Search results for: zeotropic mixture
86 Assessment of Commercial Antimicrobials Incorporated into Gelatin Coatings and Applied to Conventional Heat-Shrinking Material for the Prevention of Blown Pack Spoilage in Vacuum Packaged Beef Cuts
Authors: Andrey A. Tyuftin, Rachael Reid, Paula Bourke, Patrick J. Cullen, Seamus Fanning, Paul Whyte, Declan Bolton , Joe P. Kerry
Abstract:
One of the primary spoilage issues associated with vacuum-packed beef products is blown pack spoilage (BPS) caused by the psychrophilic spore-forming strain of Clostridium spp. Spores derived from this organism can be activated after heat-shrinking (eg. 90°C for 3 seconds). To date, research into the control of Clostridium spp in beef packaging is limited. Active packaging in the form of antimicrobially-active coatings may be one approach to its control. Antimicrobial compounds may be incorporated into packaging films or coated onto the internal surfaces of packaging films using a carrier matrix. Three naturally-sourced, commercially-available antimicrobials, namely; Auranta FV (AFV) (bitter oranges extract) from Envirotech Innovative Products Ltd, Ireland; Inbac-MDA (IMDA) from Chemital LLC, Spain, mixture of different organic acids and sodium octanoate (SO) from Sigma-Aldrich, UK, were added into gelatin solutions at 2 concentrations: 2.5 and 3.5 times their minimum inhibition concentration (MIC) against Clostridium estertheticum (DSMZ 8809). These gelatin solutions were coated onto the internal polyethylene layer of cold plasma treated, heat-shrinkable laminates conventionally used for meat packaging applications. Atmospheric plasma was used in order to enhance adhesion between packaging films and gelatin coatings. Pouches were formed from these coated packaging materials, and beef cuts which had been inoculated with C. estertheticum were vacuum packaged. Inoculated beef was vacuum packaged without employing active films and this treatment served as the control. All pouches were heat-sealed and then heat-shrunk at 90°C for 3 seconds and incubated at 2°C for 100 days. During this storage period, packs were monitored for the indicators of blown pack spoilage as follows; gas bubbles in drip, loss of vacuum (onset of BPS), blown, the presence of sufficient gas inside the packs to produce pack distension and tightly stretched, “overblown” packs/ packs leaking. Following storage and assessment of indicator date, it was concluded that AFV- and SO-containing packaging inhibited the growth of C. estertheticum, significantly delaying the blown pack spoilage of beef primals. IMDA did not inhibit the growth of C. estertheticum. This may be attributed to differences in release rates and possible reactions with gelatin. Overall, active films were successfully produced following plasma surface treatment, and experimental data demonstrated clearly that the use of antimicrobially-active films could significantly prolong the storage stability of beef primals through the effective control of BPS.Keywords: active packaging, blown pack spoilage, Clostridium, antimicrobials, edible coatings, food packaging, gelatin films, meat science
Procedia PDF Downloads 26585 Removal of Heavy Metals by Ultrafiltration Assisted with Chitosan or Carboxy-Methyl Cellulose
Authors: Boukary Lam, Sebastien Deon, Patrick Fievet, Nadia Crini, Gregorio Crini
Abstract:
Treatment of heavy metal-contaminated industrial wastewater has become a major challenge over the last decades. Conventional processes for the treatment of metal-containing effluents do not always simultaneously satisfy both legislative and economic criteria. In this context, coupling of processes can then be a promising alternative to the conventional approaches used by industry. The polymer-assisted ultrafiltration (PAUF) process is one of these coupling processes. Its principle is based on a sequence of steps with reaction (e.g., complexation) between metal ions and a polymer and a step involving the rejection of the formed species by means of a UF membrane. Unlike free ions, which can cross the UF membrane due to their small size, the polymer/ion species, the size of which is larger than pore size, are rejected. The PAUF process was deeply investigated herein in the case of removal of nickel ions by adding chitosan and carboxymethyl cellulose (CMC). Experiments were conducted with synthetic solutions containing 1 to 100 ppm of nickel ions with or without the presence of NaCl (0.05 to 0.2 M), and an industrial discharge water (containing several metal ions) with and without polymer. Chitosan with a molecular weight of 1.8×105 g mol⁻¹ and a degree of acetylation close to 15% was used. CMC with a degree of substitution of 0.7 and a molecular weight of 9×105 g mol⁻¹ was employed. Filtration experiments were performed under cross-flow conditions with a filtration cell equipped with a polyamide thin film composite flat-sheet membrane (3.5 kDa). Without the step of polymer addition, it was found that nickel rejection decreases from 80 to 0% with increasing metal ion concentration and salt concentration. This behavior agrees qualitatively with the Donnan exclusion principle: the increase in the electrolyte concentration screens the electrostatic interaction between ions and the membrane fixed the charge, which decreases their rejection. It was shown that addition of a sufficient amount of polymer (greater than 10⁻² M of monomer unit) can offset this decrease and allow good metal removal. However, the permeation flux was found to be somewhat reduced due to the increase in osmotic pressure and viscosity. It was also highlighted that the increase in pH (from 3 to 9) has a strong influence on removal performances: the higher pH value, the better removal performance. The two polymers have shown similar performance enhancement at natural pH. However, chitosan has proved more efficient in slightly basic conditions (above its pKa) whereas CMC has demonstrated very weak rejection performances when pH is below its pKa. In terms of metal rejection, chitosan is thus probably the better option for basic or strongly acid (pH < 4) conditions. Nevertheless, CMC should probably be preferred to chitosan in natural conditions (5 < pH < 8) since its impact on the permeation flux is less significant. Finally, ultrafiltration of an industrial discharge water has shown that the increase in metal ion rejection induced by the polymer addition is very low due to the competing phenomenon between the various ions present in the complex mixture.Keywords: carboxymethyl cellulose, chitosan, heavy metals, nickel ion, polymer-assisted ultrafiltration
Procedia PDF Downloads 16384 Classification of ECG Signal Based on Mixture of Linear and Non-Linear Features
Authors: Mohammad Karimi Moridani, Mohammad Abdi Zadeh, Zahra Shahiazar Mazraeh
Abstract:
In recent years, the use of intelligent systems in biomedical engineering has increased dramatically, especially in the diagnosis of various diseases. Also, due to the relatively simple recording of the electrocardiogram signal (ECG), this signal is a good tool to show the function of the heart and diseases associated with it. The aim of this paper is to design an intelligent system for automatically detecting a normal electrocardiogram signal from abnormal one. Using this diagnostic system, it is possible to identify a person's heart condition in a very short time and with high accuracy. The data used in this article are from the Physionet database, available in 2016 for use by researchers to provide the best method for detecting normal signals from abnormalities. Data is of both genders and the data recording time varies between several seconds to several minutes. All data is also labeled normal or abnormal. Due to the low positional accuracy and ECG signal time limit and the similarity of the signal in some diseases with the normal signal, the heart rate variability (HRV) signal was used. Measuring and analyzing the heart rate variability with time to evaluate the activity of the heart and differentiating different types of heart failure from one another is of interest to the experts. In the preprocessing stage, after noise cancelation by the adaptive Kalman filter and extracting the R wave by the Pan and Tampkinz algorithm, R-R intervals were extracted and the HRV signal was generated. In the process of processing this paper, a new idea was presented that, in addition to using the statistical characteristics of the signal to create a return map and extraction of nonlinear characteristics of the HRV signal due to the nonlinear nature of the signal. Finally, the artificial neural networks widely used in the field of ECG signal processing as well as distinctive features were used to classify the normal signals from abnormal ones. To evaluate the efficiency of proposed classifiers in this paper, the area under curve ROC was used. The results of the simulation in the MATLAB environment showed that the AUC of the MLP and SVM neural network was 0.893 and 0.947, respectively. As well as, the results of the proposed algorithm in this paper indicated that the more use of nonlinear characteristics in normal signal classification of the patient showed better performance. Today, research is aimed at quantitatively analyzing the linear and non-linear or descriptive and random nature of the heart rate variability signal, because it has been shown that the amount of these properties can be used to indicate the health status of the individual's heart. The study of nonlinear behavior and dynamics of the heart's neural control system in the short and long-term provides new information on how the cardiovascular system functions, and has led to the development of research in this field. Given that the ECG signal contains important information and is one of the common tools used by physicians to diagnose heart disease, but due to the limited accuracy of time and the fact that some information about this signal is hidden from the viewpoint of physicians, the design of the intelligent system proposed in this paper can help physicians with greater speed and accuracy in the diagnosis of normal and patient individuals and can be used as a complementary system in the treatment centers.Keywords: neart rate variability, signal processing, linear and non-linear features, classification methods, ROC Curve
Procedia PDF Downloads 26283 Polymer Matrices Based on Natural Compounds: Synthesis and Characterization
Authors: Sonia Kudlacik-Kramarczyk, Anna Drabczyk, Dagmara Malina, Bozena Tyliszczak, Agnieszka Sobczak-Kupiec
Abstract:
