Search results for: marine soil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3697

Search results for: marine soil

2377 Estimation of Shear Wave Velocity from Cone Penetration Test for Structured Busan Clays

Authors: Vinod K. Singh, S. G. Chung

Abstract:

The degree of structuration of Busan clays at the mouth of Nakdong River mouth was highly influenced by the depositional environment, i.e., flow of the river stream, marine regression, and transgression during the sedimentation process. As a result, the geotechnical properties also varies along the depth with change in degree of structuration. Thus, the in-situ tests such as cone penetration test (CPT) could not be used to predict various geotechnical properties properly by using the conventional empirical methods. In this paper, the shear wave velocity (Vs) was measured from the field using the seismic dilatometer. The Vs was also measured in the laboratory from high quality undisturbed and remolded samples using bender element method to evaluate the degree of structuration. The degree of structuration was quantitatively defined by the modulus ratio of undisturbed to remolded soil samples which is found well correlated with the normalized void ratio (e0/eL) where eL is the void ratio at the liquid limit. It is revealed that the empirical method based on laboratory results incorporating e0/eL can predict Vs from the field more accurately. Thereafter, the CPT based empirical method was developed to estimate the shear wave velocity taking the effect of structuration in the consideration. The developed method was found to predict shear wave velocity reasonably for Busan clays.

Keywords: level of structuration, normalized modulus, normalized void ratio, shear wave velocity, site characterization

Procedia PDF Downloads 220
2376 Currently Use Pesticides: Fate, Availability, and Effects in Soils

Authors: Lucie Bielská, Lucia Škulcová, Martina Hvězdová, Jakub Hofman, Zdeněk Šimek

Abstract:

The currently used pesticides represent a broad group of chemicals with various physicochemical and environmental properties which input has reached 2×106 tons/year and is expected to even increases. From that amount, only 1% directly interacts with the target organism while the rest represents a potential risk to the environment and human health. Despite being authorized and approved for field applications, the effects of pesticides in the environment can differ from the model scenarios due to the various pesticide-soil interactions and resulting modified fate and behavior. As such, a direct monitoring of pesticide residues and evaluation of their impact on soil biota, aquatic environment, food contamination, and human health should be performed to prevent environmental and economic damages. The present project focuses on fluvisols as they are intensively used in the agriculture but face to several environmental stressors. Fluvisols develop in the vicinity of rivers by the periodic settling of alluvial sediments and periodic interruptions to pedogenesis by flooding. As a result, fluvisols exhibit very high yields per area unit, are intensively used and loaded by pesticides. Regarding the floods, their regular contacts with surface water arise from serious concerns about the surface water contamination. In order to monitor pesticide residues and assess their environmental and biological impact within this project, 70 fluvisols were sampled over the Czech Republic and analyzed for the total and bioaccessible amounts of 40 various pesticides. For that purpose, methodologies for the pesticide extraction and analysis with liquid chromatography-mass spectrometry technique were developed and optimized. To assess the biological risks, both the earthworm bioaccumulation tests and various types of passive sampling techniques (XAD resin, Chemcatcher, and silicon rubber) were optimized and applied. These data on chemical analysis and bioavailability were combined with the results of soil analysis, including the measurement of basic physicochemical soil properties as well detailed characterization of soil organic matter with the advanced method of diffuse reflectance infrared spectrometry. The results provide unique data on the residual levels of pesticides in the Czech Republic and on the factors responsible for increased pesticide residue levels that should be included in the modeling of pesticide fate and effects.

Keywords: currently used pesticides, fluvisoils, bioavailability, Quechers, liquid-chromatography-mass spectrometry, soil properties, DRIFT analysis, pesticides

Procedia PDF Downloads 445
2375 Estimation of Consolidating Settlement Based on a Time-Dependent Skin Friction Model Considering Column Surface Roughness

Authors: Jiang Zhenbo, Ishikura Ryohei, Yasufuku Noriyuki

Abstract:

Improvement of soft clay deposits by the combination of surface stabilization and floating type cement-treated columns is one of the most popular techniques worldwide. On the basis of one dimensional consolidation model, a time-dependent skin friction model for the column-soil interaction is proposed. The nonlinear relationship between column shaft shear stresses and effective vertical pressure of the surrounding soil can be described in this model. The influence of column-soil surface roughness can be represented using a roughness coefficient R, which plays an important role in the design of column length. Based on the homogenization method, a part of floating type improved ground will be treated as an unimproved portion, which with a length of αH1 is defined as a time-dependent equivalent skin friction length. The compression settlement of this unimproved portion can be predicted only using the soft clay parameters. Apart from calculating the settlement of this composited ground, the load transfer mechanism is discussed utilizing model tests. The proposed model is validated by comparing with calculations and laboratory results of model and ring shear tests, which indicate the suitability and accuracy of the solutions in this paper.

