Search results for: plant metabolism
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3942

Search results for: plant metabolism

2622 A Risk Management Framework for Selling a Mega Power Plant Project in a New Market

Authors: Negar Ganjouhaghighi, Amirali Dolatshahi

Abstract:

The origin of most risks of a mega project usually takes place in the phases before closing the contract. As a practical point of view, using project risk management techniques for preparing a proposal is not a total solution for managing the risks of a contract. The objective of this paper is to cover all those activities associated with risk management of a mega project sale’s processes; from entrance to a new market to awarding activities and the review of contract performance. In this study, the risk management happens in six consecutive steps that are divided into three distinct but interdependent phases upstream of the award of the contract: pre-tendering, tendering and closing. In the first step, by preparing standard market risk report, risks of the new market are identified. The next step is the bid or no bid decision making based on the previous gathered data. During the next three steps in tendering phase, project risk management techniques are applied for determining how much contingency reserve must be added or reduced to the estimated cost in order to put the residual risk to an acceptable level. Finally, the last step which happens in closing phase would be an overview of the project risks and final clarification of residual risks. The sales experience of more than 20,000 MW turn-key power plant projects alongside this framework, are used to develop a software that assists the sales team to have a better project risk management.

Keywords: project marketing, risk management, tendering, project management, turn-key projects

Procedia PDF Downloads 329
2621 Cereal Bioproducts Conversion to Higher Value Feed by Using Pediococcus Strains Isolated from Spontaneous Fermented Cereal, and Its Influence on Milk Production of Dairy Cattle

Authors: Vita Krungleviciute, Rasa Zelvyte, Ingrida Monkeviciene, Jone Kantautaite, Rolandas Stankevicius, Modestas Ruzauskas, Elena Bartkiene

Abstract:

The environmental impact of agricultural bioproducts from the processing of food crops is an increasing concern worldwide. Currently, cereal bran has been used as a low-value ingredient for both human consumption and animal feed. The most popular bioprocessing technologies for cereal bran nutritional and technological functionality increasing are enzymatic processing and fermentation, and the most popular starters in fermented feed production are lactic acid bacteria (LAB) including pediococci. However, the ruminant digestive system is unique, there are billions of microorganisms which help the cow to digest and utilize nutrients in the feed. To achieve efficient feed utilization and high milk yield, the microorganisms must have optimal conditions, and the disbalance of this system is highly undesirable. Pediococcus strains Pediococcus acidilactici BaltBio01 and Pediococcus pentosaceus BaltBio02 from spontaneous fermented rye were isolated (by rep – PCR method), identified, and characterized by their growth (by Thermo Bioscreen C automatic turbidometer), acidification rate (2 hours in 2.5 pH), gas production (Durham method), and carbohydrate metabolism (by API 50 CH test ). Antimicrobial activities of isolated pediococcus against variety of pathogenic and opportunistic bacterial strains previously isolated from diseased cattle, and their resistance to antibiotics were evaluated (EFSA-FEEDAP method). The isolated pediococcus strains were cultivated in barley/wheat bran (90 / 10, m / m) substrate, and developed supplements, with high content of valuable pediococcus, were used for Lithuanian black and white dairy cows feeding. In addition, the influence of supplements on milk production and composition was determined. Milk composition was evaluated by the LactoScope FTIR” FT1.0. 2001 (Delta Instruments, Holland). P. acidilactici BaltBio01 and P. pentosaceus BaltBio02 demonstrated versatile carbohydrate metabolism, grown at 30°C and 37°C temperatures, and acidic tolerance. Isolated pediococcus strains showed to be non resistant to antibiotics, and having antimicrobial activity against undesirable microorganisms. By barley/wheat bran utilisation using fermentation with selected pediococcus strains, it is possible to produce safer (reduced Enterobacteriaceae, total aerobic bacteria, yeast and mold count) feed stock with high content of pediococcus. Significantly higher milk yield (after 33 days) by using pediococcus supplements mix for dairy cows feeding could be obtained, while similar effect by using separate strains after 66 days of feeding could be achieved. It can be stated that barley/wheat bran could be used for higher value feed production in order to increase milk production. Therefore, further research is needed to identify what is the main mechanism of the positive action.

Keywords: barley/wheat bran, dairy cattle, fermented feed, milk, pediococcus

Procedia PDF Downloads 307
2620 Anti-Methicillin-Resistant Staphylococcus aureus (MRSA) Compounds from Bauhinia kockiana Korth and Their Mechanism of Antibacterial Activity

Authors: Yik Ling Chew, Adlina Maisarah Mahadi, Joo Kheng Goh

Abstract:

Bauhinia kockiana originates from Peninsular Malaysia, and it is grown as a garden ornamental plant. However, it is used as medicinal plant by Malaysia ‘Kelabit’ ethic group in treating various diseases and illnesses. This study focused on the assessment of the antibacterial activity of B. kockiana towards MRSA, to purify and identify the antibacterial compounds, and to determine the mechanism of antibacterial activity. Antibacterial activity of B. kockiana flower is evaluated qualitatively and quantitatively using disc diffusion assay and microbroth dilution method to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of extracts. Phytochemical analysis is performed to determine the classes of phytochemicals in the extracts. Bioactivity-guided isolation is performed to purify the antibacterial agents and identified the chemical structures via various spectroscopy methods. Scanning electron microscopy (SEM) technique is adopted to evaluate the antibacterial mechanism of extract and compounds isolated. B. kockiana flower is found to exhibit fairly strong antibacterial activity towards both strains of MRSA bacteria. Gallic acid and its ester derivatives are purified from ethyl acetate extract and the antibacterial activity is evaluated. SEM has revealed the mechanism of the extracts and compounds isolated.

Keywords: alkyl gallates, Bauhinia kockiana, MRSA, scanning electron microscopy

Procedia PDF Downloads 370
2619 Influence of Cucurbitacin-Containing Phytonematicides on Growth of Rough Lemon (Citrus jambhiri)

Authors: Raisibe V. Mathabatha, Phatu W. Mashela, Nehemiah M. Mokgalong

Abstract:

Occasional incidence of phytotoxicity in Nemarioc-BL and Nemafric-AL phytonematicides to crops raises credibility challenges that could negate their registration as commercial products. Responses of plants to phytonematicides are characterized by the existence of stimulation, neutral and inhibition phases, with the mid-point of the former being referred to as the Mean Concentration Stimulation Point (MSCP = Dm + Rh/2). The objective of this study was to determine the MCSP and the overall sensitivity (∑k) of Nemarioc-AL and Nemafric-BL phytonematicides to rough lemon seedling rootstocks using the Curve-fitting Allelochemical Response Dosage (CARD) computer-based model. Two parallel greenhouse experiments were initiated, with seven dilutions of each phytonematicide arranged in a randomised complete block design, replicated nine times. Six-month-old rough lemon seedlings were transplanted into 20-cm-diameter plastic pots, filled with steam-pasteurised river sand (300°C for 3 h) and Hygromix-T growing mixture. Treatments at 0, 2, 4, 8, 16, 32 and 164% dilutions were applied weekly at 300 ml/plant. At 84 days after the treatments, analysis of variance-significant plant variables was subjected to the CARD model to generate appropriate biological indices. Computed MCSP values for Nemarioc-AL and Nemafric-BL phytonematicides on rough lemon were 29 and 38%, respectively, whereas ∑k values were 1 and 0, respectively. At the applied concentrations, rough lemon seedlings were highly sensitive to Nemarioc-AL and Nemafric-BL phytonematicides.

