Search results for: time series prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 21431

Search results for: time series prediction

20111 Detection and Distribution Pattern of Prevelant Genotypes of Hepatitis C in a Tertiary Care Hospital of Western India

Authors: Upasana Bhumbla

Abstract:

Background: Hepatitis C virus is a major cause of chronic hepatitis, which can further lead to cirrhosis of the liver and hepatocellular carcinoma. Worldwide the burden of Hepatitis C infection has become a serious threat to the human race. Hepatitis C virus (HCV) has population-specific genotypes and provides valuable epidemiological and therapeutic information. Genotyping and assessment of viral load in HCV patients are important for planning the therapeutic strategies. The aim of the study is to study the changing trends of prevalence and genotypic distribution of hepatitis C virus in a tertiary care hospital in Western India. Methods: It is a retrospective study; blood samples were collected and tested for anti HCV antibodies by ELISA in Dept. of Microbiology. In seropositive Hepatitis C patients, quantification of HCV-RNA was done by real-time PCR and in HCV-RNA positive samples, genotyping was conducted. Results: A total of 114 patients who were seropositive for Anti HCV were recruited in the study, out of which 79 (69.29%) were HCV-RNA positive. Out of these positive samples, 54 were further subjected to genotype determination using real-time PCR. Genotype was not detected in 24 samples due to low viral load; 30 samples were positive for genotype. Conclusion: Knowledge of genotype is crucial for the management of HCV infection and prediction of prognosis. Patients infected with HCV genotype 1 and 4 will have to receive Interferon and Ribavirin for 48 weeks. Patients with these genotypes show a poor sustained viral response when tested 24 weeks after completion of therapy. On the contrary, patients infected with HCV genotype 2 and 3 are reported to have a better response to therapy.

Keywords: hepatocellular, genotype, ribavarin, seropositive

Procedia PDF Downloads 128
20110 Design of an Active Compression System for Treating Vascular Disease Using a Series of Silicone Based Inflatable Mini Bladders

Authors: Gayani K. Nandasiri, Tilak Dias, William Hurley

Abstract:

Venous disease of human lower limb could range from minor asymptomatic incompetence of venous valves to chronic venous ulceration. The sheer prevalence of varicose veins and its associated significant costs of treating late complications such as chronic ulcers contribute to a higher burden on health care resources. In most of western countries with developed health care systems, treatment costs associated with Venous disease accounts for a considerable portion of their total health care budget, and it has become a high-cost burden to National Health Service (NHS), UK. The established gold standard of treatment for the venous disease is the graduated compression, where the pressure at the ankle being highest and decreasing towards the knee and thigh. Currently, medical practitioners use two main methods to treat venous disease; i.e. compression bandaging and compression stockings. Both these systems have their own disadvantages which lead to the current programme of research. The aim of the present study is to revolutionize the compression therapy by using a novel active compression system to deliver a controllable and more accurate pressure profiles using a series of inflatable mini bladders. Two types of commercially available silicones were tested for the application. The mini bladders were designed with a special fabrication procedure to provide required pressure profiles, and a series of experiments were conducted to characterise the mini bladders. The inflation/deflation heights of these mini bladders were investigated experimentally and using a finite element model (FEM), and the experimental data were compared to the results obtained from FEM simulations, which showed 70-80% agreement. Finally, the mini bladders were tested for its pressure transmittance characteristics, and the results showed a 70-80% of inlet air pressure transmitted onto the treated surface.

Keywords: finite element analysis, graduated compression, inflatable bladders, venous disease

Procedia PDF Downloads 186
20109 Metal Layer Based Vertical Hall Device in a Complementary Metal Oxide Semiconductor Process

Authors: Se-Mi Lim, Won-Jae Jung, Jin-Sup Kim, Jun-Seok Park, Hyung-Il Chae

Abstract:

This paper presents a current-mode vertical hall device (VHD) structure using metal layers in a CMOS process. The proposed metal layer based vertical hall device (MLVHD) utilizes vertical connection among metal layers (from M1 to the top metal) to facilitate hall effect. The vertical metal structure unit flows a bias current Ibias from top to bottom, and an external magnetic field changes the current distribution by Lorentz force. The asymmetric current distribution can be detected by two differential-mode current outputs on each side at the bottom (M1), and each output sinks Ibias/2 ± Ihall. A single vertical metal structure generates only a small amount of hall effect of Ihall due to the short length from M1 to the top metal as well as the low conductivity of the metal, and a series connection between thousands of vertical structure units can solve the problem by providing NxIhall. The series connection between two units is another vertical metal structure flowing current in the opposite direction, and generates negative hall effect. To mitigate the negative hall effect from the series connection, the differential current outputs at the bottom (M1) from one unit merges on the top metal level of the other unit. The proposed MLVHD is simulated in a 3-dimensional model simulator in COMSOL Multiphysics, with 0.35 μm CMOS process parameters. The simulated MLVHD unit size is (W) 10 μm × (L) 6 μm × (D) 10 μm. In this paper, we use an MLVHD with 10 units; the overall hall device size is (W) 10 μm × (L)78 μm × (D) 10 μm. The COMSOL simulation result is as following: the maximum hall current is approximately 2 μA with a 12 μA bias current and 100mT magnetic field; This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R7117-16-0165, Development of Hall Effect Semiconductor for Smart Car and Device).

Keywords: CMOS, vertical hall device, current mode, COMSOL

Procedia PDF Downloads 305
20108 Frequency Selective Filters for Estimating the Equivalent Circuit Parameters of Li-Ion Battery

Authors: Arpita Mondal, Aurobinda Routray, Sreeraj Puravankara, Rajashree Biswas

Abstract:

The most difficult part of designing a battery management system (BMS) is battery modeling. A good battery model can capture the dynamics which helps in energy management, by accurate model-based state estimation algorithms. So far the most suitable and fruitful model is the equivalent circuit model (ECM). However, in real-time applications, the model parameters are time-varying, changes with current, temperature, state of charge (SOC), and aging of the battery and this make a great impact on the performance of the model. Therefore, to increase the equivalent circuit model performance, the parameter estimation has been carried out in the frequency domain. The battery is a very complex system, which is associated with various chemical reactions and heat generation. Therefore, it’s very difficult to select the optimal model structure. As we know, if the model order is increased, the model accuracy will be improved automatically. However, the higher order model will face the tendency of over-parameterization and unfavorable prediction capability, while the model complexity will increase enormously. In the time domain, it becomes difficult to solve higher order differential equations as the model order increases. This problem can be resolved by frequency domain analysis, where the overall computational problems due to ill-conditioning reduce. In the frequency domain, several dominating frequencies can be found in the input as well as output data. The selective frequency domain estimation has been carried out, first by estimating the frequencies of the input and output by subspace decomposition, then by choosing the specific bands from the most dominating to the least, while carrying out the least-square, recursive least square and Kalman Filter based parameter estimation. In this paper, a second order battery model consisting of three resistors, two capacitors, and one SOC controlled voltage source has been chosen. For model identification and validation hybrid pulse power characterization (HPPC) tests have been carried out on a 2.6 Ah LiFePO₄ battery.

Keywords: equivalent circuit model, frequency estimation, parameter estimation, subspace decomposition

Procedia PDF Downloads 151
20107 Online Self-Help Metacognitive Therapy for OCD: A Case Series

Authors: C. Pearcy, C. Rees

Abstract:

Cognitive behavioural therapy (CBT) and exposure and response prevention (ERP) are currently the most efficacious treatments for Obsessive-compulsive disorder (OCD). Many clients, however, remain symptomatic following treatment. As a result, refusal of treatment, withdrawal from treatment, and partial adherence to treatment are common amongst ERP. Such limitations have caused few professionals to actually engage in ERP therapy, which has warranted the exploration of alternative treatments. This study evaluated an online self-help treatment program for OCD (the OCD Doctor Online); a 4-week Metacognitive Therapy (MCT) program which has implemented strategies from Wells’ Metacognitive model of OCD. The aim of the present study was to investigate whether an online self-help treatment using MCT would reduce symptoms of OCD, reduce unhelpful metacognitions and improve quality of life. Treatment effectiveness was assessed using a case series methodology in 3 consecutively referred individuals. At post-treatment, all participants showed reductions in unhelpful metacognitive beliefs (MCQ-30) and improvements in quality of life (Q-LES-Q), which were maintained through to 4 week follow-up. Two of the three participants showed reductions in OCD symptomology (OCI-R), which were further reduced at 4-week follow-up. The present study suggests that internet-based self-help treatment may be an effective means of delivering MCT to adults with OCD.