Introduction: In the preparation of polymer materials, compounds of natural origin are currently gaining more and more interest. This is particularly noticeable in the case of synthesis of materials considered for biomedical use. Then, selected material has to meet many requirements. It should be characterized by non-toxicity, biodegradability and biocompatibility. Therefore special attention is directed to substances such as polysaccharides, proteins or substances that are the basic building components of proteins, i.e. amino acids. These compounds may be crosslinked with other reagents that leads to the preparation of polymer matrices. Such amino acids as e.g. cysteine or histidine. On the other hand, previously mentioned requirements may be met by polymers obtained as a result of biosynthesis, e.g. polyhydroxybutyrate. This polymer belongs to the group of aliphatic polyesters that is synthesized by microorganisms (selected strain of bacteria) under specific conditions. It is possible to modify matrices based on given polymer with substances of various origin. Such a modification may result in the change of their properties or/and in providing the material with new features desirable in viewpoint of specific application. Described materials are synthesized using UV radiation. Process of photopolymerization is fast, waste-free and enables to obtain final products with favorable properties. Methodology: Polymer matrices have been prepared by means of photopolymerization. First step involved the preparation of solutions of particular reagents and mixing them in the appropriate ratio. Next, crosslinking agent and photoinitiator have been added to the reaction mixture and the whole was poured into the Petri dish and treated with UV radiation. After the synthesis, polymer samples were dried at room temperature and subjected to the numerous analyses aimed at the determining their physicochemical properties. Firstly, sorption properties of obtained polymer matrices have been determined. Next, mechanical properties have been characterized, i.e. tensile strength. The ability to deformation under applied stress of all prepared polymer matrices has been checked. Such a property is important in viewpoint of the application of analyzed materials e.g. as wound dressings. Wound dressings have to be elastic because depending on the location of the wound and its mobility, such a dressing has to adhere properly to the wound. Furthermore, considering the use of the materials for biomedical purposes it is essential to determine its behavior in environments simulating these ones occurring in human body. Therefore incubation studies using selected liquids have also been conducted. Conclusions: As a result of photopolymerization process, polymer matrices based on natural compounds have been prepared. These exhibited favorable mechanical properties and swelling ability. Moreover, biocompatibility in relation to simulated body fluids has been stated. Therefore it can be concluded that analyzed polymer matrices constitute an interesting materials that may be considered for biomedical use and may be subjected to the further more advanced analyses using specific cell lines.Keywords: photopolymerization, polymer matrices, simulated body fluids, swelling properties
Procedia PDF Downloads 12782 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 28481 Cement Matrix Obtained with Recycled Aggregates and Micro/Nanosilica Admixtures
Authors: C. Mazilu, D. P. Georgescu, A. Apostu, R. Deju
Abstract:
Cement mortars and concretes are some of the most used construction materials in the world, global cement production being expected to grow to approx. 5 billion tons, until 2030. But, cement is an energy intensive material, the cement industry being responsible for cca. 7% of the world's CO2 emissions. Also, natural aggregates represent non-renewable resources, exhaustible, which must be used efficiently. A way to reduce the negative impact on the environment is the use of additional hydraulically active materials, as a partial substitute for cement in mortars and concretes and/or the use of recycled concrete aggregates (RCA) for the recovery of construction waste, according to EU Directive 2018/851. One of the most effective active hydraulic admixtures is microsilica and more recently, with the technological development on a nanometric scale, nanosilica. Studies carried out in recent years have shown that the introduction of SiO2 nanoparticles into cement matrix improves the properties, even compared to microsilica. This is due to the very small size of the nanosilica particles (<100nm) and the very large specific surface, which helps to accelerate cement hydration and acts as a nucleating agent to generate even more calcium hydrosilicate which densifies and compacts the structure. The cementitious compositions containing recycled concrete aggregates (RCA) present, in generally, inferior properties compared to those obtained with natural aggregates. Depending on the degree of replacement of natural aggregate, decreases the workability of mortars and concretes with RAC, decrease mechanical resistances and increase drying shrinkage; all being determined, in particular, by the presence to the old mortar attached to the original aggregate from the RAC, which makes its porosity high and the mixture of components to require more water for preparation. The present study aims to use micro and nanosilica for increase the performance of some mortars and concretes obtained with RCA. The research focused on two types of cementitious systems: a special mortar composition used for encapsulating Low Level radioactive Waste (LLW); a composition of structural concrete, class C30/37, with the combination of exposure classes XC4+XF1 and settlement class S4. The mortar was made with 100% recycled aggregate, 0-5 mm sort and in the case of concrete, 30% recycled aggregate was used for 4-8 and 8-16 sorts, according to EN 206, Annex E. The recycled aggregate was obtained from a specially made concrete for this study, which after 28 days was crushed with the help of a Retsch jaw crusher and further separated by sieving on granulometric sorters. The partial replacement of cement was done progressively, in the case of the mortar composition, with microsilica (3, 6, 9, 12, 15% wt.), nanosilica (0.75, 1.5, 2.25% wt.), respectively mixtures of micro and nanosilica. The optimal combination of silica, from the point of view of mechanical resistance, was later used also in the case of the concrete composition. For the chosen cementitious compositions, the influence of micro and/or nanosilica on the properties in the fresh state (workability, rheological characteristics) and hardened state (mechanical resistance, water absorption, freeze-thaw resistance, etc.) is highlighted.Keywords: cement, recycled concrete aggregates, micro/nanosilica, durability
Procedia PDF Downloads 6880 Potency of Some Dietary Acidifiers on Productive Performance and Controlling Salmonella enteritidis in Broilers
Authors: Mohamed M. Zaki, Maha M. Hady
Abstract:
Salmonella spp. have been categorized as the world’s biggest threats to human health and poultry products are mostly incriminated sources. In Egypt, it was found that S. enteritidis and S. typhimurium are the most prevalent ones in poultry farms. It is recommended to eliminate salmonella from living bird by competing for salmonella contamination in feed in order to establish a healthy gut. The Feed acidifiers are the group of feed additives containing low-molecular-weight organic acids and/ or their salts which act as performance promoters by lowering the pH in the gut, optimizes digestion and inhibit bacterial growth. The inclusion of organic acid in pure form nonetheless effective in feed, yet, it is difficult to handle in feed mills as it is corrosive and produce more losses during pelleting process. The current study aimed at to evaluate the impact of incorporation of sodium diformate (SDF) and a commercial acidifier, CA (a mixture of butyric and propionic acids and their ammonium salts) at 0.4% dietary levels on broilers performance and the control S. enteritidis infection. Two hundreds and seventy unsexed cobb chickens were allotted in one of three treatments (90/ group) which were, the control (no acidifier, C- &C+), the 0.4% SDF (SDF- & SDF +) and the 0.4% CA (CA- & CA +) dietary levels for 35 days. Before the allocation of the groups, ten extra birds and a diet sample were bacteriologically examined to ensure negative contamination with salmonella. The birds were raised on deep-litter separated pens and had free access to feed and water all the time. The experimentally formulated diets were kept at 40C. After 24h access to the different dietary treatments, all the birds in the positive groups (n=15/ replicate) were inoculated intra-crop with 0.2 ml of 24 h broth culture of S. entertidis containing 1X 107 organisms while the negative-treated groups were inoculated with the same amount of the negative broth and second inoculation was done at 22 d of age. Colocal swabs were collected individually from all birds 2 h pre-inoculation to assure the absence of salmonella, then 1, 3, 5, 7, 21 days post-inoculation to recover salmonella. Performance parameter (body weight gain and feed efficiency) were calculated. Mortalities were recorded and reisolation of the salmonella was adopted to ensure it was the inoculated ones. The results revealed that the dietary acidification with sodium diformate significantly improved broilers performance and tends to produce heavier birds as compared to the negative control and CA groups. Moreover, the dietary inclusion of both acidifiers at level of 0.4% was able to eliminate mortalities completely at the relevant inoculation time. Regarding the shedding of S. enteritidius in positive groups, the SDF treatment resulted in significant (p<0.05) cessation of the shedding at 3 days post-inoculation compared to 7 days post-inoculation for the CA-group. In conclusion, sodium diformate at 0.4% dietary level in broiler diets has a valuable effect not only on broilers performance but also by eliminating S. enteritidis the main source of salmonella contamination in poultry farms which is feed.Keywords: acidifier, broilers, Salmonalla spp, sodium diformate
Procedia PDF Downloads 28579 Improving Binding Selectivity in Molecularly Imprinted Polymers from Templates of Higher Biomolecular Weight: An Application in Cancer Targeting and Drug Delivery
Authors: Ben Otange, Wolfgang Parak, Florian Schulz, Michael Alexander Rubhausen
Abstract:
The feasibility of extending the usage of molecular imprinting technique in complex biomolecules is demonstrated in this research. This technique is promising in diverse applications in areas such as drug delivery, diagnosis of diseases, catalysts, and impurities detection as well as treatment of various complications. While molecularly imprinted polymers MIP remain robust in the synthesis of molecules with remarkable binding sites that have high affinities to specific molecules of interest, extending the usage to complex biomolecules remains futile. This work reports on the successful synthesis of MIP from complex proteins: BSA, Transferrin, and MUC1. We show in this research that despite the heterogeneous binding sites and higher conformational flexibility of the chosen proteins, relying on their respective epitopes and motifs rather than the whole template produces highly sensitive and selective MIPs for specific molecular binding. Introduction: Proteins are vital in most biological processes, ranging from cell structure and structural integrity to complex functions such as transport and immunity in biological systems. Unlike other imprinting templates, proteins have heterogeneous binding sites in their complex long-chain structure, which makes their imprinting to be marred by challenges. In addressing this challenge, our attention is inclined toward the targeted delivery, which will use molecular imprinting on the particle surface so that these particles may recognize overexpressed proteins on the target cells. Our goal is thus to make surfaces of nanoparticles that specifically bind to the target cells. Results and Discussions: Using epitopes of BSA and MUC1 proteins and motifs with conserved receptors of transferrin as the respective templates for MIPs, significant improvement in the MIP sensitivity to the binding of complex protein templates was noted. Through the Fluorescence Correlation Spectroscopy FCS measurements on the size of protein corona after incubation of the synthesized nanoparticles with proteins, we noted a high affinity of MIPs to the binding of their respective complex proteins. In addition, quantitative analysis of hard corona using SDS-PAGE showed that only a specific protein was strongly bound on the respective MIPs when incubated with similar concentrations of the protein mixture. Conclusion: Our findings have shown that the merits of MIPs can be extended to complex molecules of higher biomolecular mass. As such, the unique merits of the technique, including high sensitivity and selectivity, relative ease of synthesis, production of materials with higher physical robustness, and higher stability, can be extended to more templates that were previously not suitable candidates despite their abundance and usage within the body.Keywords: molecularly imprinted polymers, specific binding, drug delivery, high biomolecular mass-templates