Keywords: crude extracts, cucurbitacins, effective microbes, fruit extracts

Procedia PDF Downloads 146
2618 Lifespan Assessment of the Fish Crossing System of Itaipu Power Plant (Brazil/Paraguay) Based on the Reaching of Its Sedimentological Equilibrium Computed by 3D Modeling and Churchill Trapping Efficiency

Authors: Anderson Braga Mendes, Wallington Felipe de Almeida, Cicero Medeiros da Silva

Abstract:

This study aimed to assess the lifespan of the fish transposition system of the Itaipu Power Plant (Brazil/Paraguay) by using 3D hydrodynamic modeling and Churchill trapping effiency in order to identify the sedimentological equilibrium configuration in the main pond of the Piracema Channel, which is part of a 10 km hydraulic circuit that enables fish migration from downstream to upstream (and vice-versa) the Itaipu Dam, overcoming a 120 m water drop. For that, bottom data from 2002 (its opening year) and 2015 were collected and analyzed, besides bed material at 12 stations to the purpose of identifying their granulometric profiles. The Shields and Yalin and Karahan diagrams for initiation of motion of bed material were used to determine the critical bed shear stress for the sedimentological equilibrium state based on the sort of sediment (grain size) to be found at the bottom once the balance is reached. Such granulometry was inferred by analyzing the grosser material (fine and medium sands) which inflows the pond and deposits in its backwater zone, being adopted a range of diameters within the upper and lower limits of that sand stratification. The software Delft 3D was used in an attempt to compute the bed shear stress at every station under analysis. By modifying the input bathymetry of the main pond of the Piracema Channel so as to the computed bed shear stress at each station fell within the intervals of acceptable critical stresses simultaneously, it was possible to foresee the bed configuration of the main pond when the sedimentological equilibrium is reached. Under such condition, 97% of the whole pond capacity will be silted, and a shallow water course with depths ranging from 0.2 m to 1.5 m will be formed; in 2002, depths ranged from 2 m to 10 m. Out of that water path, the new bottom will be practically flat and covered by a layer of water 0.05 m thick. Thus, in the future the main pond of the Piracema Channel will lack its purpose of providing a resting place for migrating fish species, added to the fact that it may become an insurmountable barrier for medium and large sized specimens. Everything considered, it was estimated that its lifespan, from the year of its opening to the moment of the sedimentological equilibrium configuration, will be approximately 95 years–almost half of the computed lifespan of Itaipu Power Plant itself. However, it is worth mentioning that drawbacks concerning the silting in the main pond will start being noticed much earlier than such time interval owing to the reasons previously mentioned.

Keywords: 3D hydrodynamic modeling, Churchill trapping efficiency, fish crossing system, Itaipu power plant, lifespan, sedimentological equilibrium

Procedia PDF Downloads 233
2617 The Therapeutic Potential, Functions, and Use of Ibogaine

Authors: João Pedro Zanella, Michel J. O. Fagundes

Abstract:

Introduction: Drug use has been practised by humans universally for millennia, not excluding any population from these habits, however, the rampant drug use is a global concern due to the harm that affects the health of the world population. In this sense, it is observed the reduction of lasting and effective public policies for the resolution, increasing the demand for treatment services. With this comes ibogaine, an alkaloid derived from the root of an African bush (Tabernanthe Iboga), found mostly in Gabon and used widely by the native Bwiti population in rituals, and also other social groups, which demonstrates efficacy against chemical dependence, psychic and emotional disorders, opioid withdrawal was first confirmed by a study in rats done by Michailo Dzoljic and associates in 1988 and again in 1994. Methods: A brief description of the plant, its neurohumoral potential and the effects caused by ingested doses, in a simplified and objective way, will be discussed in the course of this abstract. Results: Ibogaine is not registered or passed by Anvisa, regarding safety and efficacy, and cannot be sold in Brazil. Its illegal trade reaches R$ 5 thousand for a session with the proceeds of the root, and its effect can last up to 72 hours, attributing Iboga's psychoactive effects to the alkaloid called ibogaine. The shrub where Ibogaine is located has pink and yellow flowers, and its fruit produced does not have psychoactive substances, but its root bark contains 6 to 7% indolic alkaloids. Besides extraction from the iboga plant, ibogaine hydrochloride can be semisynthesized from voacangine, another plant alkaloid that acts as a precursor. Its potential has the ability to perform multiple interactions with the neurotransmitter system, which are closely associated with addiction, including nicotinic, opioid and serotoninergic systems. Studies carried out by Edwards found that the doses administered of Iboga should be determined by a health professional when its purpose is to treat individuals for dependence on other drugs. Its use in small doses may cause an increase in sensibility, impaired vision and motor alterations; in moderate quantities, hallucinations, motor and neurological alterations and impaired vision; in high quantities it may cause hallucinations with personal events at a deeper level lasting up to 24 hours or more, followed by motor and visual alterations. Conclusion: The product extracted from the Iboga plant is of great importance in controlling addiction, reducing the need for the use of narcotics by patients, thus gaining a space of extreme importance in the treatment of users of psychoactive substances. It is remarkable the progress of the latest’s research about the usefulness of Ibogaine, and its benefits for certain treatments, even with the restriction of its sale in Brazil. Besides this, Ibogaine has an additional benefit of helping the patient to gain self-control over their destructive behaviours.

Keywords: alkaloids, dependence, Gabon, ibogaine

Procedia PDF Downloads 84
2616 Cloning, Expression and Protein Purification of AV1 Gene of Okra Leaf Curl Virus Egyptian Isolate and Genetic Diversity between Whitefly and Different Plant Hosts

Authors: Dalia. G. Aseel

Abstract:

Begomoviruses are economically important plant viruses that infect dicotyledonous plants and exclusively transmitted by the whitefly Bemisia tabaci. Here, replicative form was isolated from Okra, Cotton, Tomato plants and whitefly infected with Begomoviruses. Using coat protein specific primers (AV1), the viral infection was verified with amplicon at 450 bp. The sequence of OLCuV-AV1 gene was recorded and received an accession number (FJ441605) from Genebank. The phylogenetic tree of OLCuV was closely related to Okra leaf curl virus previously isolated from Cameroon and USA with nucleotide sequence identity of 92%. The protein purification was carried out using His-Tag methodology by using Affinity Chromatography. The purified protein was separated on SDS-PAGE analysis and an enriched expected size of band at 30 kDa was observed. Furthermore, RAPD and SDS-PAGE were used to detect genetic variability between different hosts of okra leaf curl virus (OLCuV), cotton leaf curl virus (CLCuV), tomato yellow leaf curl virus (TYLCuV) and the whitefly vector. Finally, the present study would help to understand the relationship between the whitefly and different economical crops in Egypt.