Keywords: internet-based, metacognitive therapy, obsessive-compulsive disorder, self-help

Procedia PDF Downloads 437
20106 The Types of Annuities with Flexible Premium

Authors: Deniz Ünal Özpalamutcu, Burcu Altman

Abstract:

Actuaria uses mathematics, statistic and financial information when analyzing the financial impacts of uncertainties, risks, insurance and pension related issues. In other words, it deals with the likelihood of potential risks, their financial impacts and especially the financial measures. Handling these measures require some long-term payment and investments. So, it is obvious it is inevitable to plan the periodic payments with equal time intervals considering also the changing value of money over time. These series of payment made specific intervals of time is called annuity or rant. In literature, rants are classified based on start and end dates, start times, payments times, payments amount or frequency. Classification of rants based on payment amounts changes based on the constant, descending or ascending payment methods. The literature about handling the annuity is very limited. Yet in a daily life, especially in today’s world where the economic issues gained a prominence, it is very crucial to use the variable annuity method in line with the demands of the customers. In this study, the types of annuities with flexible payment are discussed. In other words, we focus on calculating payment amount of a period by adding a certain percentage of previous period payment was studied. While studying this problem, formulas were created considering both start and end period payments for cash value and accumulated. Also increase of each period payment by r interest rate each period payments calculated with previous periods increases. And the problem of annuities (rants) of which each period payment increased with previous periods’ increase by r interest rate has been analyzed. Cash value and accumulated value calculation of this problem were studied separately based on the period start/end and their relations were expressed by formulas.

Keywords: actuaria, annuity, flexible payment, rant

Procedia PDF Downloads 222
20105 Causality between the Construction Industry and the GDP in the United Arab Emirates

Authors: Hasan S. Mahmoud, Salwa M. Beheiry, Vian Ahmed

Abstract:

In light of the repercussions of the 2008 global economic crisis, the response of the United Arab Emirates economy and growth, and the vast construction activities that are undergoing, there is a need to investigate the relationship between construction activities and the Gross Domestic Product (GDP). This study aims to investigate the causality relationship between the construction industry in the United Arab Emirates and the GDP of the country in the last decade. For that, this study will investigate the relationship between the growth of the GDP and the growth of construction activities and their value addition to the economy. To ascertain this relationship, Granger Causality method is used to identify the causality between the time-dependent series.

Keywords: construction value addition, Granger causality, growth of gross domestic product, United Arab Emirates

Procedia PDF Downloads 148
20104 Design of 900 MHz High Gain SiGe Power Amplifier with Linearity Improved Bias Circuit

Authors: Guiheng Zhang, Wei Zhang, Jun Fu, Yudong Wang

Abstract:

A 900 MHz three-stage SiGe power amplifier (PA) with high power gain is presented in this paper. Volterra Series is applied to analyze nonlinearity sources of SiGe HBT device model clearly. Meanwhile, the influence of operating current to IMD3 is discussed. Then a β-helper current mirror bias circuit is applied to improve linearity, since the β-helper current mirror bias circuit can offer stable base biasing voltage. Meanwhile, it can also work as predistortion circuit when biasing voltages of three bias circuits are fine-tuned, by this way, the power gain and operating current of PA are optimized for best linearity. The three power stages which fabricated by 0.18 μm SiGe technology are bonded to the printed circuit board (PCB) to obtain impedances by Load-Pull system, then matching networks are done for best linearity with discrete passive components on PCB. The final measured three-stage PA exhibits 21.1 dBm of output power at 1 dB compression point (OP1dB) with power added efficiency (PAE) of 20.6% and 33 dB power gain under 3.3 V power supply voltage.

Keywords: high gain power amplifier, linearization bias circuit, SiGe HBT model, Volterra series

Procedia PDF Downloads 341
20103 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty

Authors: Christoph Ostermair

Abstract:

We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.

Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory

Procedia PDF Downloads 203
20102 Kinetic Modeling of Colour and Textural Properties of Stored Rohu (Labeo rohita) Fish

Authors: Pramod K. Prabhakar, Prem P. Srivastav

Abstract:

Rohu (Labeo rohita) is an Indian major carp and highly relished freshwater food for its unique flavor, texture, and culinary properties. It is highly perishable and, spoilage occurs as a result of series of complicated biochemical changes brought about by enzymes which are the function of time and storage temperature also. The influence of storage temperature (5, 0, and -5 °C) on colour and texture of fish were studied during 14 days storage period in order to analyze kinetics of colour and textural changes. The rate of total colour change was most noticeable at the highest storage temperature (5°C), and these changes were well described by the first order reaction. Texture is an important variable of quality of the fish and is increasing concern to aquaculture industries. Textural parameters such as hardness, toughness and stiffness were evaluated on a texture analyzer for the different day of stored fish. The significant reduction (P ≤ 0.05) in hardness was observed after 2nd, 4th and 8th day for the fish stored at 5, 0, and -5 °C respectively. The textural changes of fish during storage followed a first order kinetic model and fitted well with this model (R2 > 0.95). However, the textural data with respect to time was also fitted to modified Maxwell model and found to be good fit with R2 value ranges from 0.96 to 0.98. Temperature dependence of colour and texture change was adequately modelled with the Arrhenius type equation. This fitted model may be used for the determination of shelf life of Rohu Rohu (Labeo rohita) Fish.

Keywords: first order kinetics, biochemical changes, Maxwell model, colour, texture, Arrhenius type equation

Procedia PDF Downloads 234
20101 Effects of Sulphide Mining on AISI 304 Stainless Steel

Authors: Aguasanta Miguel Sarmiento, José Miguel Dávila, María Luisa de la Torre

Abstract:

Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV, and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz), and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyse the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned, and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components, but also because of the implications for human safety.

Keywords: acid mine drainage, corrosion, mechanical properties, stainless steel

Procedia PDF Downloads 22
20100 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study

Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa

Abstract:

The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.

Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity

Procedia PDF Downloads 416
20099 The Origin, Diffusion and a Comparison of Ordinary Differential Equations Numerical Solutions Used by SIR Model in Order to Predict SARS-CoV-2 in Nordic Countries

Authors: Gleda Kutrolli, Maksi Kutrolli, Etjon Meco

Abstract:

SARS-CoV-2 virus is currently one of the most infectious pathogens for humans. It started in China at the end of 2019 and now it is spread in all over the world. The origin and diffusion of the SARS-CoV-2 epidemic, is analysed based on the discussion of viral phylogeny theory. With the aim of understanding the spread of infection in the affected countries, it is crucial to modelize the spread of the virus and simulate its activity. In this paper, the prediction of coronavirus outbreak is done by using SIR model without vital dynamics, applying different numerical technique solving ordinary differential equations (ODEs). We find out that ABM and MRT methods perform better than other techniques and that the activity of the virus will decrease in April but it never cease (for some time the activity will remain low) and the next cycle will start in the middle July 2020 for Norway and Denmark, and October 2020 for Sweden, and September for Finland.

Keywords: forecasting, ordinary differential equations, SARS-COV-2 epidemic, SIR model

Procedia PDF Downloads 153
20098 Grief and Repenting: The Engaging Remembrance in Thomas Hardy’s ‘Poems of 1912-13’

Authors: Chih-Chun Tang

Abstract:

Nostalgia, to some people, may seem foolhardy in a way. However, nostalgia is a completely and intensely private but social, collective emotion. It has continuing consequence and outgrowth for our lives as social actions. It leads people to hunt and explore remembrance of persons and places of our past in an effort to confer meaning of persons and places of present. In the ‘Poems of 1912-13’ Thomas Hardy, a British poet, composed a series of poems after the unexpected death of his long-disaffected wife, Emma. The series interprets the cognitive and emotional concussion of Emma’s death on Hardy, concerning his mind and real visit to the landscape in Cornwall, England. Both spaces perform the author’s innermost in thought to his late wife and to the landscape. They present an apparent counterpart of the poet and his afflicted conscience. After Emma had died, Hardy carried her recollections alive by roaming about in the real visit and whimsical land (space) they once had drifted and meandered. This paper highlights the nostalgias and feds that seem endlessly to crop up.