Procedia PDF Downloads 5578 Strategies of Risk Management for Smallholder Farmers in South Africa: A Case Study on Pigeonpea (Cajanus cajan) Production
Authors: Sanari Chalin Moriri, Kwabena Kingsley Ayisi, Alina Mofokeng
Abstract:
Dryland smallholder farmers in South Africa are vulnerable to all kinds of risks, and it negatively affects crop productivity and profit. Pigeonpea is a leguminous and multipurpose crop that provides food, fodder, and wood for smallholder farmers. The majority of these farmers are still growing pigeonpea from traditional unimproved seeds, which comprise a mixture of genotypes. The objectives of the study were to identify the key risk factors that affect pigeonpea productivity and to develop management strategies on how to alleviate the risk factors in pigeonpea production. The study was conducted in two provinces (Limpopo and Mpumalanga) of South Africa in six municipalities during the 2020/2021 growing seasons. The non-probability sampling method using purposive and snowball sampling techniques were used to collect data from the farmers through a structured questionnaire. A total of 114 pigeonpea producers were interviewed individually using a questionnaire. Key stakeholders in each municipality were also identified, invited, and interviewed to verify the information given by farmers. Data collected were subjected to SPSS statistical software 25 version. The findings of the study were that majority of farmers affected by risk factors were women, subsistence, and old farmers resulted in low food production. Drought, unavailability of improved pigeonpea seeds for planting, access to information, and processing equipment were found to be the main risk factors contributing to low crop productivity in farmer’s fields. Above 80% of farmers lack knowledge on the improvement of the crop and also on the processing techniques to secure high prices during the crop off-season. Market availability, pricing, and incidence of pests and diseases were found to be minor risk factors which were triggered by the major risk factors. The minor risk factors can be corrected only if the major risk factors are first given the necessary attention. About 10% of the farmers found to use the crop as a mulch to reduce soil temperatures and to improve soil fertility. The study revealed that most of the farmers were unaware of its utilisation as fodder, much, medicinal, nitrogen fixation, and many more. The risk of frequent drought in dry areas of South Africa where farmers solely depend on rainfall poses a serious threat to crop productivity. The majority of these risk factors are caused by climate change due to unrealistic, low rainfall with extreme temperatures poses a threat to food security, water, and the environment. The use of drought-tolerant, multipurpose legume crops such as pigeonpea, access to new information, provision of processing equipment, and support from all stakeholders will help in addressing food security for smallholder farmers. Policies should be revisited to address the prevailing risk factors faced by farmers and involve them in addressing the risk factors. Awareness should be prioritized in promoting the crop to improve its production and commercialization in the dryland farming system of South Africa.Keywords: management strategies, pigeonpea, risk factors, smallholder farmers
Procedia PDF Downloads 21377 Antioxidant Potential of Sunflower Seed Cake Extract in Stabilization of Soybean Oil
Authors: Ivanor Zardo, Fernanda Walper Da Cunha, Júlia Sarkis, Ligia Damasceno Ferreira Marczak
Abstract:
Lipid oxidation is one of the most important deteriorating processes in oil industry, resulting in the losses of nutritional value of oils as well as changes in color, flavor and other physiological properties. Autoxidation of lipids occurs naturally between molecular oxygen and the unsaturation of fatty acids, forming fat-free radicals, peroxide free radicals and hydroperoxides. In order to avoid the lipid oxidation in vegetable oils, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tertiary butyl hydro-quinone (TBHQ) are commonly used. However, the use of synthetic antioxidants has been associated with several health side effects and toxicity. The use of natural antioxidants as stabilizers of vegetable oils is being suggested as a sustainable alternative to synthetic antioxidants. The alternative that has been studied is the use of natural extracts obtained mainly from fruits, vegetables and seeds, which have a well-known antioxidant activity related mainly to the presence of phenolic compounds. The sunflower seed cake is rich in phenolic compounds (1 4% of the total mass), being the chlorogenic acid the major constituent. The aim of this study was to evaluate the in vitro application of the phenolic extract obtained from the sunflower seed cake as a retarder of the lipid oxidation reaction in soybean oil and to compare the results with a synthetic antioxidant. For this, the soybean oil, provided from the industry without any addition of antioxidants, was subjected to an accelerated storage test for 17 days at 65 °C. Six samples with different treatments were submitted to the test: control sample, without any addition of antioxidants; 100 ppm of synthetic antioxidant BHT; mixture of 50 ppm of BHT and 50 ppm of phenolic compounds; and 100, 500 and 1200 ppm of phenolic compounds. The phenolic compounds concentration in the extract was expressed in gallic acid equivalents. To evaluate the oxidative changes of the samples, aliquots were collected after 0, 3, 6, 10 and 17 days and analyzed for the peroxide, diene and triene conjugate values. The soybean oil sample initially had a peroxide content of 2.01 ± 0.27 meq of oxygen/kg of oil. On the third day of the treatment, only the samples treated with 100, 500 and 1200 ppm of phenolic compounds showed a considerable oxidation retard compared to the control sample. On the sixth day of the treatment, the samples presented a considerable increase in the peroxide value (higher than 13.57 meq/kg), and the higher the concentration of phenolic compounds, the lower the peroxide value verified. From the tenth day on, the samples had a very high peroxide value (higher than 55.39 meq/kg), where only the sample containing 1200 ppm of phenolic compounds presented significant oxidation retard. The samples containing the phenolic extract were more efficient to avoid the formation of the primary oxidation products, indicating effectiveness to retard the reaction. Similar results were observed for dienes and trienes. Based on the results, phenolic compounds, especially chlorogenic acid (the major phenolic compound of sunflower seed cake), can be considered as a potential partial or even total substitute for synthetic antioxidants.Keywords: chlorogenic acid, natural antioxidant, vegetables oil deterioration, waste valorization
Procedia PDF Downloads 26276 Thermal Energy Storage Based on Molten Salts Containing Nano-Particles: Dispersion Stability and Thermal Conductivity Using Multi-Scale Computational Modelling
Authors: Bashar Mahmoud, Lee Mortimer, Michael Fairweather
Abstract:
New methods have recently been introduced to improve the thermal property values of molten nitrate salts (a binary mixture of NaNO3:KNO3in 60:40 wt. %), by doping them with minute concentration of nanoparticles in the range of 0.5 to 1.5 wt. % to form the so-called: Nano-heat-transfer-fluid, apt for thermal energy transfer and storage applications. The present study aims to assess the stability of these nanofluids using the advanced computational modelling technique, Lagrangian particle tracking. A multi-phase solid-liquid model is used, where the motion of embedded nanoparticles in the suspended fluid is treated by an Euler-Lagrange hybrid scheme with fixed time stepping. This technique enables measurements of various multi-scale forces whose characteristic (length and timescales) are quite different. Two systems are considered, both consisting of 50 nm Al2O3 ceramic nanoparticles suspended in fluids of different density ratios. This includes both water (5 to 95 °C) and molten nitrate salt (220 to 500 °C) at various volume fractions ranging between 1% to 5%. Dynamic properties of both phases are coupled to the ambient temperature of the fluid suspension. The three-dimensional computational region consists of a 1μm cube and particles are homogeneously distributed across the domain. Periodic boundary conditions are enforced. The particle equations of motion are integrated using the fourth order Runge-Kutta algorithm with a very small time-step, Δts, set at 10-11 s. The implemented technique demonstrates the key dynamics of aggregated nanoparticles and this involves: Brownian motion, soft-sphere particle-particle collisions, and Derjaguin, Landau, Vervey, and Overbeek (DLVO) forces. These mechanisms are responsible for the predictive model of aggregation of nano-suspensions. An energy transport-based method of predicting the thermal conductivity of the nanofluids is also used to determine thermal properties of the suspension. The simulation results confirms the effectiveness of the technique. The values are in excellent agreement with the theoretical and experimental data obtained from similar studies. The predictions indicates the role of Brownian motion and DLVO force (represented by both the repulsive electric double layer and an attractive Van der Waals) and its influence in the level of nanoparticles agglomeration. As to the nano-aggregates formed that was found to play a key role in governing the thermal behavior of nanofluids at various particle concentration. The presentation will include a quantitative assessment of these forces and mechanisms, which would lead to conclusions about nanofluids, heat transfer performance and thermal characteristics and its potential application in solar thermal energy plants.Keywords: thermal energy storage, molten salt, nano-fluids, multi-scale computational modelling
Procedia PDF Downloads 19175 Real-Time Neuroimaging for Rehabilitation of Stroke Patients
Authors: Gerhard Gritsch, Ana Skupch, Manfred Hartmann, Wolfgang Frühwirt, Hannes Perko, Dieter Grossegger, Tilmann Kluge
Abstract:
Rehabilitation of stroke patients is dominated by classical physiotherapy. Nowadays, a field of research is the application of neurofeedback techniques in order to help stroke patients to get rid of their motor impairments. Especially, if a certain limb is completely paralyzed, neurofeedback is often the last option to cure the patient. Certain exercises, like the imagination of the impaired motor function, have to be performed to stimulate the neuroplasticity of the brain, such that in the neighboring parts of the injured cortex the corresponding activity takes place. During the exercises, it is very important to keep the motivation of the patient at a high level. For this reason, the missing natural feedback due to a movement of the effected limb may be replaced by a synthetic feedback based on the motor-related brain function. To generate such a synthetic feedback a system is needed which measures, detects, localizes and visualizes the motor related µ-rhythm. Fast therapeutic success can only be achieved if the feedback features high specificity, comes in real-time and without large delay. We describe such an approach that offers a 3D visualization of µ-rhythms in real time with a delay of 500ms. This is accomplished by combining smart EEG preprocessing in the frequency domain with source localization techniques. The algorithm first selects the EEG channel featuring the most prominent rhythm in the alpha frequency band from a so-called motor channel set (C4, CZ, C3; CP6, CP4, CP2, CP1, CP3, CP5). If the amplitude in the alpha frequency band of this certain electrode exceeds a threshold, a µ-rhythm is detected. To prevent detection of a mixture of posterior alpha activity and µ-activity, the amplitudes in the alpha band outside the motor channel set are not allowed to be in the same range as the main channel. The EEG signal of the main channel is used as template for calculating the spatial distribution of the µ - rhythm over all electrodes. This spatial distribution is the input for a inverse method which provides the 3D distribution of the µ - activity within the brain which is visualized in 3D as color coded activity map. This approach mitigates the influence of lid artifacts on the localization performance. The first results of several healthy subjects show that the system is capable of detecting and localizing the rarely appearing µ-rhythm. In most cases the results match with findings from visual EEG analysis. Frequent eye-lid artifacts have no influence on the system performance. Furthermore, the system will be able to run in real-time. Due to the design of the frequency transformation the processing delay is 500ms. First results are promising and we plan to extend the test data set to further evaluate the performance of the system. The relevance of the system with respect to the therapy of stroke patients has to be shown in studies with real patients after CE certification of the system. This work was performed within the project ‘LiveSolo’ funded by the Austrian Research Promotion Agency (FFG) (project number: 853263).Keywords: real-time EEG neuroimaging, neurofeedback, stroke, EEG–signal processing, rehabilitation
Procedia PDF Downloads 38774 Metal Contents in Bird Feathers (Columba livia) from Mt Etna Volcano: Volcanic Plume Contribution and Biological Fractionation
Authors: Edda E. Falcone, Cinzia Federico, Sergio Bellomo, Lorenzo Brusca, Manfredi Longo, Walter D’Alessandro
Abstract:
Although trace metals are an essential element for living beings, they can become toxic at high concentrations. Their potential toxicity is related not only to the total content in the environment but mostly upon their bioavailability. Volcanoes are important natural metal emitters and they can deeply affect the quality of air, water and soils, as well as the human health. Trace metals tend to accumulate in the tissues of living organisms, depending on the metal contents in food, air and water and on the exposure time. Birds are considered as bioindicators of interest, because their feathers directly reflects the metals uptake from the blood. Birds are exposed to the atmospheric pollution through the contact with rainfall, dust, and aerosol, and they accumulate metals over the whole life cycle. We report on the first data combining the rainfall metal content in three different areas of Mt Etna, variably fumigated by the volcanic plume, and the metal contents in the feathers of pigeons, collected in the same areas. Rainfall samples were collected from three rain gauges placed at different elevation on the Eastern flank of the volcano, the most exposed to airborne plume, filtered, treated with HNO₃ Suprapur-grade and analyzed for Fe, Cr, Co, Ni, Se, Zn, Cu, Sr, Ba, Cd and As by ICP-MS technique, and major ions by ion chromatography. Feathers were collected from single individuals, in the same areas where the rain gauges were installed. Additionally, some samples were collected in an urban area, poorly interested by the volcanic plume. The samples were rinsed in MilliQ water and acetone, dried at 50°C until constant weight and digested in a mixture of 2:1 HNO₃ (65%) - H₂O₂ (30%) Suprapur-grade for 25-50 mg of sample, in a bath at near-to-boiling temperature. The solutions were diluted up to 20 ml prior to be analyzed by ICP-MS. The rainfall samples most contaminated by the plume were collected at close distance from the summit craters (less than 6 km), and show lower pH values and higher concentrations for all analyzed metals relative to those from the sites at lower elevation. Analyzed samples are enriched in both metals directly emitted by the volcanic plume and transported by acidic gases (SO₂, HCl, HF), and metals leached from the airborne volcanic ash. Feathers show different patterns in the different sites related to the exposure to natural or anthropogenic pollutants. They show abundance ratios similar to rainfall for lithophile elements (Ba, Sr), whereas are enriched in Zn and Se, known for their antioxidant properties, probably as adaptive response to oxidative stress induced by toxic metal exposure. The pigeons revealed a clear heterogeneity of metal uptake in the different parts of the volcano, as an effect of volcanic plume impact. Additionally, some physiological processes can modify the fate of some metals after uptake and this offer some insights for translational studies.Keywords: bioindicators, environmental pollution, feathers, trace metals, volcanic plume
Procedia PDF Downloads 14373 Detection of High Fructose Corn Syrup in Honey by Near Infrared Spectroscopy and Chemometrics
Authors: Mercedes Bertotto, Marcelo Bello, Hector Goicoechea, Veronica Fusca
Abstract:
The National Service of Agri-Food Health and Quality (SENASA), controls honey to detect contamination by synthetic or natural chemical substances and establishes and controls the traceability of the product. The utility of near-infrared spectroscopy for the detection of adulteration of honey with high fructose corn syrup (HFCS) was investigated. First of all, a mixture of different authentic artisanal Argentinian honey was prepared to cover as much heterogeneity as possible. Then, mixtures were prepared by adding different concentrations of high fructose corn syrup (HFCS) to samples of the honey pool. 237 samples were used, 108 of them were authentic honey and 129 samples corresponded to honey adulterated with HFCS between 1 and 10%. They were stored unrefrigerated from time of production until scanning and were not filtered after receipt in the laboratory. Immediately prior to spectral collection, honey was incubated at 40°C overnight to dissolve any crystalline material, manually stirred to achieve homogeneity and adjusted to a standard solids content (70° Brix) with distilled water. Adulterant solutions were also adjusted to 70° Brix. Samples were measured by NIR spectroscopy in the range of 650 to 7000 cm⁻¹. The technique of specular reflectance was used, with a lens aperture range of 150 mm. Pretreatment of the spectra was performed by Standard Normal Variate (SNV). The ant colony optimization genetic algorithm sample selection (ACOGASS) graphical interface was used, using MATLAB version 5.3, to select the variables with the greatest discriminating power. The data set was divided into a validation set and a calibration set, using the Kennard-Stone (KS) algorithm. A combined method of Potential Functions (PF) was chosen together with Partial Least Square Linear Discriminant Analysis (PLS-DA). Different estimators of the predictive capacity of the model were compared, which were obtained using a decreasing number of groups, which implies more demanding validation conditions. The optimal number of latent variables was selected as the number associated with the minimum error and the smallest number of unassigned samples. Once the optimal number of latent variables was defined, we proceeded to apply the model to the training samples. With the calibrated model for the training samples, we proceeded to study the validation samples. The calibrated model that combines the potential function methods and PLSDA can be considered reliable and stable since its performance in future samples is expected to be comparable to that achieved for the training samples. By use of Potential Functions (PF) and Partial Least Square Linear Discriminant Analysis (PLS-DA) classification, authentic honey and honey adulterated with HFCS could be identified with a correct classification rate of 97.9%. The results showed that NIR in combination with the PT and PLS-DS methods can be a simple, fast and low-cost technique for the detection of HFCS in honey with high sensitivity and power of discrimination.Keywords: adulteration, multivariate analysis, potential functions, regression
Procedia PDF Downloads 12572 Critical Evaluation of Long Chain Hydrocarbons with Biofuel Potential from Marine Diatoms Isolated from the West Coast of India
Authors: Indira K., Valsamma Joseph, I. S. Bright
Abstract:
Introduction :Biofuels could replace fossil fuels and reduce our carbon footprint on the planet by technological advancements needed for sustainable and economic fuel production. Micro algae have proven to be a promising source to meet the current energy demand because of high lipid content and production of high biomass rapidly. Marine diatoms, which are key contributors in the biofuel sector and also play a significant role in primary productivity and ecology with high biodiversity and genetic and chemical diversity, are less well understood than other microalgae for producing hydrocarbons. Method :The marine diatom samples selected for hydrocarbon analysis were a total of eleven, out of which 9 samples were from the culture collection of NCAAH, and the remaining two of them were isolated by serial dilution method to get a pure culture from a mixed culture of microalgae obtained from the various cruise stations (350&357) FORV Sagar Sampada along the west coast of India. These diatoms were mass cultured in F/2 media, and the biomass harvested. The crude extract was obtained from the biomass by homogenising with n-hexane, and the hydrocarbons was further obtained by passing the crude extract through 500mg Bonna Agela SPE column and the quantitative analysis was done by GCHRMS analysis using HP-5 column and Helium gas was used as a carrier gas(1ml/min). The injector port temperature was 2400C, the detector temperature was 2500C, and the oven was initially kept at 600C for 1 minute and increased to 2200C at the rate of 60C per minute, and the analysis of a mixture of long chain hydrocarbons was done .Results:In the qualitative analysis done, the most potent hydrocarbon was found to be Psammodictyon Panduriforme (NCAAH-9) with a hydrocarbon mass of 37.27mg/g of the biomass and 2.1% of the total biomass 0f 1.395g and the other potent producer is Biddulphia(NCAAH 6) with hydrocarbon mass of 25.4mg/g of biomass and percentage of hydrocarbon is 1.03%. In the quantitative analysis by GCHRMS, the long chain hydrocarbons found in most of the marine diatoms were undecane, hexadecane, octadecane 3ethyl 5,2 ethyl butyl, Eicosane7hexyl, hexacosane, heptacosane, heneicosane, octadecane 3 methyl, triacontane. The exact mass of the long chain hydrocarbons in all the marine diatom samples was found to be Nonadecane 12C191H40, Tritriacontane,13-decyl-13-heptyl 12C501H102, Octadecane,3ethyl-5-(2-ethylbutyl 12C261H54, tetratetracontane 12C441H89, Eicosane, 7-hexyl 12C261H54. Conclusion:All the marine diatoms screened produced long chain hydrocarbons which can be used as diesel fuel with good cetane value example, hexadecane, undecane. All the long chain hydrocarbons can further undergo catalytic cracking to produce short chain alkanes which can give good octane values and can be used as gasoline. Optimisation of hydrocarbon production with the most potent marine diatom yielded long chain hydrocarbons of good fuel quality.Keywords: biofuel, hydrocarbons, marine diatoms, screening
Procedia PDF Downloads 7671 Fermented Fruit and Vegetable Discard as a Source of Feeding Ingredients and Functional Additives
Authors: Jone Ibarruri, Mikel Manso, Marta Cebrián
Abstract:
A high amount of food is lost or discarded in the World every year. In addition, in the last decades, an increasing demand of new alternative and sustainable sources of proteins and other valuable compounds is being observed in the food and feeding sectors and, therefore, the use of food by-products as nutrients for these purposes sounds very interesting from the environmental and economical point of view. However, the direct use of discarded fruit and vegetables that present, in general, a low protein content is not interesting as feeding ingredient except if they are used as a source of fiber for ruminants. Especially in the case of aquaculture, several alternatives to the use of fish meal and other vegetable protein sources have been extensively explored due to the scarcity of fish stocks and the unsustainability of fishing for these purposes. Fish mortality is also of great concern in this sector as this problem highly reduces their economic feasibility. So, the development of new functional and natural ingredients that could reduce the need for vaccination is also of great interest. In this work, several fermentation tests were developed at lab scale using a selected mixture of fruit and vegetable discards from a wholesale market located in the Basque Country to increase their protein content and also to produce some bioactive extracts that could be used as additives in aquaculture. Fruit and vegetable mixtures (60/40 ww) were centrifugated for humidity reduction and crushed to 2-5 mm particle size. Samples were inoculated with a selected Rhizopus oryzae strain and fermented for 7 days in controlled conditions (humidity between 65 and 75% and 28ºC) in Petri plates (120 mm) by triplicate. Obtained results indicated that the final fermented product presented a twofold protein content (from 13 to 28% d.w). Fermented product was further processed to determine their possible functionality as a feed additive. Extraction tests were carried out to obtain an ethanolic extract (60:40 ethanol: water, v.v) and remaining biomass that also could present applications in food or feed sectors. The extract presented a polyphenol content of about 27 mg GAE/gr d.w with antioxidant activity of 8.4 mg TEAC/g d.w. Remining biomass is mainly composed of fiber (51%), protein (24%) and fat (10%). Extracts also presented antibacterial activity according to the results obtained in Agar Diffusion and to the Minimum Inhibitory Concentration (MIC) tests determined against several food and fish pathogen strains. In vitro, digestibility was also assessed to obtain preliminary information about the expected effect of extraction procedure on fermented product digestibility. First results indicated that remaining biomass after extraction doesn´t seem to improve digestibility in comparison to the initial fermented product. These preliminary results show that fermented fruit and vegetables can be a useful source of functional ingredients for aquaculture applications and a substitute of other protein sources in the feeding sector. Further validation will be also carried out through “in vivo” tests with trout and bass.Keywords: fungal solid state fermentation, protein increase, functional extracts, feed ingredients
Procedia PDF Downloads 6470 LES Simulation of a Thermal Plasma Jet with Modeled Anode Arc Attachment Effects
Authors: N. Agon, T. Kavka, J. Vierendeels, M. Hrabovský, G. Van Oost
Abstract:
A plasma jet model was developed with a rigorous method for calculating the thermophysical properties of the gas mixture without mixing rules. A simplified model approach to account for the anode effects was incorporated in this model to allow the valorization of the simulations with experimental results. The radial heat transfer was under-predicted by the model because of the limitations of the radiation model, but the calculated evolution of centerline temperature, velocity and gas composition downstream of the torch exit corresponded well with the measured values. The CFD modeling of thermal plasmas is either focused on development of the plasma arc or the flow of the plasma jet outside of the plasma torch. In the former case, the Maxwell equations are coupled with the Navier-Stokes equations to account for electromagnetic effects which control the movements of the anode arc attachment. In plasma jet simulations, however, the computational domain starts from the exit nozzle of the plasma torch and the influence of the arc attachment fluctuations on the plasma jet flow field is not included in the calculations. In that case, the thermal plasma flow is described by temperature, velocity and concentration profiles at the torch exit nozzle and no electromagnetic effects are taken into account. This simplified approach is widely used in literature and generally acceptable for plasma torches with a circular anode inside the torch chamber. The unique DC hybrid water/gas-stabilized plasma torch developed at the Institute of Plasma Physics of the Czech Academy of Sciences on the other hand, consists of a rotating anode disk, located outside of the torch chamber. Neglecting the effects of the anode arc attachment downstream of the torch exit nozzle leads to erroneous predictions of the flow field. With the simplified approach introduced in this model, the Joule heating between the exit nozzle and the anode attachment position of the plasma arc is modeled by a volume heat source and the jet deflection caused by the anode processes by a momentum source at the anode surface. Furthermore, radiation effects are included by the net emission coefficient (NEC) method and diffusion is modeled with the combined diffusion coefficient method. The time-averaged simulation results are compared with numerous experimental measurements. The radial temperature profiles were obtained by spectroscopic measurements at different axial positions downstream of the exit nozzle. The velocity profiles were evaluated from the time-dependent evolution of flow structures, recorded by photodiode arrays. The shape of the plasma jet was compared with charge-coupled device (CCD) camera pictures. In the cooler regions, the temperature was measured by enthalpy probe downstream of the exit nozzle and by thermocouples in radial direction around the torch nozzle. The model results correspond well with the experimental measurements. The decrease in centerline temperature and velocity is predicted within an acceptable range and the shape of the jet closely resembles the jet structure in the recorded images. The temperatures at the edge of the jet are underestimated due to the absence of radial radiative heat transfer in the model.Keywords: anode arc attachment, CFD modeling, experimental comparison, thermal plasma jet
Procedia PDF Downloads 36769 Encapsulation of Venlafaxine-Dowex® Resinate: A Once Daily Multiple Unit Formulation
Authors: Salwa Mohamed Salah Eldin, Howida Kamal Ibrahim
Abstract:
Introduction: Major depressive disorder affects high proportion of the world’s population presenting cost load in health care. Extended release venlafaxine is more convenient and could reduce discontinuation syndrome. The once daily dosing also reduces the potential for adverse events such as nausea due to reduced Cmax. Venlafaxine is an effective first-line agent in the treatment of depression. A once daily formulation was designed to enhance patient compliance. Complexing with a resin was suggested to improve loading of the water soluble drug. The formulated systems were thoroughly evaluated in vitro to prove superiority to previous trials and were compared to the commercial extended release product in experimental animals. Materials and Methods: Venlafaxine-resinates were prepared using Dowex®50WX4-400 and Dowex®50WX8-100 at drug to resin weight ratio of 1: 1. The prepared resinates were evaluated for their drug content, particle shape and surface properties and in vitro release profile in gradient pH. The release kinetics and mechanism were evaluated. Venlafaxine-Dowex® resinates were encapsulated using O/W solvent evaporation technique. Poly-ε-caprolactone, Poly(D, L-lactide-co-glycolide) ester, Poly(D, L-lactide) ester and Eudragit®RS100 were used as coating polymers alone and in combination. Drug-resinate microcapsules were evaluated for morphology, entrapment efficiency and in-vitro release profile. The selected formula was tested in rabbits using a randomized, single-dose, 2-way crossover study against Effexor-XR tablets under fasting condition. Results and Discussion: The equilibrium time was 30 min for Dowex®50WX4-400 and 90 min for Dowex®50WX8-100. The percentage drug loaded was 93.96 and 83.56% for both resins, respectively. Both drug-Dowex® resintes were efficient in sustaining venlafaxine release in comparison to the free drug (up to 8h.). Dowex®50WX4-400 based venlafaxine-resinate was selected for further encapsulation to optimize the release profile for once daily dosing and to lower the burst effect. The selected formula (coated with a mixture of Eudragit RS and PLGA in a ratio of 50/50) was chosen by applying a group of mathematical equations according to targeted values. It recorded the minimum burst effect, the maximum MDT (Mean dissolution time) and a Q24h (percentage drug released after 24 hours) between 95 and 100%. The 90% confidence intervals for the test/reference mean ratio of the log-transformed data of AUC0–24 and AUC0−∞ are within (0.8–1.25), which satisfies the bioequivalence criteria. Conclusion: The optimized formula could be a promising extended release form of the water soluble, short half lived venlafaxine. Being a multiple unit formulation, it lowers the probability of dose dumping and reduces the inter-subject variability in absorption.Keywords: biodegradable polymers, cation-exchange resin, microencapsulation, venlafaxine hcl
Procedia PDF Downloads 39468 Population Diversity of Dalmatian Pyrethrum Based on Pyrethrin Content and Composition
Authors: Filip Varga, Nina Jeran, Martina Biosic, Zlatko Satovic, Martina Grdisa
Abstract:
Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.), a species endemic to the eastern Adriatic coastline, is the source of natural insecticide pyrethrin. Pyrethrin is a mixture of six compounds (pyrethrin I and II, cinerin I and II, jasmolin I and II) that exhibits high insecticidal activity with no detrimental effects to the environment. A recently optimized matrix-solid phase dispersion method (MSPD), using florisil as the sorbent, acetone-ethyl acetate (1:1, v/v) as the elution solvent, and sodium sulfate anhydrous as the drying agent was utilized to extract the pyrethrins from 10 wild populations (20 individuals per population) distributed along the Croatian coast. All six components in the extracts were qualitatively and quantitatively determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD). Pearson’s correlation index was calculated between pyrethrin compounds, and differences between the populations using the analysis of variance were tested. Additionally, the correlation of each pyrethrin component with spatio-ecological variables (bioclimate, soil properties, elevation, solar radiation, and distance from the coastline) was calculated. Total pyrethrin content ranged from 0.10% to 1.35% of dry flower weight, averaging 0.58% across all individuals. Analysis of variance revealed significant differences between populations based on all six pyrethrin compounds and total pyrethrin content. On average, the lowest total pyrethrin content was found in the population from Pelješac peninsula (0.22% of dry flower weight) in which total pyrethrin content lower than 0.18% was detected in 55% of the individuals. The highest average total pyrethrin content was observed in the population from island Zlarin (0.87% of dry flower weight), in which total pyrethrin content higher than 1.00% was recorded in only 30% of the individuals. Pyrethrin I/pyrethrin II ratio as a measure of extract quality ranged from 0.21 (population from the island Čiovo) to 5.88 (population from island Mali Lošinj) with an average of 1.77 across all individuals. By far, the lowest quality of extracts was found in the population from Mt. Biokovo (pyrethrin I/II ratio lower than 0.72 in 40% of individuals) due to the high pyrethrin II content typical for this population. Pearson’s correlation index revealed a highly significant positive correlation between pyrethrin I content and total pyrethrin content and a strong negative correlation between pyrethrin I and pyrethrin II. The results of this research clearly indicate high intra- and interpopulation diversity of Dalmatian pyrethrum with regards to pyrethrin content and composition. The information obtained has potential use in plant genetic resources conservation and biodiversity monitoring. Possibly the largest potential lies in designing breeding programs aimed at increasing pyrethrin content in commercial breeding lines and reintroduction in agriculture in Croatia. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034).Keywords: Dalmatian pyrethrum, HPLC, MSPD, pyrethrin