Keywords: okra leaf curl virus, AV1 gene, sequencing, phylogenetic, cloning, purified protein, genetic diversity and viral proteins

Procedia PDF Downloads 148
2615 The Evaluation of Subclinical Hypothyroidism in Children with Morbid Obesity

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Cardiovascular pathology is one of the expected consequences of excessive fat gain. The role of zinc in thyroid hormone metabolism is an important matter. The concentrations of both thyroid stimulating hormone (TSH) and zinc are subject to variation in obese individuals. Zinc exhibits protective effects on cardiovascular health and is inversely correlated with cardiovascular markers in childhood obesity. The association between subclinical hypothyroidism (SCHT) and metabolic disorders is under investigation due to its clinical importance. Underactive thyroid gland causes high TSH levels. Subclinical hypothyroidism is defined as the elevated serum TSH levels in the presence of normal free thyroxin (T4) concentrations. The aim of this study was to evaluate the associations between TSH levels and zinc concentrations in morbid obese (MO) children exhibiting SCHT. The possibility of using the probable association between these parameters was also evaluated for the discrimination of metabolic syndrome positive (MetS+) and metabolic syndrome negative (MetS-) groups. Forty-two children were present in each group. Informed consent forms were obtained. Institutional Ethics Committee approved the study protocol. Tables prepared by World Health Organization were used for the definition of MO children. Children, whose age- and sex-dependent body mass index percentile values were above 99, were defined as MO. Children with at least two MetS components were included in MOMetS+ group. Elevated systolic/diastolic blood pressure values, increased fasting blood glucose, triglycerides (TRG)/decreased high density lipoprotein-cholesterol (HDL-C) concentrations in addition to central obesity were listed as MetS components. Anthropometric measures were recorded. Routine biochemical analyses were performed. Thirteen and fifteen children had SCHT in MOMetS- and MOMetS+ groups, respectively. Statistical analyses were performed. p<0.05 was accepted as statistically significant. In MOMetS- and MOMetS+ groups, TSH levels were 4.1±2.9 mU/L and 4.6±3.1 mU/L, respectively. Corresponding values for SCHT cases in these groups were 7.3±3.1 mU/L and 8.0±2.7 mU/L. Free T4 levels were within normal limits. Zinc concentrations were negatively correlated with TSH levels in both groups. The significant negative correlation calculated in MOMetS+ group (r= -0.909; p<0.001) was much stronger than that found in MOMetS- group (r= -0.706; p<0.05). This strong correlation (r= -0.909; p<0.001) calculated for cases with SCHT in MOMetS+ group was much lower (r= -0.793; p<0.001) when all MOMetS+ cases were considered. Zinc is closely related to T4 and TSH therefore, it participates in thyroid hormone metabolism. Since thyroid hormones are required for zinc absorption, hypothyroidism can lead to zinc deficiency. The presence of strong correlations between TSH and zinc in SCHT cases found in both MOMetS- and MOMetS+ groups pointed out that MO children were under the threat of cardiovascular pathologies. The detection of the much stronger correlation in MOMetS+ group in comparison with the correlation found in MOMetS- group was the indicator of greater cardiovascular risk due to the presence of MetS. In MOMetS+ group, correlation in SCHT cases found higher than correlation calculated for all cases confirmed much higher cardiovascular risk due to the contribution of SCHT.

Keywords: cardiovascular risk, children, morbid obesity, subclinical hypothyroidism, zinc

Procedia PDF Downloads 78
2614 Water Reclamation and Reuse in Asia’s Largest Sewage Treatment Plant

Authors: Naveen Porika, Snigdho Majumdar, Niraj Sethi

Abstract:

Water, food and energy securities are emerging as increasingly important and vital issues for India and the world. Hyderabad urban agglomeration (HUA), the capital city of Andhra Pradesh State in India, is the sixth largest city has a population of about 8.2 million. The Musi River, which is a tributary of Krishna river flows from west to east right through the heart of Hyderabad, about 80% of the water used by people is released back as sewage, which flows back into Musi every day with detrimental effects on the environment and people downstream of the city. The average daily sewage generated in Hyderabad city is 950 MLD, however, treatment capacity exists only for 541 Million Liters per Day (MLD) but only 407 MLD of sewage is treated. As a result, 543 MLD of sewage daily flows into Musi river. Hyderabad’s current estimated water demand stands at 320 Million Gallons per Day (MGD). However, its installed capacity is merely 270 MGD; by 2020 estimated demand will grow to 400 MGD. There is huge gap between current supply and demand, and this is likely to widen by 2021. Developing new fresh water sources is a challenge for Hyderabad, as the fresh water sources are few and far from the City (about 150-200 km) and requires excessive pumping. The constraints presented above make the conventional alternatives for supply augmentation unsustainable and unattractive .One such dependable and captive source of easily available water is the treated sewage. With proper treatment, water of desired quality can be recovered from the waste water (sewage) for recycle and reuse. Hyderabad Amberpet sewage treatment of capacity 339 MLD is Asia’s largest sewage treatment plant. Tertiary sewage treatment Standard basic engineering modules of 30 MLD,60 MLD, 120MLD & 180 MLD for sewage treatment plants has been developed which are utilized for developing Sewage Reclamation & Reuse model in Asia’s largest sewage treatment plant. This paper will focus on Hyderabad Water Supply & Demand, Sewage Generation & Treatment, Technical aspects of Tertiary Sewage Treatment and Utilization of developed standard modules for reclamation & reuse of treated sewage to overcome the deficit of 130 MGD as projected by 2021.

Keywords: water reclamation, reuse, Andhra Pradesh, hyderabad, musi river, sewage, demand and supply, recycle, Amberpet, 339 MLD, engineering modules, tertiary treatment

Procedia PDF Downloads 617
2613 Strategy Management of Soybean (Glycine max L.) for Dealing with Extreme Climate through the Use of Cropsyst Model

Authors: Aminah Muchdar, Nuraeni, Eddy

Abstract:

The aims of the research are: (1) to verify the cropsyst plant model of experimental data in the field of soybean plants and (2) to predict planting time and potential yield soybean plant with the use of cropsyst model. This research is divided into several stages: (1) first calibration stage which conducted in the field from June until September 2015.(2) application models stage, where the data obtained from calibration in the field will be included in cropsyst models. The required data models are climate data, ground data/soil data,also crop genetic data. The relationship between the obtained result in field with simulation cropsyst model indicated by Efficiency Index (EF) which the value is 0,939.That is showing that cropsyst model is well used. From the calculation result RRMSE which the value is 1,922%.That is showing that comparative fault prediction results from simulation with result obtained in the field is 1,92%. The conclusion has obtained that the prediction of soybean planting time cropsyst based models that have been made valid for use. and the appropriate planting time for planting soybeans mainly on rain-fed land is at the end of the rainy season, in which the above study first planting time (June 2, 2015) which gives the highest production, because at that time there was still some rain. Tanggamus varieties more resistant to slow planting time cause the percentage decrease in the yield of each decade is lower than the average of all varieties.

Keywords: soybean, Cropsyst, calibration, efficiency Index, RRMSE

Procedia PDF Downloads 180
2612 Identifying Environmental Adaptive Genetic Loci in Caloteropis Procera (Estabragh): Population Genetics and Landscape Genetic Analyses

Authors: Masoud Sheidaei, Mohammad-Reza Kordasti, Fahimeh Koohdar

Abstract:

Calotropis procera (Aiton) W.T.Aiton, (Apocynaceae), is an economically and medicinally important plant species which is an evergreen, perennial shrub growing in arid and semi-arid climates, and can tolerate very low annual rainfall (150 mm) and a dry season. The plant can also tolerate temperature ran off 20 to30°C and is not frost tolerant. This plant species prefers free-draining sandy soils but can grow also in alkaline and saline soils.It is found at a range of altitudes from exposed coastal sites to medium elevations up to 1300 m. Due to morpho-physiological adaptations of C. procera and its ability to tolerate various abiotic stresses. This taxa can compete with desirable pasture species and forms dense thickets that interfere with stock management, particularly mustering activities. Caloteropis procera grows only in southern part of Iran where in comprises a limited number of geographical populations. We used different population genetics and r landscape analysis to produce data on geographical populations of C. procera based on molecular genetic study using SCoT molecular markers. First, we used spatial principal components (sPCA), as it can analyze data in a reduced space and can be used for co-dominant markers as well as presence / absence data as is the case in SCoT molecular markers. This method also carries out Moran I and Mantel tests to reveal spatial autocorrelation and test for the occurrence of Isolation by distance (IBD). We also performed Random Forest analysis to identify the importance of spatial and geographical variables on genetic diversity. Moreover, we used both RDA (Redundency analysis), and LFMM (Latent factor mixed model), to identify the genetic loci significantly associated with geographical variables. A niche modellng analysis was carried our to predict present potential area for distribution of these plants and also the area present by the year 2050. The results obtained will be discussed in this paper.