Keywords: Thomas Hardy, remembrance, psychological, poems 1912-13, Fred Davis, nostalgia

Procedia PDF Downloads 274
20097 The Impact of Inflation Rate and Interest Rate on Islamic and Conventional Banking in Afghanistan

Authors: Tareq Nikzad

Abstract:

Since the first bank was established in 1933, Afghanistan's banking sector has seen a number of variations but hasn't been able to grow to its full potential because of the civil war. The implementation of dual banks in Afghanistan is investigated in this study in relation to the effects of inflation and interest rates. This research took data from World Bank Data (WBD) over a period of nineteen years. For the banking sector, inflation, which is the general rise in prices of goods and services over time, presents considerable difficulties. The objectives of this research are to analyze the effect of inflation and interest rates on conventional and Islamic banks in Afghanistan, identify potential differences between these two banking models, and provide insights for policymakers and practitioners. A mixed-methods approach is used in the research to analyze quantitative data and qualitatively examine the unique difficulties that banks in Afghanistan's economic atmosphere encounter. The findings contribute to the understanding of the relationship between interest rate, inflation rate, and the performance of both banking systems in Afghanistan. The paper concludes with recommendations for policymakers and banking institutions to enhance the stability and growth of the banking sector in Afghanistan. Interest is described as "a prefixed rate for use or borrowing of money" from an Islamic perspective. This "prefixed rate," known in Islamic economics as "riba," has been described as "something undesirable." Furthermore, by using the time series regression data technique on the annual data from 2003 to 2021, this research examines the effect of CPI inflation rate and interest rate of Banking in Afghanistan.

Keywords: inflation, Islamic banking, conventional banking, interest, Afghanistan, impact

Procedia PDF Downloads 73
20096 Performance of Partially Covered N Number of Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Series Connected Water Heating System

Authors: Rohit Tripathi, Sumit Tiwari, G. N. Tiwari

Abstract:

In present study, an approach is adopted where photovoltaic thermal flat plate collector is integrated with compound parabolic concentrator. Analytical expression of temperature dependent electrical efficiency of N number of partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) water collector connected in series has been derived with the help of basic thermal energy balance equations. Analysis has been carried for winter weather condition at Delhi location, India. Energy and exergy performance of N - partially covered Photovoltaic Thermal (PVT) - Compound Parabolic Concentrator (CPC) Water collector system has been compared for two cases: (i) 25% area of water collector covered by PV module, (ii) 75% area of water collector covered by PV module. It is observed that case (i) has been best suited for thermal performance and case (ii) for electrical energy as well as overall exergy.

Keywords: compound parabolic concentrator, energy, photovoltaic thermal, temperature dependent electrical efficiency

Procedia PDF Downloads 407
20095 Ipsilateral Weakness Caused by Ipsilateral Stroke: A Case Series

Authors: Naim Izet Kajtazi

Abstract:

Introduction: There are few reported cases of ipsilateral weakness following ischemic or hemorrhagic stroke. In these rare cases, ipsilateral weakness is typically the result of damage to uncrossed components of the corticospinal tract (CST), which were recruited in response to previous CST injury. Patients and Methods: We report a series of six cases of acute ipsilateral weakness or numbness following a hemorrhagic or ischemic stroke from three medical institutions in Saudi Arabia. Results: Three of these patients presented with right-sided weakness caused by an ipsilateral right hemispheric stroke, while two exhibited left-sided symptoms and one had only left-sided numbness. In all six cases, the ipsilateral corona radiata, internal capsule, basal ganglia, insula, and thalamus were involved. No concomitant opposite hemisphere or brainstem lesion in none of the patients was evident. Two patients had previous strokes affecting the brainstem and left corona radiata, respectively. A complete stroke workup to reveal the cause of the stroke was carried out, however, no functional MRI was performed. Conclusion: Ischemic or hemorrhagic stroke may indeed result in ipsilateral weakness or numbness, though in very rare cases. We assume that the most likely mechanism of their ipsilateral weakness subsequent to the ipsilateral stroke was a functional reorganization favoring CST pathways within the ipsilateral hemisphere.