Keywords: floating type improved foundation, time-dependent skin friction, roughness, consolidation

Procedia PDF Downloads 455
2374 Clay Develop Plasticity With Water

Authors: Boualla Nabila

Abstract:

The problems created by the water in Civil Engineering are sometimes neglected or often badly posed when they are not completely ignored, and yet they are fundamental as regards both the conditions of execution of the worksites and the stability. Several damages were caused by the infiltration of water in the soils, in particular in clay regions which can swell under the effect of an increase in their water content as in the case of the Oued Tlelat clay which is made up of yellow-colored marly clays and red-colored El Maleh area. This study was carried out on soil from a site, located near the city of Oran and the city of Ain Tmouchent (northern Algeria) where we encounter many problems of cracking of buildings and bottom uplift of excavations. The study consists first of all in determining the mechanical and physical characteristics of the clay, namely the parameters of sheer, simple compression, and that of the odometer. Then the study focused on a comparison of the influence of water type on the mechanical and physical properties of swelling clay soil.

Keywords: clay, water, liquidity limit, plastic limit

Procedia PDF Downloads 84
2373 An Analysis of Relation Between Soil Radon Anomalies and Geological Environment Change

Authors: Mengdi Zhang, Xufeng Liu, Zhenji Gao, Ying Li, Zhu Rao, Yi Huang

Abstract:

As an open system, the earth is constantly undergoing the transformation and release of matter and energy. Fault zones are relatively discontinuous and fragile geological structures, and the release of material and energy inside the Earth is strongest in relatively weak fault zones. Earthquake events frequently occur in fault zones and are closely related to tectonic activity in these zones. In earthquake precursor observation, monitoring the spatiotemporal changes in the release of related gases near fault zones (such as radon gas, hydrogen, carbon dioxide, helium), and analyzing earthquake precursor anomalies, can be effective means to forecast the occurrence of earthquake events. Radon gas, as an inert radioactive gas generated during the decay of uranium and thorium, is not only a indicator for monitoring tectonic and seismic activity, but also an important topic for ecological and environmental health, playing a crucial role in uranium exploration. At present, research on soil radon gas mainly focuses on the measurement of soil gas concentration and flux in fault zone profiles, while research on the correlation between spatiotemporal concentration changes in the same region and its geological background is relatively little. In this paper, Tangshan area in north China is chosen as research area. An analysis was conducted on the seismic geological background of Tangshan area firstly. Then based on quantitative analysis and comparison of measurement radon concentrations of 2023 and 2010, combined with the study of seismic activity and environmental changes during the time period, the spatiotemporal distribution characteristics and influencing factors were explored, in order to analyze the gas emission characteristics of the Tangshan fault zone and its relationship with fault activity, which aimed to be useful for the future work in earthquake monitor of Tangshan area.

Keywords: radon, Northern China, soil gas, earthquake

Procedia PDF Downloads 54
2372 Influence of Loading Pattern and Shaft Rigidity on Laterally Loaded Helical Piles in Cohesion-Less Soil

Authors: Mohamed Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Aziz, Mona Fawzy Al-Daghma

Abstract:

Helical piles are widely used as axially and laterally loaded deep foundations. Once they are required to resist bearing combined loads (BCLs), as axial compression and lateral thrust, different behaviour is expected, necessitating further investigation. The objective of the present article is to clarify the behaviour of a single helical pile of different shaft rigidity embedded in cohesion-less soil and subjected to simultaneous or successive loading patterns of BCLs. The study was first developed analytically and extended numerically. The numerical analysis was further verified through a laboratory experimental program on a set of helical pile models. The results indicate highly interactive effects of the studied parameters, but it is obviously confirmed that the pile performance increases with both the increase of shaft rigidity and the change of BCLs loading pattern from simultaneous to successive. However, it is noted that the increase of vertical load does not always enhance the lateral capacity but may cause a decrement in lateral capacity, as observed with helical piles of flexible shafts. This study provides insightful information for the design of helical piles in structures loaded by complex sequence of forces, wind turbines, and industrial shafts.