Keywords: population genetics, landscape genetic, Calotreropis procera, niche modeling, SCoT markers

Procedia PDF Downloads 93
2611 Economic Analysis of an Integrated Anaerobic Digestion and Ozonolysis System

Authors: Tshilenge Kabongo, John Kabuba

Abstract:

The distillery wastewater has become major issues in sanitation sectors. One of the solutions to overcome this sewage is to install the Wastewater Treatment Plant. Economic analysis is fundamentally required for its viability. Integrated anaerobic digestion and advanced oxidation (AD-AOP) in the treatment of distillery wastewater (DWW), anaerobic digestion achieved sufficient biochemical oxygen demand (BOD) and chemical oxygen demand (COD) removals of 95% and 75%, respectively, and methane production of 0.292 L/g COD removed at an organic loading rate of 15 kg COD/m3/d. However, a considerable amount of biorecalcitrant compounds still existed in the anaerobically treated effluent, contributing to a residual COD of 4.5 g/L and an intense dark brown color. To remove the biorecalcitrant color and COD, ozonation, which is an AOP, was introduced as a post-treatment method to AD. Ozonation is a highly competitive treatment technique that can be easily applied to remove the biorecalcitrant compounds, including color, and turbidity. In the ozonation process carried out for an hour, more than 80% of the color was removed at an ozone dose of 45 mg O3/L/min (corresponding to 1.8 g O3/g COD). Thus, integrating AD with the AOP can be effective for organic load and color reductions during the treatment of DWW. The deliverable established the best configuration of the AD-AOP system, where DWW is first subjected to AD followed by AOP post-treatment. However, for establishing the feasibility of the industrial application of the integrated system, it is necessary to carry out the economic analysis. This may help the starting point of the wastewater treatment plant construction and its operation and maintenance costs.

Keywords: distillery wastewater, economic analysis, integrated anaerobic digestion, ozonolysis, treatment

Procedia PDF Downloads 134
2610 Hyperspectral Imagery for Tree Speciation and Carbon Mass Estimates

Authors: Jennifer Buz, Alvin Spivey

Abstract:

The most common greenhouse gas emitted through human activities, carbon dioxide (CO2), is naturally consumed by plants during photosynthesis. This process is actively being monetized by companies wishing to offset their carbon dioxide emissions. For example, companies are now able to purchase protections for vegetated land due-to-be clear cut or purchase barren land for reforestation. Therefore, by actively preventing the destruction/decay of plant matter or by introducing more plant matter (reforestation), a company can theoretically offset some of their emissions. One of the biggest issues in the carbon credit market is validating and verifying carbon offsets. There is a need for a system that can accurately and frequently ensure that the areas sold for carbon credits have the vegetation mass (and therefore for carbon offset capability) they claim. Traditional techniques for measuring vegetation mass and determining health are costly and require many person-hours. Orbital Sidekick offers an alternative approach that accurately quantifies carbon mass and assesses vegetation health through satellite hyperspectral imagery, a technique which enables us to remotely identify material composition (including plant species) and condition (e.g., health and growth stage). How much carbon a plant is capable of storing ultimately is tied to many factors, including material density (primarily species-dependent), plant size, and health (trees that are actively decaying are not effectively storing carbon). All of these factors are capable of being observed through satellite hyperspectral imagery. This abstract focuses on speciation. To build a species classification model, we matched pixels in our remote sensing imagery to plants on the ground for which we know the species. To accomplish this, we collaborated with the researchers at the Teakettle Experimental Forest. Our remote sensing data comes from our airborne “Kato” sensor, which flew over the study area and acquired hyperspectral imagery (400-2500 nm, 472 bands) at ~0.5 m/pixel resolution. Coverage of the entire teakettle experimental forest required capturing dozens of individual hyperspectral images. In order to combine these images into a mosaic, we accounted for potential variations of atmospheric conditions throughout the data collection. To do this, we ran an open source atmospheric correction routine called ISOFIT1 (Imaging Spectrometer Optiman FITting), which converted all of our remote sensing data from radiance to reflectance. A database of reflectance spectra for each of the tree species within the study area was acquired using the Teakettle stem map and the geo-referenced hyperspectral images. We found that a wide variety of machine learning classifiers were able to identify the species within our images with high (>95%) accuracy. For the most robust quantification of carbon mass and the best assessment of the health of a vegetated area, speciation is critical. Through the use of high resolution hyperspectral data, ground-truth databases, and complex analytical techniques, we are able to determine the species present within a pixel to a high degree of accuracy. These species identifications will feed directly into our carbon mass model.

Keywords: hyperspectral, satellite, carbon, imagery, python, machine learning, speciation

Procedia PDF Downloads 129
2609 Biological Control of Karnal Bunt by Pseudomonas fluorescens

Authors: Geetika Vajpayee, Sugandha Asthana, Pratibha Kumari, Shanthy Sundaram

Abstract:

Pseudomonas species possess a variety of promising properties of antifungal and growth promoting activities in the wheat plant. In the present study, Pseudomonas fluorescens MTCC-9768 is tested against plant pathogenic fungus Tilletia indica, causing Karnal bunt, a quarantine disease of wheat (Triticum aestivum) affecting kernels of wheat. It is one of the 1/A1 harmful diseases of wheat worldwide under EU legislation. This disease develops in the growth phase by the spreading of microscopically small spores of the fungus (teliospores) being dispersed by the wind. The present chemical fungicidal treatments were reported to reduce teliospores germination, but its effect is questionable since T. indica can survive up to four years in the soil. The fungal growth inhibition tests were performed using Dual Culture Technique, and the results showed inhibition by 82.5%. The interaction of antagonist bacteria-fungus causes changes in the morphology of hyphae, which was observed using Lactophenol cotton blue staining and Scanning Electron Microscopy (SEM). The rounded and swollen ends, called ‘theca’ were observed in interacted fungus as compared to control fungus (without bacterial interaction). This bacterium was tested for its antagonistic activity like protease, cellulose, HCN production, Chitinase, etc. The growth promoting activities showed increase production of IAA in bacteria. The bacterial secondary metabolites were extracted in different solvents for testing its growth inhibiting properties. The characterization and purification of the antifungal compound were done by Thin Layer Chromatography, and Rf value was calculated (Rf value = 0.54) and compared to the standard antifungal compound, 2, 4 DAPG (Rf value = 0.54). Further, the in vivo experiments showed a significant decrease in the severity of disease in the wheat plant due to direct injection method and seed treatment. Our results indicate that the extracted and purified compound from the antagonist bacteria, P. fluorescens MTCC-9768 may be used as a potential biocontrol agent against T. indica. This also concludes that the PGPR properties of the bacteria may be utilized by incorporating it into bio-fertilizers.