Keywords: stroke, weakness, MRI brain, stroke unit

Procedia PDF Downloads 97
20094 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 225
20093 Stainless Steel Degradation by Sulphide Mining

Authors: Aguasanta M. Sarmiento, Jose Miguel Davila, Juan Carlos Fortes, Maria Luisa de la Torre

Abstract:

Acid mine drainage (AMD) is an acidic leachate with high levels of metals and sulphates in solution, which seriously affects the durability and strength of metallic materials used in the construction of structural and mechanical components. This paper presents the results of the evolution over time of the reduction in tensile strength and defects in AISI 304 stainless steel in contact with acid mine drainage. For this purpose, a total of 30 bars with a diameter of 8 mm and a length of 14 cm were placed transversely in the course of a stream contaminated by AMD from the sulphide mines of the Iberian Pyritic Belt (SW Spain). This stream has average pH values of 2.6, a potential of 660 mV and average concentrations of 12 g/L of sulphates, 1.2 g/L of Fe, 191 mg/L of Zn, etc. Every two months of exposure, 6 stainless steel bars were extracted from the acid stream. They were subjected to surface roughness analysis carried out with the help of Mitutoyo Surftest SJ-210 surface roughness tester. The analysis was carried out at three different points on 5 specimens from each series. The average reading of each parameter is calculated in order to ensure the accuracy of the measurements and the surface coverage. Arithmetic mean roughness value (Ra), mean roughness depth (Rz) and root mean square roughness (Rq) were measured. Five specimens from each series were statically tensile tested using universal equipment (Servosis ME 403 of 200kN). The specimens were clamped at their ends with two grips for cylindrical sections, and the tensile force was applied at a constant speed of 0.5 kN/s, according to the requirements of standard UNE-EN ISO 6892-1: 2020. To determine the modulus of elasticity, limits close to 15% and 55% of the maximum load were used, depending on the course of each test. Field Emission Scanning Electron Microscopy (FESEM) was used to observe corrosion products and defects generated by exposure to AMD. Energy dispersive X-ray spectrometry (EDS) was used to analyze the chemical composition of the corrosion products formed. For this purpose, small pieces were cut from the resulting specimens, cleaned and embedded in epoxy resin. The results show that after only 5 months of exposure of AISI 304 stainless steel to the mining environment, the surface roughness increases significantly, with average depths almost 6 times greater than the initial one. Cracks are observed on the surface of the material, which increases in size with the time of exposure. A large number of grains with a composition of more than 57% Pb and 16% Sn can be observed inside these cracks. Tensile tests show a reduction in the resistance of this material after only two months of exposure. The results show the serious problems that would result from the use of this material for the use of mechanical components in a sulphide mining environment, not only because of the significant reduction in the lifetime of such components but also because of the implications for human safety.

Keywords: Acid mine drainage, Corrosion, Mechanical properties, Stainless steel

Procedia PDF Downloads 12
20092 Sustainability of Vernacular Architecture in Zegalli Houses in Northern Iran with Emphasis on Their Seismic Behavior

Authors: Mona Zaryoun, Mahmood Hosseini, Seyed Mohammad Hassan Khalkhali, Haniyeh Okhovat

Abstract:

Zegalli houses in Guilan province, northern Iran, are a type of vernacular houses which their foundation, skeleton and walls all have been made of wood. The only houses which could survive the major Manjil-Rudbar earthquake of 1990 with a magnitude of 7.2 were these houses. Regarding this fact, some researchers started thinking of this type of foundations used in these houses to benefit from rocking-wise behavior. On the one hand, the relatively light weight of the houses, have helped these houses to withstand well against seismic excitations. In this paper at first a brief description of Zegalli houses and their architectural features, with emphasis on their foundation is presented. in the next stage foundation of one of these houses is modeled as a sample by a using a computer program, which has been developed in MATLAB environment, and by using the horizontal and vertical accelerograms of a set of selected site compatible earthquakes, a series of time history analysis (THA) are carried out to investigate the behavior of this type of houses against earthquake. Based on numerical results of THA it can be said that even without no sliding at the foundation timbers, only due to the rocking which occurs in various levels of the foundation the seismic response of the house is significantly reduced., which results in their stability subjected to earthquakes with peak ground acceleration of around 0.35g. Therefore, it can be recommended the Zegalli houses are considered as sustainable Iranian vernacular architecture, and it can be recommended that the use of these houses and their architecture and their structural merits are reconsidered by architects as well as civil and structural engineers.

Keywords: MATLAB software, rocking behavior, time history analysis, Zegalli houses

Procedia PDF Downloads 289
20091 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression

Authors: N. Alhazmi

Abstract:

Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.

Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity

Procedia PDF Downloads 223
20090 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation

Authors: R. J. Chang

Abstract:

A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.

Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise

Procedia PDF Downloads 490
20089 Analysis of Lead Time Delays in Supply Chain: A Case Study

Authors: Abdel-Aziz M. Mohamed, Nermeen Coutry

Abstract:

Lead time is an important measure of supply chain performance. It impacts both customer satisfactions as well as the total cost of inventory. This paper presents the result of a study on the analysis of the customer order lead-time for a multinational company. In the study, the lead time was divided into three stages: order entry, order fulfillment, and order delivery. A sample of size 2,425 order lines from the company records were considered for this study. The sample data includes information regarding customer orders from the time of order entry until order delivery. Data regarding the lead time of each sage for different orders were also provided. Summary statistics on lead time data reveals that about 30% of the orders were delivered after the scheduled due date. The result of the multiple linear regression analysis technique revealed that component type, logistics parameter, order size and the customer type have significant impact on lead time. Data analysis on the stages of lead time indicates that stage 2 consumes over 50% of the lead time. Pareto analysis was made to study the reasons for the customer order delay in each of the 3 stages. Recommendation was given to resolve the problem.

Keywords: lead time reduction, customer satisfaction, service quality, statistical analysis

Procedia PDF Downloads 734
20088 Laser Ultrasonic Imaging Based on Synthetic Aperture Focusing Technique Algorithm

Authors: Sundara Subramanian Karuppasamy, Che Hua Yang

Abstract:

In this work, the laser ultrasound technique has been used for analyzing and imaging the inner defects in metal blocks. To detect the defects in blocks, traditionally the researchers used piezoelectric transducers for the generation and reception of ultrasonic signals. These transducers can be configured into the sparse and phased array. But these two configurations have their drawbacks including the requirement of many transducers, time-consuming calculations, limited bandwidth, and provide confined image resolution. Here, we focus on the non-contact method for generating and receiving the ultrasound to examine the inner defects in aluminum blocks. A Q-switched pulsed laser has been used for the generation and the reception is done by using Laser Doppler Vibrometer (LDV). Based on the Doppler effect, LDV provides a rapid and high spatial resolution way for sensing ultrasonic waves. From the LDV, a series of scanning points are selected which serves as the phased array elements. The side-drilled hole of 10 mm diameter with a depth of 25 mm has been introduced and the defect is interrogated by the linear array of scanning points obtained from the LDV. With the aid of the Synthetic Aperture Focusing Technique (SAFT) algorithm, based on the time-shifting principle the inspected images are generated from the A-scan data acquired from the 1-D linear phased array elements. Thus the defect can be precisely detected with good resolution.

Keywords: laser ultrasonics, linear phased array, nondestructive testing, synthetic aperture focusing technique, ultrasonic imaging

Procedia PDF Downloads 134
20087 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot

Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi

Abstract:

To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.

Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients

Procedia PDF Downloads 93
20086 Does "R and D" Investment Drive Economic Growth? Evidence from Africa

Authors: Boopen Seetanah, R. V. Sannassee, Sheereen Fauzel, Robin Nunkoo

Abstract:

The bulk of research on the impact of research and development (R&D) has been carried out in developed economies where the intensity of R&D expenditure has been relatively high and stable for many years. However, there is a paucity of similar studies in developing countries. In this paper, we provide empirical estimates of the impact of R&D investment on economic growth in a developing African economy (Mauritius) where R&D expenditure intensity has been low initially, but rising, albeit moderately in recent years. Using a dynamic time series analysis over the period 1980 to 2014 in a Vector Autoregressive framework, R & D is shown to have a positive and significant effect on the economic progress of the island, although the impact is considerably less when compared to both other ingredients of growth and also to reported elasticities fromdeveloped economies . Interestingly, there is evidence of bicausality between R & D and growth. furthermore, R & D positively impacts on both domestic and foreign investment, suggesting the possibilities of indirect effects.