Keywords: helical pile, lateral loads, combined loads, cohesion-less soil, analytical, numerical

Procedia PDF Downloads 20
2371 Displacement Fields in Footing-Sand Interactions under Cyclic Loading

Authors: S. Joseph Antony, Z. K. Jahanger

Abstract:

Soils are subjected to cyclic loading in situ in situations such as during earthquakes and in the compaction of pavements. Investigations on the local scale measurement of the displacements of the grain and failure patterns within the soil bed under the cyclic loading conditions are rather limited. In this paper, using the digital particle image velocimetry (DPIV), local scale displacement fields of a dense sand medium interacting with a rigid footing are measured under the plane-strain condition for two commonly used types of cyclic loading, and the quasi-static loading condition for the purposes of comparison. From the displacement measurements of the grains, the failure envelopes of the sand media are also presented. The results show that, the ultimate cyclic bearing capacity (qultcyc) occurred corresponding to a relatively higher settlement value when compared with that of under the quasi-static loading. For the sand media under the cyclic loading conditions considered here, the displacement fields in the soil media occurred more widely in the horizontal direction and less deeper along the vertical direction when compared with that of under the quasi-static loading. The 'dead zone' in the sand grains beneath the footing is identified for all types of the loading conditions studied here. These grain-scale characteristics have implications on the resulting bulk bearing capacity of the sand media in footing-sand interaction problems.

Keywords: cyclic loading, DPIV, settlement, soil-structure interactions, strip footing

Procedia PDF Downloads 146
2370 Influence of Agroforestry Trees Leafy Biomass and Nitrogen Fertilizer on Crop Growth Rate and Relative Growth Rate of Maize

Authors: A. B. Alarape, O. D. Aba

Abstract:

The use of legume tree pruning as mulch in agroforestry system is a common practice to maintain soil organic matter and improve soil fertility in the tropics. The study was conducted to determine the influence of agroforestry trees leafy biomass and nitrogen fertilizer on crop growth rate and relative growth rate of maize. The experiments were laid out as 3 x 4 x 2 factorial in a split-split plot design with three replicates. Control, biomass species (Parkia biglobosa and Albizia lebbeck) as main plots were considered, rates of nitrogen considered include (0, 40, 80, 120 kg N ha⁻¹) as sub-plots, and maize varieties (DMR-ESR-7 and 2009 EVAT) were used as sub-sub plots. Data were analyzed using descriptive and inferential statistics (ANOVA) at α = 0.05. Incorporation of leafy biomass was significant in 2015 on Relative Growth Rate (RGR), while nitrogen application was significant on Crop Growth Rate (CGR). 2009 EVAT had higher CGR in 2015 at 4-6 and 6-8 WAP. Incorporation of Albizia leaves enhanced the growth of maize than Parkia leaves. Farmers are, therefore, encouraged to use Albizia leaves as mulch to enrich their soil for maize production and most especially, in case of availability of inorganic fertilizers. Though, production of maize with biomass and application of 120 kg N ha⁻¹ will bring better growth of maize.

Keywords: agroforestry trees, fertilizer, growth, incorporation, leafy biomass

Procedia PDF Downloads 167
2369 Effects of Benzo(k)Fluoranthene, a Polycyclic Aromatic Hydrocarbon, on DNA Damage and Oxidative Stress in Marine Gastropod Morula Granulata

Authors: Jacky Bhagat, Baban S Ingole

Abstract:

In this study, in vivo experiments were carried out to investigate the effects of a toxic polycyclic aromatic hydrocarbon (PAH), benzo(k)fluoranthene (B[k]F), on marine gastropod, Morula granulata collected from Goa, west coast of India. Snails were exposed to different concentrations of B(k)F (1, 10, 25 and 50 µg/L) for 96 h. The genotoxic effects were evaluated by measuring DNA strand breaks using alkaline comet assay and oxidative stress were measured with the help of battery of biomarkers such as superoxide dismutase (SOD) catalase (CAT), glutathione-s-transferase (GST), and lipid peroxidation (LPO). Concentration-dependent increase in percentage tail DNA (TDNA) was observed in snails exposed to B(k)F. Exposure concentrations above 1 µg/L of B(k)F, showed significant increase in SOD activity and LPO value in snails. After 96 h, SOD activity were found to be doubled for 50 µg/L of B(k)F with reference to control. Significant increase in CAT and GST activity was observed at all exposure conditions at the end of the exposure time. Our study showed that B(k)F induces oxidative stress in snails which further lead to genotoxic damage.