Keywords: antagonism, Karnal bunt, PGPR, Pseudomonas fluorescens

Procedia PDF Downloads 405
2608 Experimental Investigation of Absorbent Regeneration Techniques to Lower the Cost of Combined CO₂ and SO₂ Capture Process

Authors: Bharti Garg, Ashleigh Cousins, Pauline Pearson, Vincent Verheyen, Paul Feron

Abstract:

The presence of SO₂ in power plant flue gases makes flue gas desulfurization (FGD) an essential requirement prior to post combustion CO₂ (PCC) removal facilities. Although most of the power plants worldwide deploy FGD in order to comply with environmental regulations, generally the achieved SO₂ levels are not sufficiently low for the flue gases to enter the PCC unit. The SO₂ level in the flue gases needs to be less than 10 ppm to effectively operate the PCC installation. The existing FGD units alone cannot bring down the SO₂ levels to or below 10 ppm as required for CO₂ capture. It might require an additional scrubber along with the existing FGD unit to bring the SO₂ to the desired levels. The absence of FGD units in Australian power plants brings an additional challenge. SO₂ concentrations in Australian power station flue gas emissions are in the range of 100-600 ppm. This imposes a serious barrier on the implementation of standard PCC technologies in Australia. CSIRO’s developed CS-Cap process is a unique solution to capture SO₂ and CO₂ in a single column with single absorbent which can potentially bring cost-effectiveness to the commercial deployment of carbon capture in Australia, by removing the need for FGD. Estimated savings of removing SO₂ through a similar process as CS-Cap is around 200 MMUSD for a 500 MW Australian power plant. Pilot plant trials conducted to generate the proof of concept resulted in 100% removal of SO₂ from flue gas without utilising standard limestone-based FGD. In this work, removal of absorbed sulfur from aqueous amine absorbents generated in the pilot plant trials has been investigated by reactive crystallisation and thermal reclamation. More than 95% of the aqueous amines can be reclaimed back from the sulfur loaded absorbent via reactive crystallisation. However, the recovery of amines through thermal reclamation is limited and depends on the sulfur loading on the spent absorbent. The initial experimental work revealed that reactive crystallisation is a better fit for CS-Cap’s sulfur-rich absorbent especially when it is also capable of generating K₂SO₄ crystals of highly saleable quality ~ 99%. Initial cost estimation carried on both the technologies resulted in almost similar capital expenditure; however, the operating cost is considerably higher in thermal reclaimer than that in crystalliser. The experimental data generated in the laboratory from both the regeneration techniques have been used to generate the simulation model in Aspen Plus. The simulation model illustrates the economic benefits which could be gained by removing flue gas desulfurization prior to standard PCC unit and replacing it with a CS-Cap absorber column co-capturing CO₂ and SO₂, and it's absorbent regeneration system which would be either reactive crystallisation or thermal reclamation.

Keywords: combined capture, cost analysis, crystallisation, CS-Cap, flue gas desulfurisation, regeneration, sulfur, thermal reclamation

Procedia PDF Downloads 127
2607 RACK1 Integrates Light and Brassinosteroid Signaling to Coordinate Cell Division During Root Soil Penetration

Authors: Liang Jiansheng, Zhu Wei

Abstract:

Light and brassinosteroids are essential external and internal cues for plant survival. Although the coordination of light with phytohormone signals is crucial for plant growth and development, the molecular connection between light and brassinosteroid signaling during root soil penetration remains elusive. Here, we reveal that light-stabilized RACK1 couples a brassinosteroid signaling cascade to drive cell division in root meristems. RACK1 family scaffold proteins positively regulate light-induced the promotion of root elongation during soil penetration. Under the light condition, RACK1A interacts with both phyB and SPA1, then reinforces the phyB-SPA1 association to accumulate its abundance in roots. In response to brassinosteroid signals, RACK1A competes with BKI1 to attenuate the BRI1-BKI1 interaction, thereby leading to activating BRI1 actions in root development. Furthermore, RACK1A binds to BES1 to repress its DNA binding activity toward the target gene CYCD3;1. This ultimately allows to release the inhibition of CYCD3;1 transcription, and promotes cell division during root growth. Our study illustrates a new mechanistic model of how plants engage scaffold proteins in transducing light information to facilitate brassinosteroid signaling for root growth in the soil.

Keywords: root growth, cell division, light signaling, brassinosteroid signaling, soil penetration, scaffold protein, RACK1

Procedia PDF Downloads 80
2606 The Preparation of Titanate Nano-Materials Removing Efficiently Cs-137 from Waste Water in Nuclear Power Plants

Authors: Liu De-jun, Fu Jing, Zhang Rong, Luo Tian, Ma Ning

Abstract:

Cs-137, the radioactive fission products of uranium, can be easily dissolved in water during the accident of nuclear power plant, such as Chernobyl, Three Mile Island, Fukushima accidents. The concentration of Cs in the groundwater around the nuclear power plant exceeded the standard value almost 10,000 times after the Fukushima accident. The adsorption capacity of Titanate nano-materials for radioactive cation (Cs+) is very strong. Moreover, the radioactive ion can be tightly contained in the nanotubes or nanofibers without reversible adsorption, and it can safely be fixed. In addition, the nano-material has good chemical stability, thermal stability and mechanical stability to minimize the environmental impact of nuclear waste and waste volume. The preparation of titanate nanotubes or nanofibers was studied by hydrothermal methods, and chemical kinetics of removal of Cs by nano-materials was obtained. The adsorption time with maximum adsorption capacity and the effects of pH, coexisting ion concentration and the optimum adsorption conditions on the removal of Cs by titanate nano-materials were also obtained. The adsorption boundary curves, adsorption isotherm and the maximum adsorption capacity of Cs-137 as tracer on the nano-materials were studied in the research. The experimental results showed that the removal rate of Cs-137 in 0.01 tons of waste water with only 1 gram nano-materials could reach above 98%, according to the optimum adsorption conditions.

Keywords: preparation, titanate, cs-137, removal, nuclear

Procedia PDF Downloads 269
2605 The Effect of System Parameters on the Biogas Production from Poultry Rendering Plant Anaerobic Digesters

Authors: N. Lovanh, J. Loughrin, G. Ruiz-Aguilar

Abstract:

Animal wastes can serve as the feedstock for biogas production (mainly methane) that could be used as alternative energy source. The green energy derived from animal wastes is considered to be carbon neutral and offsetting those generated from fossil fuels. In this study, an evaluation of system parameters on methane production from anaerobic digesters utilizing poultry rendering plant wastewater was carried out. Anaerobic batch reactors and continuous flow system subjected to different operation conditions (i.e., flow rate, temperature, and etc.) containing poultry rendering wastewater were set up to evaluate methane potential from each scenario. Biogas productions were sampled and monitored by gas chromatography and photoacoustic gas analyzer over six months of operation. The results showed that methane productions increased as the temperature increased. However, there is an upper limit to the increase in the temperature on the methane production. Flow rates and type of systems (batch vs. plug-flow regime) also had a major effect on methane production. Constant biogas production was observed in plug-flow system whereas batch system produced biogas quicker and tapering off toward the end of the six-month study. Based on these results, it is paramount to consider operating conditions and system setup in optimizing biogas production from agricultural wastewater.

Keywords: anaerobic digestion, methane, poultry rendering wastewater, biotechnology

Procedia PDF Downloads 392
2604 A Novel Protein Elicitor Extracted From Lecanicillium lecanii Induced Resistance Against Whitefly, Bemisia tabaci in Cotton

Authors: Yusuf Ali Abdulle, Azhar Uddin Keerio

Abstract:

Background: Protein elicitors play a key role in signaling or displaying plant defense mechanisms and emerging as vital tools for bio-control of insects. This study was aimed at the characterization of the novel protein elicitor isolated from entomopathogenic fungi Lecanicillium lecanii (V3) strain and its activity against Whitefly, Bemisia tabaci in cotton. The sequence of purified elicitor protein showed 100% similarity with hypothetical protein LEL_00878 [Cordyceps confragosa RCEF 1005], GenBank no (OAA81333.1). This novel protein elicitor has 253 amino acid residues and 762bp with a molecular mass of 29 kDa. The protein recombinant was expressed in Escherichia coli using pET‐28a (+) plasmid. Effects of purified novel protein elicitor on Bemisia tabaci were determined at three concentrations of protein (i.e., 58.32, 41.22, 35.41 μg mL⁻¹) on cotton plants and were exposed to newly molted adult B.tabaci. Bioassay results showed a significant effect of the exogenous application of novel protein elicitor on B. tabaci in cotton. In addition, the gene expression analysis found a significant up-regulation of the major genes associated with salicylic acid (SA) and jasmonic acid (JA) linked plant defense pathways in elicitor protein-treated plants. Our results suggested the potential application of a novel protein elicitor derived from Lecanicillium lecanii as a future bio-intensive controlling approach against the whitefly, Bemisia tabaci.