Keywords: R & D, VECM, Africa, Mauritius

Procedia PDF Downloads 440
20085 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 95
20084 Optimization of a High-Growth Investment Portfolio for the South African Market Using Predictive Analytics

Authors: Mia Françoise

Abstract:

This report aims to develop a strategy for assisting short-term investors to benefit from the current economic climate in South Africa by utilizing technical analysis techniques and predictive analytics. As part of this research, value investing and technical analysis principles will be combined to maximize returns for South African investors while optimizing volatility. As an emerging market, South Africa offers many opportunities for high growth in sectors where other developed countries cannot grow at the same rate. Investing in South African companies with significant growth potential can be extremely rewarding. Although the risk involved is more significant in countries with less developed markets and infrastructure, there is more room for growth in these countries. According to recent research, the offshore market is expected to outperform the local market over the long term; however, short-term investments in the local market will likely be more profitable, as the Johannesburg Stock Exchange is predicted to outperform the S&P500 over the short term. The instabilities in the economy contribute to increased market volatility, which can benefit investors if appropriately utilized. Price prediction and portfolio optimization comprise the two primary components of this methodology. As part of this process, statistics and other predictive modeling techniques will be used to predict the future performance of stocks listed on the Johannesburg Stock Exchange. Following predictive data analysis, Modern Portfolio Theory, based on Markowitz's Mean-Variance Theorem, will be applied to optimize the allocation of assets within an investment portfolio. By combining different assets within an investment portfolio, this optimization method produces a portfolio with an optimal ratio of expected risk to expected return. This methodology aims to provide a short-term investment with a stock portfolio that offers the best risk-to-return profile for stocks listed on the JSE by combining price prediction and portfolio optimization.

Keywords: financial stocks, optimized asset allocation, prediction modelling, South Africa

Procedia PDF Downloads 99
20083 Redefining Surgical Innovation in Urology: A Historical Perspective of the Original Publications on Pioneering Techniques in Urology

Authors: Samuel Sii, David Homewood, Brendan Dittmer, Tony Nzembela, Jonathan O’Brien, Niall Corcoran, Dinesh Agarwal

Abstract:

Introduction: Innovation is key to the advancement of medicine and improvement in patient care. This is particularly true in surgery, where pioneering techniques have transformed operative management from a historically highly risky peri-morbid and disfiguring to the contemporary low-risk, sterile and minimally invasive treatment modality. There is a delicate balance between enabling innovation and minimizing patient harm. Publication and discussion of novel surgical techniques allow for independent expert review. Recent journals have increasingly stringent requirements for publications and often require larger case volumes for novel techniques to be published. This potentially impairs the initial publication of novel techniques and slows innovation. The historical perspective provides a better understanding of how requirements for the publication of new techniques have evolved over time. This is essential in overcoming challenges in developing novel techniques. Aims and Objectives: We explore how novel techniques in Urology have been published over the past 200 years. Our objective is to describe the trend and publication requirements of novel urological techniques, both historical and present. Methods: We assessed all major urological operations using multipronged historical analysis. An initial literature search was carried out through PubMed and Google Scholar for original literature descriptions, followed by reference tracing. The first publication of each pioneering urological procedure was recorded. Data collected includes the year of publication, description of the procedure, number of cases and outcomes. Results: 65 papers describing pioneering techniques in Urology were identified. These comprised of 2 experimental studies, 17 case reports and 46 case series. These papers described various pioneering urological techniques in urological oncology, reconstructive urology and endourology. We found that, historically, techniques were published with smaller case numbers. Often, the surgical technique itself was a greater focus of the publication than patient outcome data. These techniques were often adopted prior to larger publications. In contrast, the risks and benefits of recent novel techniques are often well-defined prior to adoption. This historical perspective is important as recent journals have requirements for larger case series and data outcomes. This potentially impairs the initial publication of novel techniques and slows innovation. Conclusion: A better understanding of historical publications and their effect on the adoption of urological techniques into common practice could assist the current generation of Urologists in formulating a safe, efficacious process in promoting surgical innovation and the development of novel surgical techniques. We propose the reassessment of requirements for the publication of novel operative techniques by splitting technical perspectives and data-orientated case series. Existing frameworks such as IDEAL and ASERNIP-S should be integrated into current processes when investigating and developing new surgical techniques to ensure efficacious and safe innovation within surgery is encouraged.

Keywords: urology, surgical innovation, novel surgical techniques, publications

Procedia PDF Downloads 52
20082 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: excess properties, relaxation time, static dielectric constant, and time domain reflectometry technique

Procedia PDF Downloads 156