Keywords: benzo(k)fluoranthene, comet assay, gastropod, oxidative stress

Procedia PDF Downloads 321
2368 The Influence of Phosphate Fertilizers on Radiological Situation of Cultivated Lands: ²¹⁰Po, ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs Concentrations in Soil

Authors: Grzegorz Szaciłowski, Marta Konop, Małgorzata Dymecka, Jakub Ośko

Abstract:

In 1996, the European Council Directive 96/29/EURATOM pointed phosphate fertilizers to have a potentially negative influence on the environment from the radiation protection point of view. Fertilizers along with irrigation and crop rotation were the milestones that allowed to increase agricultural productivity. Firstly based on natural materials such as compost, manure, fish processing waste, etc., and since the 19th century created synthetically, fertilizers caused a boom in crop yield and helped to propel global food production, especially after World War II. In this work the concentrations of ²¹⁰Po, ²²⁶Ra, ²³²Th, ⁴⁰K, and ¹³⁷Cs in selected fertilizers and soil samples were determined. The results were used to calculate the annual addition of natural radionuclides and increment of the external radiation exposure caused by the use of studied fertilizers. Soils intended for different types of crops were sampled in early spring when no vegetation had occurred yet. Analysed fertilizers were those with which the soil was previously fertilized. For gamma radionuclides, a high purity germanium detector GX3520 from Canberra was used. The polonium concentration was determined by radiochemical separation followed by measurement by means of alpha spectrometry. The spectrometer used in this study was equipped with 450 cm² PIPS detector from Canberra. Obtained results showed significant differences in radionuclide composition between phosphate and nitrogenous fertilizers (e.g. the radium equivalent activity for phosphate fertilizer was 207.7 Bq/kg in comparison to <5.6 Bq/kg for nitrogenous fertilizer). The calculated increase of external radiation exposure due to use of phosphate fertilizer ranged between 3.4 and 5.4 nG/h, which represents up to 10% of the polish average outdoor exposure due to terrestrial gamma radiation (45 nGy/h).

Keywords: ²¹⁰Po, alpha spectrometry, exposure, gamma spectrometry, phosphate fertilizer, soil

Procedia PDF Downloads 283
2367 Heat Accumulation in Soils of Belarus

Authors: Maryna Barushka, Aleh Meshyk

Abstract:

The research analyzes absolute maximum soil temperatures registered at 36 gauge stations in Belarus from 1950 to 2013. The main method applied in the research is cartographic, in particular, trend surface analysis. Warming that had never been so long and intensive before started in 1988. The average temperature in January and February of that year exceeded the norm by 7-7.5 С, in March and April by 3-5С. In general, that year, as well as the year of 2008, happened to be the hottest ones in the whole period of instrumental observation. Yearly average air temperature in Belarus in those years was +8.0-8.2 С, which exceeded the norm by 2.0 – 2.2 С. The warming has been observed so far. The only exception was in 1996 when the yearly average air temperature in Belarus was below normal by 0.5 С. In Belarus the value of trend line of standard temperature deviation in the warmest months (July-August) has been positive for the past 25 years. In 2010 absolute maximum air and soil temperature exceeded the norm at 15 gauge stations in Belarus. The structure of natural processes includes global, regional, and local constituents. Trend surface analysis of the investigated characteristics makes it possible to determine global, regional, and local components. Linear trend surface shows the occurrence of weather deviations on a global scale, outside Belarus. Maximum soil temperature appears to be growing in the south-west direction with the gradient of 5.0 С. It is explained by the latitude factor. Polynomial trend surfaces show regional peculiarities of Belarus. Extreme temperature regime is formed due to some factors. The prevailing one is advection of turbulent flow of the ground layer of the atmosphere. In summer influence of the Azores High producing anticyclones is great. The Gulf Stream current forms the values of temperature trends in a year period. The most intensive flow of the Gulf Stream in the second half of winter and the second half of summer coincides with the periods of maximum temperature trends in Belarus. It is possible to estimate a local component of weather deviations in the analysis of the difference in values of the investigated characteristics and their trend surfaces. Maximum positive deviation (up to +4 С) of averaged soil temperature corresponds to the flat terrain in Pripyat Polesie, Brest Polesie, and Belarusian Poozerie Area. Negative differences correspond to the higher relief which partially compensates extreme heat regime of soils. Another important factor for maximum soil temperature in these areas is peat-bog soils with the least albedo of 8-15%. As yearly maximum soil temperature reaches 40-60 С, this could be both negative and positive factors for Belarus’s environment and economy. High temperature causes droughts resulting in crops dying and soil blowing. On the other hand, vegetation period has lengthened thanks to bigger heat resources, which allows planting such heat-loving crops as melons and grapes with appropriate irrigation. Thus, trend surface analysis allows determining global, regional, and local factors in accumulating heat in the soils of Belarus.

