E. coli BL21 (DE3) or E. coli HMS cells are selected as host organisms for the expression of bacterial cellulose synthase operon (bcs) of A.xylinum. The expression system is created based on pET-Duet1 and pCDF plasmid vectors, which carry bcs operon. The results showed that all bcs genes were successfully transferred and expressed in E.coli strains. The expressions of bcs proteins were shown by SDS and Native page analyses. The functionality of the bcs operon was proved by congo red binding assay. The effect of culturing temperature and the inducer concentration (IPTG) on cell growth and plasmid stability were monitored. The percentage of plasmid harboring cells induced with 0.025 mM IPTG was obtained as 85% at 22˚C in the end of 10-hr culturing period. It was confirmed that the high output cellulose production machinery of A.xylinum can be transferred into other organisms.

Keywords: bacterial cellulose, biopolymer, recombinant expression system, production

Procedia PDF Downloads 382