Keywords: resistance, Lecanicillium lecanii, secondary metabolites, whitefly

Procedia PDF Downloads 184
2603 The Function of Polycomb Repressive Complex 2 (PRC2) In Plant Retrograde Signaling Pathway

Authors: Mingxi Zhou, Jiří Kubásek, Iva Mozgová

Abstract:

In Arabidopsis thaliana, histone 3 lysine 27 tri-methylation catalysed byPRC2 is playing essential functions in the regulation of plant development, growth, and reproduction[1-2]. Despite numerous studies related to the role of PRC2 in developmental control, how PRC2 works in the operational control in plants is unknown. In the present, the evidence that PRC2 probably participates in the regulation of retrograde singalling pathway in Arabidopsisis found. Firstly, we observed that the rosette size and biomass in PRC2-depletion mutants (clf-29 and swn-3) is significantly higher than WTunder medium light condition (ML: 125 µmol m⁻² s⁻²), while under medium high light condition (MHL: 300 µmol m⁻² s-2), the increase was reverse. Under ML condition, the photosynthesis related parameters determined by fluorCam did not show significant differences between WT and mutants, while the pigments concentration increased in the leaf of PRC2-depletion mutants, especially in swn. The dynamic of light-responsive genes and circadian clock genes expression by RT-qPCRwithin 24 hours in the mutants were comparable to WT. However, we observed upregulation of photosynthesis-associated nuclear genes in the PRC2-depletion mutants under chloroplast damaging condition (treated by lincomycin), corresponding to the so-called genome uncoupled (gun) phenotype. Here, we will present our results describing these phenotypes and our suggestion and outlook for studying the involvement of PRC2 in chloroplast-to-nucleus retrograde signalling.

Keywords: PRC2, retrograde signalling, light acclimation, photosyntheis

Procedia PDF Downloads 110
2602 Distribution, Seasonal Phenology and Infestation Dispersal of the Chickpea Leafminer Liriomyza cicerina (Diptera: Agromizidae) on Two Winter and Spring Chickpea Varieties

Authors: Abir Soltani, Moez Amri, Jouda Mediouni Ben Jemâa

Abstract:

In North Africa, the chickpea leafminer Liriomyza cicerina (Rondani) (Diptera: Agromizidae) is one of the major damaging pests affecting both spring and winter-planted chickpea. Damage is caused by the larvae which feed in the leaf mesophyll tissue, resulting in desiccation and premature leaf fall that can cause severe yield losses. In the present work, the distribution and the seasonal phenology of L. cicerina were studied on two chickpea varieties; a winter variety Beja 1 which is the most cultivated variety in Tunisia and a spring-sown variety Amdoun 1. The experiment was conducted during the cropping season 2015-2016. In the experimental research station Oued Beja, in the Beja region (36°44’N; 9°13’E). To determine the distribution and seasonal phenology of L. cicerina in both studied varieties Beja 1 and Amdoun 1, respectively 100 leave samples (50 from the top and 50 from the base) were collected from 10 chickpea plants randomly chosen from each field. The sampling was done during three development stages (i) 20-25 days before flowering (BFL), (ii) at flowering (FL) and (ii) at pod setting stage (PS). For each plant, leaves were checked from the base till the upper ones for the insect infestation progress into the plant in correlation with chickpea growth Stages. Fly adult populations were monitored using 8 yellow sticky traps together with weekly leaves sampling in each field. The traps were placed 70 cm above ground. Trap catches were collected once a week over the cropping season period. Results showed that L. cicerina distribution varied among both studied chickpea varieties and crop development stage all with seasonal phenology. For the winter chickpea variety Beja 1, infestation levels of 2%, 10.3% and 20.3% were recorded on the bases plant part for BFL, FL and PS stages respectively against 0%, 8.1% and 45.8% recorded for the upper plant part leaves for the same stages respectively. For the spring-sown variety Amdoun 1 the infestation level reached 71.5% during flowering stage. Population dynamic study revealed that for Beja 1 variety, L. cicerina accomplished three annual generations over the cropping season period with the third one being the most important with a capture level of 85 adult/trap by mid-May against a capture level of 139 adult/trap at the end May recorded for cv. Amdoun 1. Also, results showed that L. cicerina field infestation dispersal depends on the field part and on the crop growth stage. The border areas plants were more infested than the plants placed inside the plots. For cv. Beja 1, border areas infestations were 11%, 28% and 91.2% for BFL, FL and PS stages respectively, against 2%, 10.73% and 69.2% recorded on the on the inside plot plants during the for the same growth stages respectively. For the cv. Amdoun1 infestation level of 90% was observed on the border plants at FL and PS stages against an infestation level less than 65% recorded inside the plot.

Keywords: leaf miner, liriomyza cicerina, chickpea, distribution, seasonal phenology, Tunisia

Procedia PDF Downloads 282
2601 Assessing Antimicrobial Activity of Various Plant Extracts on Midgutmicroflora of Aedesaegypti

Authors: V. Baweja, K. K. Gupta, V. Dubey, C. Keshavam

Abstract:

Antimicrobial activity of six indigenous plants such as Tulsi Ocimum sanctum, Neem Azadirachta indica, Aloe vera, Turmeric Curcuma longa, Lantana Lantana camara, and Clove Syzygium aromaticum was assessed against the gut microbiota of the dengue fever mosquito Aedes aegypti, keeping in view that the presence of midgut bacteria may affect the ability of the vector to transmit pathogens. Eleven different types of bacterial clones were isolated from the midgut of lab-reared fourth instar larvae of Aedes aegypti and were grown on LB agar medium at an optimum temperature of 25 ºC. Identification of these bacteria was done on the basis of their colony characteristic such as colony size, shape, opacity, elevation, consistency, and growth. Light microscopic studies of the gut microbiota revealed dominance of Gram-negative cocci over gram positive cocci and bacilli and Gram-negative bacilli. Identification of species was done by chemical characterization of the colonies. Crude extracts of all test plants were screened for their antimicrobial activities against gut microbiota by disc diffusion assay. The zone of exclusion seen after 24 hr of incubation in different assays revealed the most potent antibacterial activities in neem followed by clove and turmeric. Lantana and Aloe vera were least effective.

Keywords: plant extract, aedes, dengue, antimicrobial activity

Procedia PDF Downloads 404
2600 Seasonal and Monthly Field Soil Respiration Rate and Litter Fall Amounts of Kasuga-Yama Hill Primeval Forest

Authors: Ayuko Itsuki, Sachiyo Aburatani

Abstract:

The seasonal (January, April, July and October) and monthly soil respiration rate and the monthly litter fall amounts were examined in the laurel-leaved (B_B-1) and Cryptomeria japonica (B_B-2 and PW) forests in the Kasugayama Hill Primeval Forest (Nara, Japan). The change of the seasonal soil respiration rate corresponded to that of the soil temperature. The soil respiration rate was higher in October when fresh organic matter was supplied in the forest floor than in April in spite of the same temperature. The seasonal soil respiration rate of B_B-1 was higher than that of B_B-2, which corresponded to more numbers of bacteria and fungi counted by the dilution plate method and by the direct count method by microscopy in B_B-1 than that of B_B-2. The seasonal soil respiration rate of B_B-2 was higher than that of PW, which corresponded to more microbial biomass by the direct count method by microscopy in B_B-2 than that of PW. The correlation coefficient with the seasonal soil respiration and the soil temperature was higher than that of the monthly soil respiration. The soil respiration carbon was more than the litter fall carbon. It was suggested that the soil respiration included in the carbon dioxide which was emitted by the plant root and soil animal, or that the litter fall supplied to the forest floor included in animal and plant litter.