Keywords: soil, temperature, trend surface analysis, warming

Procedia PDF Downloads 114
2366 Numerical Study of Fatigue Crack Growth at a Web Stiffener of Ship Structural Details

Authors: Wentao He, Jingxi Liu, De Xie

Abstract:

It is necessary to manage the fatigue crack growth (FCG) once those cracks are detected during in-service inspections. In this paper, a simulation program (FCG-System) is developed utilizing the commercial software ABAQUS with its object-oriented programming interface to simulate the fatigue crack path and to compute the corresponding fatigue life. In order to apply FCG-System in large-scale marine structures, the substructure modeling technique is integrated in the system under the consideration of structural details and load shedding during crack growth. Based on the nodal forces and nodal displacements obtained from finite element analysis, a formula for shell elements to compute stress intensity factors is proposed in the view of virtual crack closure technique. The cracks initiating from the intersection of flange and the end of the web-stiffener are investigated for fatigue crack paths and growth lives under water pressure loading and axial force loading, separately. It is found that the FCG-System developed by authors could be an efficient tool to perform fatigue crack growth analysis on marine structures.

Keywords: crack path, fatigue crack, fatigue live, FCG-system, virtual crack closure technique

Procedia PDF Downloads 554
2365 Effect of Tillage Techniques on the Performance of Kharif Rice Varieties

Authors: Mahua Banerjee, Debtanu Maiti

Abstract:

Zero-tillage cultivation is a farming practice that reduces costs while maintaining harvests and protecting the environment. Innovative partnerships among researchers, farmers, and other actors in the agricultural value chain have enabled the adoption of zero-tillage to sow rice in the Indo-Gangetic Plains, increasing farmers' incomes, fostering more sustainable use of soil and water, and providing a platform for cropping diversification and the introduction of other resource-conserving practices. A field experiment was conducted in the farmer’s field of Ausgram I Block, Burdwan, West Bengal, India under sandy loam soil with soil pH of 5.2, which is low in Nitrogen, medium in Phosphorus and Potassium. There were three techniques of tillage-T1: Zero tillage in Rice, T2: conventional tillage in Rice, T3: Rice grown with Drum seeder and three varieties namely V1: MTU 7029 V2-MTU 1010, V3: Pratikha thus making nine treatment combinations which were replicated thrice and the experiment was laid out in Factorial Randomised Block Design. Among the three varieties, rice variety MTU 7029 gave higher yield in all the tillage techniques. The highest yield was obtained under Zero tillage followed by conventional tillage. From economic analysis it was revealed that the benefit:cost ratio was higher in Zero tillage and rice cultivation by drum seeder. Zero-till is increasingly being adopted because it gives more yield at less cost, saves labour and farmer time. Farmers will be interested in this technology once they overcome their tillage biases.

