Effects of Lateness Gene on Yield and Related Traits in Indica Rice

Authors : B. B. Rana, M. Yokota, Y. Shimizu, Y. Koide, I. Takamure, T. Kawano, M. Murai

Abstract : Various genes which control or affect heading time have been found in rice. Out of them, Se1 and E1 loci play important roles in determining heading time by controlling photosensitivity. An isogenic-line pair of late and early lines were developed from progenies of the F₁from Suweon 258 × 36U. A lateness gene tentatively designated as "Ex” was found to control the difference in heading time between the early and late lines mentioned above. The present study was conducted to examine the effect of Ex on yield and related traits. Indica-type variety Suweon 258 was crossed with 36U, which is an Ur1 (Undulate rachis-1) isogenic line of IR36. In the F₂ population, comparatively early-heading, late-heading and intermediateheading plants were segregated. Segregation similar to that by the three types of heading was observed in the F₃ and later generations. A late-heading plant and an early-heading plant were selected in the F₈ population from an intermediate-heading F₇ plant, for developing L and E of the isogenic-line pair, respectively. Experiments for L and E were conducted by randomized block design with three replications. Transplanting was conducted on May 3 at a planting distance of 30 cm & times; 15 cm with two seedlings per hill to an experimental field of the Faculty of Agriculture, Kochi University. Chemical fertilizers containing N, P₂O₅and K₂O were applied at the nitrogen levels of 4 g/m², 9 g/m² and 18 g/m² in total being denoted by "N4", "N9" and "N18", respectively. Yield, yield components and other traits were measured. Ex delayed 80%-heading by 17 or 18 days in L as compared with E. In total brown rice yield (g/m²), L was 635, 606 and 590, and E was 577, 548 and 501, respectively, at N18, N9 and N4, indicating that Ex increased this trait by 10% to 18%. Ex increased yield-1.5 mm sieve (g/m²) b 9% to 15% at the three fertilizer levels. Ex increased the spikelet number per panicle by 16% to 22%. As a result, the spikelet number per m²was increased by 11% to 18% at the three fertilizer levels. Ex decreased 1000-grain weight (g) by 2 to 4%. L was not significantly different from E in ripened-grain percentage, fertilized-spikelet percentage and percentage of ripened grains to fertilized spikelets. Hence, it is inferred that Ex increased yield by increasing spikelet number per panicle. Hence, Ex could be utilized to develop high yielding varieties for warmer districts.

Keywords : heading time, lateness gene, photosensitivity, yield, yield components **Conference Title :** ICAPB 2017 : International Conference on Agronomy and Plant Breeding **Conference Location :** Tokyo, Japan **Conference Dates :** November 13-14, 2017