Procedia PDF Downloads 14267 Photophysics and Torsional Dynamics of Thioflavin T in Deep Eutectic Solvents
Authors: Rajesh Kumar Gautam, Debabrata Seth
Abstract:
Thioflavin-T (ThT) play a key role of an important biologically active fluorescent sensor for amyloid fibrils. ThT molecule has been developed a method to detect the analysis of different type of diseases such as neurodegenerative disorders, Alzheimer’s, Parkinson’s, and type II diabetes. ThT was used as a fluorescent marker to detect the formation of amyloid fibril. In the presence of amyloid fibril, ThT becomes highly fluorescent. ThT undergoes twisting motion around C-C bonds of the two adjacent benzothiazole and dimethylaniline aromatic rings, which is predominantly affected by the micro-viscosity of the local environment. The present study articulates photophysics and torsional dynamics of biologically active molecule ThT in the presence of deep-eutectic solvents (DESs). DESs are environment-friendly, low cost and biodegradable alternatives to the ionic liquids. DES resembles ionic liquids, but the constituents of a DES include a hydrogen bond donor and acceptor species, in addition to ions. Due to the presence of the H-bonding network within a DES, it exhibits structural heterogeneity. Herein, we have prepared two different DESs by mixing urea with choline chloride and N, N-diethyl ethanol ammonium chloride at ~ 340 K. It was reported that deep eutectic mixture of choline chloride with urea gave a liquid with a freezing point of 12°C. We have experimented by taking two different concentrations of ThT. It was observed that at higher concentration of ThT (50 µM) it forms aggregates in DES. The photophysics of ThT as a function of temperature have been explored by using steady-state, and picoseconds time-resolved fluorescence emission spectroscopic techniques. From the spectroscopic analysis, we have observed that with rising temperature the fluorescence quantum yields and lifetime values of ThT molecule gradually decreases; this is the cumulative effect of thermal quenching and increase in the rate of the torsional rate constant. The fluorescence quantum yield and fluorescence lifetime decay values were always higher for DES-II (urea & N, N-diethyl ethanol ammonium chloride) than those for DES-I (urea & choline chloride). This was mainly due to the presence of structural heterogeneity of the medium. This was further confirmed by comparison with the activation energy of viscous flow with the activation energy of non-radiative decay. ThT molecule in less viscous media undergoes a very fast twisting process and leads to deactivation from the photoexcited state. In this system, the torsional motion increases with increasing temperature. We have concluded that beside bulk viscosity of the media, structural heterogeneity of the medium play crucial role to guide the photophysics of ThT in DESs. The analysis of the experimental data was carried out in the temperature range 288 ≤ T = 333K. The present articulate is to obtain an insight into the DESs as media for studying various photophysical processes of amyloid fibrils sensing molecule of ThT.Keywords: deep eutectic solvent, photophysics, Thioflavin T, the torsional rate constant
Procedia PDF Downloads 16266 Thermal Properties and Water Vapor Permeability for Cellulose-Based Materials
Authors: Stanislavs Gendelis, Maris Sinka, Andris Jakovics
Abstract:
Insulation materials made from natural sources have become more popular for the ecologisation of buildings, meaning wide use of such renewable materials. Such natural materials replace synthetic products which consume a large quantity of energy. The most common and the cheapest natural materials in Latvia are cellulose-based (wood and agricultural plants). The ecological aspects of such materials are well known, but experimental data about physical properties remains lacking. In this study, six different samples of wood wool panels and a mixture of hemp shives and lime (hempcrete) are analysed. Thermal conductivity and heat capacity measurements were carried out for wood wool and cement panels using the calibrated hot plate device. Water vapor permeability was tested for hempcrete material by using the gravimetric dry cup method. Studied wood wool panels are eco-friendly and harmless material, which is widely used in the interior design of public and residential buildings, where noise absorption and sound insulation is of importance. They are also suitable for high humidity facilities (e.g., swimming pools). The difference in panels was the width of used wood wool, which is linked to their density. The results of measured thermal conductivity are in a wide range, showing the worsening of properties with the increasing of the wool width (for the least dense 0.066, for the densest 0.091 W/(m·K)). Comparison with mineral insulation materials shows that thermal conductivity for such materials are 2-3 times higher and are comparable to plywood and fibreboard. Measured heat capacity was in a narrower range; here, the dependence on the wool width was not so strong due to the fact that heat capacity value is related to mass, not volume. The resulting heat capacity is a combination of two main components. A comparison of results for different panels allows to select the most suitable sample for a specific application because the dependencies of the thermal insulation and heat capacity properties on the wool width are not the same. Hempcrete is a much denser material compared to conventional thermal insulating materials. Therefore, its use helps to reinforce the structural capacity of the constructional framework, at the same time, it is lightweight. By altering the proportions of the ingredients, hempcrete can be produced as a structural, thermal, or moisture absorbent component. The water absorption and water vapor permeability are the most important properties of these materials. Information about absorption can be found in the literature, but there are no data about water vapor transmission properties. Water vapor permeability was tested for a sample of locally made hempcrete using different air humidity values to evaluate the possible difference. The results show only the slight influence of the air humidity on the water vapor permeability value. The absolute ‘sd value’ measured is similar to mineral wool and wood fiberboard, meaning that due to very low resistance, water vapor passes easily through the material. At the same time, other properties – structural and thermal of the hempcrete is totally different. As a result, an experimentally-based knowledge of thermal and water vapor transmission properties for cellulose-based materials was significantly improved.Keywords: heat capacity, hemp concrete, thermal conductivity, water vapor transmission, wood wool
Procedia PDF Downloads 22165 Conceptualizing Health-Seeking Behavior among Adolescents and Youth with Substance Use Disorder in Urban Kwazulu-Natal. A Candidacy Framework Analysis
Authors: Siphesihle Hlongwane
Abstract:
Background: Globally, alcohol consumption, smoking, and the use of illicit drugs kill more than 11.8 million people each year. In sub-Saharan Africa, substance abuse is responsible for more than 6.4% of all deaths recorded and about 4.7% of all Disability Adjusted Life Years (DALYs), with numbers still expected to grow if no drastic measures are taken to curb and address drug use. In a setting where substance use is rife, understanding contextual factors that influence an individual’s perceived eligibility to seek rehabilitation is paramount. Using the candidacy framework, we unpack how situational factors influence an individual’s perceived eligibility for healthcare uptake in adolescents and youth with substance use disorder (SUD). Methods: The candidacy framework is concerned with how people consider their eligibility for accessing a health service. The study collected and analyzed primary qualitative data to answer the research question. Data were collected between January and July 2022 on participants aged between 18 and 35 for drug users and 18 to 60 for family members. Participants include 20 previous and current drug users and 20 family members that experience the effects of addiction. A pre-drafted semi-structured interview guide was administered to a conveniently sampled population supplemented with a referral sampling method. Data were thematically analyzed using the NVivo 12pro software to manage the data. Findings: Our findings show that people with substance use disorders are aware of their drug use habits and acknowledge their candidacy for health services. Candidacy for health services is also acknowledged by those around them, such as family members and peers, and as such, information on the navigation of health services for drug users is shared by those who have attended health services, those affected by drug use, and this includes health service research by family members to identify accessible health services. While participants reported willingness to quit drug use if assistance is provided, the permeability of health care services is hindered by both individual determinations to quit drug use from long-time use and the availability of health services for drug users, such as rehabilitation centers. Our findings also show that drug users are conscious and can articulate their ailments; however, the hunt for the next dose of drugs and long waiting cues for health service acquisition overshadows their claim to health services. Participants reported a mixture of treatments prescribed, with some more gruesome than others prescribed, thus serving as both a facilitator and barrier for health service uptake. Despite some unorthodox forms of treatments prescribed in health care, the majority of those who enter treatment complete the process of treatment, although some are met with setbacks and sometimes relapse after treatment has finished. Conclusion: Drug users are able to ascertain their candidacy for health services; however, individual and environmental characteristics relating to drug use hinder the use of health services. Drug use interventions need to entice health service uptake as a way to improve candidacy for health use.Keywords: substance use disorder, rehabilitation, drug use, relapse, South Africa, candidacy framework
Procedia PDF Downloads 9864 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis
Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos
Abstract:
Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent
Procedia PDF Downloads 27863 Enzymatic Determination of Limonene in Red Clover Genotypes
Authors: Andrés Quiroz, Emilio Hormazabal, Ana Mutis, Fernando Ortega, Manuel Chacón-Fuentes, Leonardo Parra
Abstract:
Red clover (Trifolium pratense L.) is an important forage species in temperate regions of the world. The main limitation of this species worldwide is a lack of persistence related to the high mortality of plants due to a complex of biotic and abiotic factors, determining a life span of two or three seasons. Because of the importance of red clover in Chile, a red clover breeding program was started at INIA Carillanca Research Center in 1989, with the main objective of improving the survival of plants, forage yield, and persistence. The main selection criteria for selecting new varieties have been based on agronomical parameters and biotic factors. The main biotic factor associated with red clover mortality in Chile is Hylastinus obscurus (Coleoptera: Curculionidae). Both larval and adults feed on the roots, causing weakening and subsequent death of clover plants. Pesticides have not been successful for controlling infestations of this root borer. Therefore, alternative strategies for controlling this pest are a high priority for red clover producers. Currently, the role of semiochemical in the interaction between H. obscurus and red clover plants has been widely studied for our group. Specifically, from the red clover foliage has been identified limonene is eliciting repellency from the root borer. Limonene is generated in the plant from two independent biosynthetic pathways, the mevalonic acid, and deoxyxylulose pathway. Mevalonate pathway enzymes are localized in the cytosol, whereas the deoxyxylulose phosphate pathway enzymes are found in plastids. In summary, limonene can be determinated by enzymatic bioassay using GPP as substrate and by limonene synthase expression. Therefore, the main objective of this work was to study genetic variation of limonene in material provided by INIA´s Red Clover breeding program. Protein extraction was carried out homogenizing 250 mg of leave tissue and suspended in 6 mL of extraction buffer (PEG 1500, PVP-30, 20 mM MgCl2 and antioxidants) and stirred on ice for 20 min. After centrifugation, aliquots of 2.5 mL were desalted on PD-10 columns, resulting in a final volume of 3.5 mL. Protein determination was performed according to Bradford with BSA as a standard. Monoterpene synthase assays were performed with 50 µL of protein extracts transferred into gas-tight 2 mL crimp seal vials after addition of 4 µL MgCl₂ and 41 µL assay buffer. The assay was started by adding 5 µL of a GPP solution. The mixture was incubated for 30 min at 40 °C. Biosynthesized limonene was quantified in a GC equipped with a chiral column and using synthetic R and S-limonene standards. The enzymatic the production of R and S-limonene from different Superqueli-Carillanca genotypes is shown in this work. Preliminary results showed significant differences in limonene content among the genotypes analyzed. These results constitute an important base for selecting genotypes with a high content of this repellent monoterpene towards H. obscurus.Keywords: head space, limonene enzymatic determination, red clover, Hylastinus obscurus
Procedia PDF Downloads 26662 Synergistic Studies of Liposomes of Clove and Cinnamon Oil in Oral Health Care
Authors: Sandhya Parameswaran, Prajakta Dhuri
Abstract:
Despite great improvements in health care, the world oral health report states that dental problems still persist, particularly among underprivileged groups in both developing and developed countries. Dental caries and periodontal diseases are identified as the most important oral health problems globally. Acidic foods and beverages can affect natural teeth, and chronic exposure often leads to the development of dental erosion, abrasion, and decay. In recent years, there has been an increased interest toward essential oils. These are secondary metabolites and possess antibacterial, antifungal and antioxidant properties. Essential oils are volatile and chemically unstable in the presence of air, light, moisture and high temperature. Hence many novel methods like a liposomal encapsulation of oils have been introduced to enhance the stability and bioavailability. This research paper focuses on two essential oils, clove and cinnamon oil. Clove oil was obtained from Syzygium aromaticum Linn using clavengers apparatus. It contains eugenol and β caryophyllene. Cinnamon oil, from the barks of Cinnamomum cassia, contains cinnamaldehyde, The objective of the current research was to develop a liposomal carrier system containing clove and cinnamon oil and study their synergistic activity against dental pathogens when formulated as a gel. Methodology: The essential oil were first tested for their antimicrobial activity against dental pathogens, Lactobacillus acidophillus (MTCC No. 10307, MRS broth) and Streptococcus Mutans (MTCC No .890, Brain Heart Infusion agar). The oils were analysed by UV spectroscopy for eugenol and cinnamaldehyde content. Standard eugenol was linear between 5ppm to 25ppm at 282nm and standard cinnamaldehde from 1ppm to 5pmm at 284nm. The concentration of eugenol in clove oil was found to be 62.65 % w/w, and that of cinnamaldehyde was found to be 5.15%s w/w. The oils were then formulated into liposomes. Liposomes were prepared by thin film hydration method using Phospholipid, Cholesterol, and other oils dissolved in a chloroform methanol (3:1) mixture. The organic solvent was evaporated in a rotary evaporator above lipid transition temperature. The film was hydrated with phosphate buffer (pH 5.5).The various batches of liposomes were characterized and compared for their size, loading rate, encapsulation efficiency and morphology. The prepared liposomes when evaluated for entrapment efficiency showed 65% entrapment for clove and 85% for cinnamon oil. They were also tested for their antimicrobial activity against dental pathogens and their synergistic activity studied. Based on the activity and the entrapment efficiency the amount of liposomes required to prepare 1gm of the gel was calculated. The gel was prepared using a simple ointment base and contained 0.56% of cinnamon and clove liposomes. A simultaneous method of analysis for eugenol and cinnamaldehyde.was then developed using HPLC. The prepared gels were then studied for their stability as per ICH guidelines. Conclusion: It was found that liposomes exhibited spherical shaped vesicles and protected the essential oil from degradation. Liposomes, therefore, constitute a suitable system for encapsulation of volatile, unstable essential oil constituents.Keywords: cinnamon oil, clove oil, dental caries, liposomes
Procedia PDF Downloads 19461 Framework Proposal on How to Use Game-Based Learning, Collaboration and Design Challenges to Teach Mechatronics
Authors: Michael Wendland
Abstract:
This paper presents a framework to teach a methodical design approach by the help of using a mixture of game-based learning, design challenges and competitions as forms of direct assessment. In today’s world, developing products is more complex than ever. Conflicting goals of product cost and quality with limited time as well as post-pandemic part shortages increase the difficulty. Common design approaches for mechatronic products mitigate some of these effects by helping the users with their methodical framework. Due to the inherent complexity of these products, the number of involved resources and the comprehensive design processes, students very rarely have enough time or motivation to experience a complete approach in one semester course. But, for students to be successful in the industrial world, it is crucial to know these methodical frameworks and to gain first-hand experience. Therefore, it is necessary to teach these design approaches in a real-world setting and keep the motivation high as well as learning to manage upcoming problems. This is achieved by using a game-based approach and a set of design challenges that are given to the students. In order to mimic industrial collaboration, they work in teams of up to six participants and are given the main development target to design a remote-controlled robot that can manipulate a specified object. By setting this clear goal without a given solution path, a constricted time-frame and limited maximal cost, the students are subjected to similar boundary conditions as in the real world. They must follow the methodical approach steps by specifying requirements, conceptualizing their ideas, drafting, designing, manufacturing and building a prototype using rapid prototyping. At the end of the course, the prototypes will be entered into a contest against the other teams. The complete design process is accompanied by theoretical input via lectures which is immediately transferred by the students to their own design problem in practical sessions. To increase motivation in these sessions, a playful learning approach has been chosen, i.e. designing the first concepts is supported by using lego construction kits. After each challenge, mandatory online quizzes help to deepen the acquired knowledge of the students and badges are awarded to those who complete a quiz, resulting in higher motivation and a level-up on a fictional leaderboard. The final contest is held in presence and involves all teams with their functional prototypes that now need to contest against each other. Prices for the best mechanical design, the most innovative approach and for the winner of the robotic contest are awarded. Each robot design gets evaluated with regards to the specified requirements and partial grades are derived from the results. This paper concludes with a critical review of the proposed framework, the game-based approach for the designed prototypes, the reality of the boundary conditions, the problems that occurred during the design and manufacturing process, the experiences and feedback of the students and the effectiveness of their collaboration as well as a discussion of the potential transfer to other educational areas.Keywords: design challenges, game-based learning, playful learning, methodical framework, mechatronics, student assessment, constructive alignment
Procedia PDF Downloads 6760 Functionalizing Gold Nanostars with Ninhydrin as Vehicle Molecule for Biomedical Applications
Authors: Swati Mishra
Abstract:
In recent years, there has been an explosion in Gold NanoParticle (GNP) research, with a rapid increase in publications in diverse fields, including imaging, bioengineering, and molecular biology. GNPs exhibit unique physicochemical properties, including surface plasmon resonance (SPR) and bind amine and thiol groups, allowing surface modification and use in biomedical applications. Nanoparticle functionalization is the subject of intense research at present, with rapid progress being made towards developing biocompatible, multi-functional particles. In the present study, the photochemical method has been done to functionalize various-shaped GNPs like nanostars by the molecules like ninhydrin. Ninhydrin is bactericidal, virucidal, fungicidal, antigen-antibody reactive, and used in fingerprint technology in forensics. The GNPs functionalized with ninhydrin efficiently will bind to the amino acids on the target protein, which is of eminent importance during the pandemic, especially where long-term treatments of COVID- 19 bring many side effects of the drugs. The photochemical method is adopted as it provides low thermal load, selective reactivity, selective activation, and controlled radiation in time, space, and energy. The GNPs exhibit their characteristic spectrum, but a distinctly blue or redshift in the peak will be observed after UV irradiation, ensuring efficient ninhydrin binding. Now, the bound ninhydrin in the GNP carrier, upon chemically reacting with any amino acid, will lead to the formation of Rhumann purple. A common method of GNP production includes citrate reduction of Au [III] derivatives such as aurochloric acid (HAuCl4) in water to Au [0] through a one-step synthesis of size-tunable GNPs. The following reagents are prepared to validate the approach. Reagent A solution 1 is0.0175 grams ninhydrin in 5 ml Millipore water Reagent B 30 µl of HAuCl₄.3H₂O in 3 ml of solution 1 Reagent C 1 µl of gold nanostars in 3 ml of solution 1 Reagent D 6 µl of cetrimonium bromide (CTAB) in 3 ml of solution1 ReagentE 1 µl of gold nanostars in 3 ml of ethanol ReagentF 30 µl of HAuCl₄.₃H₂O in 3 ml of ethanol ReagentG 30 µl of HAuCl₄.₃H₂O in 3 ml of solution 2 ReagentH solution 2 is0.0087 grams ninhydrin in 5 ml Millipore water ReagentI 30 µl of HAuCl₄.₃H₂O in 3 ml of water The reagents were irradiated at 254 nm for 15 minutes, followed by their UV Visible spectroscopy. The wavelength was selected based on the one reported for excitation of a similar molecule Pthalimide. It was observed that the solution B and G deviate around 600 nm, while C peaks distinctively at 567.25 nm and 983.9 nm. Though it is tough to say about the chemical reaction happening, butATR-FTIR of reagents will ensure that ninhydrin is not forming Rhumann purple in the absence of amino acids. Therefore, these experiments, we achieved the functionalization of gold nanostars with ninhydrin corroborated by the deviation in the spectrum obtained in a mixture of GNPs and ninhydrin irradiated with UV light. It prepares them as a carrier molecule totake up amino acids for targeted delivery or germicidal action.Keywords: gold nanostars, ninhydrin, photochemical method, UV visible specgtroscopy