Keywords: economics, Indo-Gangetic plain, rice, zero tillage, yield

Procedia PDF Downloads 361
2364 Variability of the Arbuscular Mycorrhizal Fungi Communities Associated with Wild Agraz Plants (Vaccinium meridionale Swartz) in the Colombian Andes

Authors: Gabriel Roveda-Hoyos, Margarita Ramirez-Gomez, Adrian Perez, Diana Paola Serralde

Abstract:

The objective of this study was to determine the variability of arbuscular mycorrhizal fungi (HFMA) communities associated with wild agraz plants (Vaccinium meridionale Swartz) in the Colombian Andes. This species is one of the most promising fruits within the genus Vaccinium because of the high content of anthocyanins and antioxidants in its fruits, and like other species of the Ericaceae family, it depends on the association with HFM for its development in the natural environment. In this study, the presence of mycorrhizae in wild communities of V. meridionale was evaluated, and their relationship with the edaphic and climatic conditions of the study area was analyzed. Sampling was conducted in the rural area of the municipalities of Raquira, and Chiquinquira, Chia, and Tabio in the departments of Cundinamarca and Boyaca, Colombia. Seven sites were selected, and in each site, 5 plants were randomly selected, root and soil samples were taken from each plant in the rhizosphere zone for the quantification of colonization and the presence of spores. The samples were collected on different soils, taxonomic orders Entisols, Inceptisols, and Alfisols, located at altitudes between 2,600 and 3,000 above sea level in the Eastern Cordillera of Colombia. The physicochemical characteristics of the soil were compared with the density of spores and the percentage of presence of mycorrhizae in the roots and variables with the morphometric and physiological characteristics of the plants. Four types of mutual associations were found: arbuscular mycorrhizae, ectendomycorrhiza, ericoid mycorrhizae, and endophytic septate fungi. The main results obtained show a predominance of spores of the genera Glomus and Acaulsopora, in most of the soils analyzed. The spore density of Glomeromycete fungi in the soil varied considerably between the different sites; it was higher ( > 50 spores/g of dry soil) in soil samples with lower bulk density and higher content of organic matter; in these soils a higher cation exchange capacity was found, as well as of nitrogen, calcium, magnesium, manganese and zinc concentration. It can be concluded that Vaccinium meridionale is able to establish in a natural way, association with HFMA.

Keywords: Ericaceae, Arbuscular mycorrhizae, Andes, soils, Glomus sp.

Procedia PDF Downloads 161
2363 Application of Micro-Tunneling Technique to Rectify Tilted Structures Constructed on Cohesive Soil

Authors: Yasser R. Tawfic, Mohamed A. Eid

Abstract:

Foundation differential settlement and supported structure tilting is an occasionally occurred engineering problem. This may be caused by overloading, changes in ground soil properties or unsupported nearby excavations. Engineering thinking points directly toward the logic solution for such problem by uplifting the settled side. This can be achieved with deep foundation elements such as micro-piles and macro-piles™, jacked piers and helical piers, jet grouted soil-crete columns, compaction grout columns, cement grouting or with chemical grouting, or traditional pit underpinning with concrete and mortar. Although, some of these techniques offer economic, fast and low noise solutions, many of them are quite the contrary. For tilted structures, with limited inclination, it may be much easier to cause a balancing settlement on the less-settlement side which shall be done carefully in a proper rate. This principal has been applied in Leaning Tower of Pisa stabilization with soil extraction from the ground surface. In this research, the authors attempt to introduce a new solution with a different point of view. So, micro-tunneling technique is presented in here as an intended ground deformation cause. In general, micro-tunneling is expected to induce limited ground deformations. Thus, the researchers propose to apply the technique to form small size ground unsupported holes to produce the target deformations. This shall be done in four phases: •Application of one or more micro-tunnels, regarding the existing differential settlement value, under the raised side of the tilted structure. •For each individual tunnel, the lining shall be pulled out from both sides (from jacking and receiving shafts) in slow rate. •If required, according to calculations and site records, an additional surface load can be applied on the raised foundation side. •Finally, a strengthening soil grouting shall be applied for stabilization after adjustment. A finite element based numerical model is presented to simulate the proposed construction phases for different tunneling positions and tunnels group. For each case, the surface settlements are calculated and induced plasticity points are checked. These results show the impact of the suggested procedure on the tilted structure and its feasibility. Comparing results also show the importance of the position selection and tunnels group gradual effect. Thus, a new engineering solution is presented to one of the structural and geotechnical engineering challenges.