Keywords: field soil respiration rate, forest soil, litter fall, mineralization rate

Procedia PDF Downloads 290
2599 Evaluation of Oral Biofilm Suppression by Carribean Herbal Extracts

Authors: Ravi Teja Chitturi Suryaprakash, Chandrashekhar Unakal, Haytham Al-Bayaty, Duraisamy Saravanakumar

Abstract:

Background and significance: Oral biofilm formation is a well-known causative factor for caries and periodontal diseases. Scientists over the years have been trying to find a solution against the formation of oral biofilms. Though several advances have been made to understand the microbial ecology and how the bio film survives, it is still an enigma to researchers to find a chemical product that not only can inhibit the formation of oral bio film but also not disturb the oral micro flora required for oral health and not to cause damage to the cells of the oral cavity. One such product that has never been investigated much are herbal preparations. Some of the microorganisms important in the formation of biofilm are Streptococcus mutans, Actinomyces naeslundi, Streptococuss oralis and Prevotella intermedia. The aim of this study was to study the antimicrobial property of some herbal extracts available in Trinidad and Tobago against these pathogens. The significance of this study is that identification of biologically effective plant extracts can result in indigenous development of mouth rinses and tooth pastes that the people can benefit from to not only develop effective but also a cheap solution. Methodology: The extracts from the leaves of Plectranthus ambonicus, Ocmium tenuiflorum, Azadirchata indica, Anacardium occidentale, Psidium guajava were prepared by dissolving them in water. The extracts from the roots of Curcuma longa were prepared similarly and the antimicrobial activity of these six plant extracts was determined by the agar well diffusion method using minimum inhibitory concentration (MIC) against Streptococcus mutans, Actinomyces naeslundi, Streptococuss oralis and Prevotella intermedia and compared with chlorhexidine. Results: The six plant extracts showed variable effect on the oral micro-organisms. Ocmium tenuiflorum (16.66 ± 0.44, 14 ± 0.58, 13.33 ± 0.88, 12.83 ± 0.60), Azadirchata indica (17.5 ± 0.28, 14.83 ± 0.17, 15 ± 0.58, 12.83 ± 0.6) and Curcuma longa (16.16 ± 0.44, 13.66 ± 0.88, 12.33 ± 0.88, 11.33 ± 0.67) were found to have highest inhibitory activity against all the four pathogens (Streptococcus mutans, Streptococuss oralis, Actinomyces naeslundi, and Prevotella intermedia) respectively. Conclusion: Although the extracts were not pure compounds we obtained antimicrobial results which determine that they are potent antimicrobial agents. Further derivation of pure compounds from these extracts could be lucrative as it might lead to the development of a cost effective and biologically safe medicine to act against oral biofilms. Acknowledgement: The authors would like to acknowledge the Campus Research and Publication Fund Committee, The University of the West Indies for funding this study and would also like to acknowledge Dr. Leonette Cox, Department of Chemistry, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago for helping to prepare the plant extracts.

Keywords: agar well diffusion method, herbal extracts, minimum inhibitory concentration, oral biofilm forming microorganisms

Procedia PDF Downloads 180
2598 Genomic Adaptation to Local Climate Conditions in Native Cattle Using Whole Genome Sequencing Data

Authors: Rugang Tian

Abstract:

In this study, we generated whole-genome sequence (WGS) data from110 native cattle. Together with whole-genome sequences from world-wide cattle populations, we estimated the genetic diversity and population genetic structure of different cattle populations. Our findings revealed clustering of cattle groups in line with their geographic locations. We identified noticeable genetic diversity between indigenous cattle breeds and commercial populations. Among all studied cattle groups, lower genetic diversity measures were found in commercial populations, however, high genetic diversity were detected in some local cattle, particularly in Rashoki and Mongolian breeds. Our search for potential genomic regions under selection in native cattle revealed several candidate genes related with immune response and cold shock protein on multiple chromosomes such as TRPM8, NMUR1, PRKAA2, SMTNL2 and OXR1 that are involved in energy metabolism and metabolic homeostasis.

Keywords: cattle, whole-genome, population structure, adaptation

Procedia PDF Downloads 74
2597 Effects of Lateness Gene on Yield and Related Traits in Indica Rice

Authors: B. B. Rana, M. Yokota, Y. Shimizu, Y. Koide, I. Takamure, T. Kawano, M. Murai

Abstract:

Various genes which control or affect heading time have been found in rice. Out of them, Se1 and E1 loci play important roles in determining heading time by controlling photosensitivity. An isogenic-line pair of late and early lines were developed from progenies of the F1 from Suweon 258 × 36U. A lateness gene tentatively designated as “Ex” was found to control the difference in heading time between the early and late lines mentioned above. The present study was conducted to examine the effect of Ex on yield and related traits. Indica-type variety Suweon 258 was crossed with 36U, which is an Ur1 (Undulate rachis-1) isogenic line of IR36. In the F2 population, comparatively early-heading, late-heading and intermediate-heading plants were segregated. Segregation similar to that by the three types of heading was observed in the F3 and later generations. A late-heading plant and an early-heading plant were selected in the F8 population from an intermediate-heading F7 plant, for developing L and E of the isogenic-line pair, respectively. Experiments for L and E were conducted by randomized block design with three replications. Transplanting was conducted on May 3 at a planting distance of 30 cm × 15 cm with two seedlings per hill to an experimental field of the Faculty of Agriculture, Kochi University. Chemical fertilizers containing N, P2O5 and K2O were applied at the nitrogen levels of 4 g/m2, 9 g/m2 and 18 g/m2 in total being denoted by "N4", "N9" and "N18", respectively. Yield, yield components and other traits were measured. Ex delayed 80%-heading by 17 or 18 days in L as compared with E. In total brown rice yield (g/m2), L was 635, 606 and 590, and E was 577, 548 and 501, respectively, at N18, N9 and N4, indicating that Ex increased this trait by 10% to 18%. Ex increased yield-1.5 mm sieve (g/m2) b 9% to 15% at the three fertilizer levels. Ex increased the spikelet number per panicle by 16% to 22%. As a result, the spikelet number per m2 was increased by 11% to 18% at the three fertilizer levels. Ex decreased 1000-grain weight (g) by 2 to 4%. L was not significantly different from E in ripened-grain percentage, fertilized-spikelet percentage and percentage of ripened grains to fertilized spikelets. Hence, it is inferred that Ex increased yield by increasing spikelet number per panicle. Hence, Ex could be utilized to develop high yielding varieties for warmer districts.

Keywords: heading time, lateness gene, photosensitivity, yield, yield components

Procedia PDF Downloads 200
2596 Irradiated-Chitosan and Methyl Jasmonate Modulate the Growth, Physiology and Alkaloids Production in Catharanthus roseus (l.) G. Don.