Procedia PDF Downloads 14859 Antifungal Activity of Processed Sulfur Solution as Potential Eco-Friendly Disinfectant against Saprolegnia parasitica and Its Safety in Freshwater-Farmed Fish
Authors: Hye-Hyun Lee, Hyo-Kon Chun, Kyung-Hee Kim Kim, Mi-Hee Kim, Saet-Byul Chu, Sang-Jong Lee, Seung-Hyeop Lee, Seung-Won Yi
Abstract:
Some chemicals such as malachite green, methylene blue, and copper sulfate had been used frequently as disinfectants controlling fungal infection in aquaculture. However, their carcinogenicity, mutagenicity and teratogenicity were reported in mammals. After their accumulation in food fish and its consumers was confirmed, concerns about public health has resulted in enhanced monitoring and increased demand for eco-friendly treatments. Therefore, this study aimed to evaluate safety to fish and efficacy of sulfur solution processed by effective microorganisms (EM-PSS) against Saprolegnia parasitica, for use of a potential aquatic fungicidal disinfectant. The natural sulfur purchased from Kawah Ijen volcano, East Java, Indonesia was processed by the liquid mixture consisting of following twelve effective microorganisms (Rapha-el®; Lbiotech, Jeonnam, Korea), Lactobacillus parafarraginis, L. paracasei, L. harbinensis, L. buchneri, L. perolens, L. rhamnosus, L. vaccinostercus, Acetobacter lovaniensis, A. peroxydans, Pichia fermentans, Candida ethanolica, Saccharomycopsis schoenii isolated from fermentation process of oriental medicinal herbs including green tea, privet, and puer tea. The material was applied to in vitro antifungal activity test for Saprolegnia parasitica using agar dilution method. In addition, an acute toxicity test was performed on carp (Cyprinus carpio), eel (Anguilla japonica), and mud fish (Misgurnus mizolepis) for 96 hours. After three species of fish (n=15) were accustomed to experimental water environment for three days, the EM-PSS was added to each tank as final concentrations to be 0 to 500 ppm. The fish were taken into necropsy, and the histological sections of the gill, liver, and spleen were counter-stained with hematoxylin and eosin (H-E). And hence, no observed effect concentration (NOEC) of the solution was used for taking a medicinal bath for mudfish infected by Saprolegnia parasitica in practice. The result of in vitro antifungal activity test showed the growth inhibition of the fungus at 100 ppm, which and the lower concentrations occurred no fatal case in any fish species tested until the end of the examination. The 125 ppm of the solution, however, resulted in 13.3 %, 13.3 %, and 6.3 % of mortality in carp, eel, and mudfish, respectively. But both 250 and 500 ppm of the solution leaded lethality to all population of each fish species within 24 hours. Besides, H-E staining also showed no specific evidence for toxicity in fish at lesser than 100 ppm of EM-PSS. On the other hand, as a result of field application of the solution, no growth of fungal mycelium was found in fish bodies from gross observation 5 days post treatment. In conclusion, 100ppm of EM-PSS resulted in inhibition and treatment of Saprolegnia parasitica infection. In addition, the use of EM-PSS lower than 100 ppm is safe for fish. Therefore, EM-PSS could be used as aquatic fungicide, and also may be possible to be a potential eco-friendly disinfectant in aquaculture.Keywords: antifungal activity, effective microorganism, toxicity, saprolegnia, processed sulfur solution
Procedia PDF Downloads 25558 Potential for Massive Use of Biodiesel for Automotive in Italy
Authors: Domenico Carmelo Mongelli
Abstract:
The context of this research is that of the Italian reality, which, in order to adapt to the EU Directives that prohibit the production of internal combustion engines in favor of electric mobility from 2035, is extremely concerned about the significant loss of jobs resulting from the difficulty of the automotive industry in converting in such a short time and due to the reticence of potential buyers in the face of such an epochal change. The aim of the research is to evaluate for Italy the potential of the most valid alternative to this transition to electric: leaving the current production of diesel engines unchanged, no longer powered by gasoil, imported and responsible for greenhouse gas emissions, but powered entirely by a nationally produced and eco-sustainable fuel such as biodiesel. Today in Italy, the percentage of biodiesel mixed with gasoil for diesel engines is too low (around 10%); for this reason, this research aims to evaluate the functioning of current diesel engines powered 100% by biodiesel and the ability of the Italian production system to cope to this hypothesis. The research geographically identifies those abandoned lands in Italy, now out of the food market, which is best suited to an energy crop for the final production of biodiesel. The cultivation of oilseeds is identified, which for the Italian agro-industrial reality allows maximizing the agricultural and industrial yields of the transformation of the agricultural product into a final energy product and minimizing the production costs of the entire agro-industrial chain. To achieve this objective, specific databases are used, and energy and economic balances are prepared for the different agricultural product alternatives. Solutions are proposed and tested that allow the optimization of all production phases in both the agronomic and industrial phases. The biodiesel obtained from the most feasible of the alternatives examined is analyzed, and its compatibility with current diesel engines is identified, and from the evaluation of its thermo-fluid-dynamic properties, the engineering measures that allow the perfect functioning of current internal combustion engines are examined. The results deriving from experimental tests on the engine bench are evaluated to evaluate the performance of different engines fueled with biodiesel alone in terms of power, torque, specific consumption and useful thermal efficiency and compared with the performance of engines fueled with the current mixture of fuel on the market. The results deriving from experimental tests on the engine bench are evaluated to evaluate the polluting emissions of engines powered only by biodiesel and compared with current emissions. At this point, we proceed with the simulation of the total replacement of gasoil with biodiesel as a fuel for the current fleet of diesel vehicles in Italy, drawing the necessary conclusions in technological, energy, economic, and environmental terms and in terms of social and employment implications. The results allow us to evaluate the potential advantage of a total replacement of diesel fuel with biodiesel for powering road vehicles with diesel cycle internal combustion engines without significant changes to the current vehicle fleet and without requiring future changes to the automotive industry.Keywords: biodiesel, economy, engines, environment
Procedia PDF Downloads 7557 Biocompatible Hydrogel Materials Containing Cytostatics for Cancer Treatment
Authors: S. Kudlacik-Kramarczyk, M. Kedzierska, B. Tyliszczak
Abstract:
Recently, the continuous development of medicine and related sciences has been observed. Particular emphasis is directed on the development of biomaterials, i.e., non-toxic, biocompatible and biodegradable materials that may improve the effectiveness of treatment as well as the comfort of patients. This is particularly important in the case of cancer treatment. Currently, there are many methods of cancer treatment based primarily on chemotherapy and the surgical removal of the tumor, but it is worth noting that these therapies also cause many side effects. Among women, the most common cancer is breast cancer. It may be completely cured, but the consequence of treatment is partial or complete breast mastectomy and radiation therapy, which results in severe skin burns. The skin of the patient after radiation therapy is very burned, and therefore requires intensive care and high frequency of dressing changes. The traditional dressing adheres to the burn wounds and does not absorb adequate amount of exudate from injuries and the patient is forced to change the dressing every 2 hours. Therefore, the main purpose was to develop an innovative combination of dressing material with drug carriers that may be used in anti-cancer therapy. The innovation of this solution is the combination of these two products into one system, i.e., a transdermal system with the possibility of a controlled release of the drug- cytostatic. Besides, the possibility of modifying the hydrogel matrix with aloe vera juice provides this material with new features favorable from the point of view of healing processes of burn wounds resulting from the radiation therapy. In this study, hydrogel materials containing protein spheres with the active substance have been obtained as a result of photopolymerization process. The reaction mixture consisting of the protein (albumin) spheres incorporated with cytostatic, chitosan, adequate crosslinking agent and photoinitiator has been subjected to the UV radiation for 2 minutes. Prepared materials have been subjected to the numerous studies including the analysis of cytotoxicity using murine fibroblasts L929. Analysis was conducted based on the mitochondrial activity test (MTT reduction assay) which involves the determining the number of cells characterized by proper metabolism. Hydrogel materials obtained using different amount of crosslinking agents have been subjected to the cytotoxicity analysis. According to the standards, tested material is defined as cytotoxic when the viability of cells after 24 h incubation with this material is lower than 70%. In the research, hydrogel polymer materials containing protein spheres incorporated with the active substance, i.e. a cytostatic, have been developed. Such a dressing may support the treatment of cancer due to the content of the anti-cancer drug - cytostatic, and may also provide a soothing effect on the healing of the burn wounds resulted from the radiation therapy due to the content of aloe vera juice in the hydrogel matrix. Based on the conducted cytotoxicity studies, it may be concluded that the obtained materials do not adversely affect the tested cell lines, therefore they can be subjected to more advanced analyzes.Keywords: hydrogel polymers, cytostatics, drug carriers, cytotoxicity
Procedia PDF Downloads 132