Authors: Moin Uddin, M. Masroor A. Khan, Faisal Rasheed, Tariq Ahmad Dar, Akbar Ali, Lalit Varshney

Abstract:

Oligomers, obtained by exposing the natural polysaccharides (alginate, carrageenan, chitosan, etc.) to cobalt-60 generated gamma radiation may prove as potent plant growth promoters when applied as foliar sprays to the plants. They function as endogenous growth elicitors, triggering the synthesis of different enzymes and modulating various plant responses by exploiting the gene expression. Exogenous application of Jasmonic acid or of its methyl ester, methyl jasmonate (MeJ) has been reported to increase the secondary metabolites production in medicinal and aromatic plants. Keeping this in mind, three pot experiments were conducted to test whether the foliar application of irradiated-chitosan (IC) and MeJ, applied alone or in combination, could augment the active constituents as well as growth, physiological and yield attributes of Catharanthus roseus, which carries anticancer alkaloids, viz. vincristine and vinblastine, in its leaves in addition to various other useful alkaloids. Totally, 5 spray treatments, comprising various aqueous solutions of IC [20, 40, 80 and 160 mg L-1 (Experiment 1)], MeJ (10, 20, 30 and 40 mg L-1 (Experiment 2)] and those of IC+MeJ [40+20, 40+30, 80+20, 80+30, 160+20 and 160+30 mg L-1 (Experiment 3)], were applied at seven days interval. Total leaf-alkaloids content as well as growth, physiological and yield parameters, evaluated at 120 days after sowing, were significantly enhanced by IC application. IC application could not increase the leaf-content of vincristine and vinblastine; nonetheless, it significantly augmented the yield of these alkaloids owing to enhancing the dry mass of leaves per plant. MeJ application, particularly at 30 mg L-1, increased both content (17%) and yield (48%) of total leaf-alkaloids as well as the content and yield of vincristine ( 29 and 63%, respectively) and vinblastine (14 and 44%, respectively) alkaloids, though it significantly decreased most other parameters studied, particularly at higher concentrations (30 and 40 mg L-1 of MeJ). As compared to the control (water-spray treatment), collective application of IC (80 mg L-1) and MeJ (20 mg L-1) resulted in the highest values of most of the parameters studied. However, 80 mg L-1 of IC applied with 30 mg L-1 of MeJ gave the best results for the content and yield of total as well as anticancer leaf-alkaloids (vincristine and vinblastine). Comparing the control, it increased the content and yield of total leaf-alkaloids (37 and 118%, respectively) and those of vincristine (65 and 163%, respectively) and vinblastine (31 and 107%, respectively). Conclusively, the applied technique significantly enhanced the production of total as well as anticancer alkaloids of Catharanthus roseus.

Keywords: anticancer alkaloids (vincristine and vinblastine), catharanthus roseus, irradiated chitosan, methyl jasmonate

Procedia PDF Downloads 392
2595 Metagenomics Analysis on Microbial Communities of Sewage Sludge from Nyeri-Kangemi Wastewater Treatment Plant, Nyeri County-Kenya

Authors: Allan Kiptanui Kimisto, Geoffrey Odhiambo Ongondo, Anastasia Wairimu Muia, Cyrus Ndungu Kimani

Abstract:

The major challenge to proper sewage sludge treatment processes is the poor understanding of sludge microbiome diversities. This study applied the whole-genome. shotgun metagenomics technique to profile the microbial composition of sewage sludge in two active digestion lagoons at the Nyeri-Kangemi Wastewater Treatment Plant in Nyeri County, Kenya. Total microbial community DNA was extracted from samples using the available ZymoBIOMICS™ DNA Miniprep Kit and sequenced using Shotgun metagenomics. Samples were analyzed using MG-RAST software (Project ID: mgp100988), which allowed for comparing taxonomic diversity before β-diversities studies for Bacteria, Archaea and Eukaryotes. The study identified 57 phyla, 145 classes, 301 orders, 506 families, 963 genera, and 1980 species. Bacteria dominated the microbes and comprised 28 species, 51 classes, 110 orders, 243 families, 597 genera, and 1518 species. The Bacteroides(6.77%) were dominant, followed by Acinetobacter(1.44%) belonging to the Gammaproteobacteria and Acidororax (1.36%), Bacillus (1.24%) and Clostridium (1.02%) belonging to Betaproteobacteria. Archaea recorded 5 phyla, 13 classes, 19 orders, 29 families, 60 genera,and87 species, with the dominant genera being Methanospirillum (16.01%), methanosarcina (15.70%), and Methanoregula(14.80%) and Methanosaeta (8.74%), Methanosphaerula(5.48%) and Methanobrevibacter(5.03%) being the subdominant group. The eukaryotes were the least in abundance and comprised 24 phyla, 81 classes, 301 orders, 506 families, 963 genera, and 980 species. Arabidopsis (4.91%) and Caenorhabditis (4.81%) dominated the eukaryotes, while Dityostelium (3.63%) and Drosophila(2.08%) were the subdominant genera. All these microbes play distinct roles in the anaerobic treatment process of sewage sludge. The local sludge microbial composition and abundance variations may be due to age difference differences between the two digestion lagoons in operation at the plant and the different degradation rales played by the taxa. The information presented in this study can help in the genetic manipulation or formulation of optimal microbial ratios to improve their effectiveness in sewage sludge treatment. This study recommends further research on how the different taxa respond to environmental changes over time and space.

Keywords: shotgun metagenomics, sludge, bacteria, archaea, eukaryotes

Procedia PDF Downloads 100
2594 Microbiological Analysis, Cytotoxic and Genotoxic Effects from Material Captured in PM2.5 and PM10 Filters Used in the Aburrá Valley Air Quality Monitoring Network (Colombia)

Authors: Carmen E. Zapata, Juan Bautista, Olga Montoya, Claudia Moreno, Marisol Suarez, Alejandra Betancur, Duvan Nanclares, Natalia A. Cano

Abstract:

This study aims to evaluate the diversity of microorganisms in filters PM2.5 and PM10; and determine the genotoxic and cytotoxic activity of the complex mixture present in PM2.5 filters used in the Aburrá Valley Air Quality Monitoring Network (Colombia). The research results indicate that particulate matter PM2.5 of different monitoring stations are bacteria; however, this study of detection of bacteria and their phylogenetic relationship is not complete evidence to connect the microorganisms with pathogenic or degrading activities of compounds present in the air. Additionally, it was demonstrated the damage induced by the particulate material in the cell membrane, lysosomal and endosomal membrane and in the mitochondrial metabolism; this damage was independent of the PM2.5 concentrations in almost all the cases.

Keywords: cytotoxic, genotoxic, microbiological analysis, PM10, PM2.5

Procedia PDF Downloads 348
2593 Bioinformatics Analysis of DGAT1 Gene in Domestic Ruminnants

Authors: Sirous Eydivandi

Abstract:

Diacylglycerol-O-acyltransferase (DGAT1) gene encodes diacylglycerol transferase enzyme that plays an important role in glycerol lipid metabolism. DGAT1 is considered to be the key enzyme in controlling the synthesis of triglycerides in adipocytes. This enzyme catalyzes the final step of triglyceride synthesis (transform triacylglycerol (DAG) into triacylglycerol (TAG). A total of 20 DGAT1 gene sequences and corresponding amino acids belonging to 4 species include cattle, goats, sheep and yaks were analyzed, and the differentiation within and among the species was also studied. The length of the DGAT1 gene varies greatly, from 1527 to 1785 bp, due to deletion, insertion, and stop codon mutation resulting in elongation. Observed genetic diversity was higher among species than within species, and Goat had more polymorphisms than any other species. Novel amino acid variation sites were detected within several species which might be used to illustrate the functional variation. Differentiation of the DGAT1 gene was obvious among species, and the clustering result was consistent with the taxonomy in the National Center for Biotechnology Information.

Keywords: DGAT1gene, bioinformatic, ruminnants, biotechnology information

Procedia PDF Downloads 491