Keywords: differential settlement, micro-tunneling, soil-structure interaction, tilted structures

Procedia PDF Downloads 189
2362 Determination of Dynamic Soil Properties Using Multichannel Analysis of Surface Wave (MASW) Techniques in Earth-Filled Dam

Authors: Noppadon Sintuboon, Benjamas Sawatdipong, Anchalee Kongsuk

Abstract:

This study was conducted to investigate the engineering parameters: compressional wave: Vp, shear wave: Vs, and density: ρ related to the dynamically geotechnical properties of soils compaction in the core of earth-filled dam located in northern part of Thailand by using multichannel analysis of surface wave (MASW) techniques. The Vp, Vs, and ρ from MASW were 1,624 - 1,649 m/s, 301-323 m/s, and 1,829 kg/m3, respectively. Those parameters were calculated to Poison’s ratio: ν (0.48), shear modulus: G (1.66 x 108 - 1.92 x 108 kg/m2), Vp/Vs ratio (5.10 – 5.39) and Standard Penetration Test (SPT) showing the dynamic characteristics of soil deformation and stress resulting from dynamic loads. The results of this study will be useful in primary evaluating the current condition and foundation of the dam and can be compared to the data from the laboratory in the future.

Keywords: earth-filled dam, MASW, dynamic elastic constant, shear wave

Procedia PDF Downloads 278
2361 Applying EzRAD Method for SNPs Discovery in Population Genetics of Freshwater and Marine Fish in the South of Vietnam

Authors: Quyen Vu Dang Ha, Oanh Truong Thi, Thuoc Tran Linh, Kent Carpenter, Thinh Doan Vu, Binh Dang Thuy

Abstract:

Enzyme restriction site associated DNA (EzRAD) has recently emerged as a promising genomic approach for exploring fish genetic diversity on a genome-wide scale. This is a simplified method for genomic genotyping in non-model organisms and applied for SNPs discovery in the population genetics of freshwater and marine fish in the South of Vietnam. The observations of regional-scale differentiation of commercial freshwater fish (smallscale croakers Boesemania microlepis) and marine fish (emperor Lethrinus lentjan) are clarified. Samples were collected along Hau River and coastal area in the south and center Vietnam. 52 DNA samples from Tra Vinh, An Giang Province for Boesemania microlepis and 34 DNA samples of Lethrinus lentjan from Phu Quoc, Nha Trang, Da Nang Province were used to prepare EzRAD libraries from genomic DNA digested with MboI and Sau3AI. A pooled sample of regional EzRAD libraries was sequenced using the HiSeq 2500 Illumina platform. For Boesemania microlepis, the small scale population different from upstream to downstream of Hau river were detected, An Giang population exhibited less genetic diversity (SNPs per individual from 14 to 926), in comparison to Tra Vinh population (from 11 to 2172). For Lethrinus lentjan, the result showed the minor difference between populations in the Northern and the Southern Mekong River. The numbers of contigs and SNPs vary from 1315 to 2455 and from 7122 to 8594, respectively (P ≤ 0.01). The current preliminary study reveals regional scale population disconnection probably reflecting environmental changing. Additional sampling and EzRad libraries need to be implemented for resource management in the Mekong Delta.

Keywords: Boesemania microlepis, EzRAD, Lethrinus lentjan, SNPs

Procedia PDF Downloads 488
2360 Impact of Drainage Defect on the Railway Track Surface Deflections; A Numerical Investigation

Authors: Shadi Fathi, Moura Mehravar, Mujib Rahman

Abstract:

The railwaytransportation network in the UK is over 100 years old and is known as one of the oldest mass transit systems in the world. This aged track network requires frequent closure for maintenance. One of the main reasons for closure is inadequate drainage due to the leakage in the buried drainage pipes. The leaking water can cause localised subgrade weakness, which subsequently can lead to major ground/substructure failure.Different condition assessment methods are available to assess the railway substructure. However, the existing condition assessment methods are not able to detect any local ground weakness/damageand provide details of the damage (e.g. size and location). To tackle this issue, a hybrid back-analysis technique based on artificial neural network (ANN) and genetic algorithm (GA) has been developed to predict the substructurelayers’ moduli and identify any soil weaknesses. At first, afinite element (FE) model of a railway track section under Falling Weight Deflection (FWD) testing was developed and validated against field trial. Then a drainage pipe and various scenarios of the local defect/ soil weakness around the buried pipe with various geometriesand physical properties were modelled. The impact of the soil local weaknesson the track surface deflection wasalso studied. The FE simulations results were used to generate a database for ANN training, and then a GA wasemployed as an optimisation tool to optimise and back-calculate layers’ moduli and soil weakness moduli (ANN’s input). The hybrid ANN-GA back-analysis technique is a computationally efficient method with no dependency on seed modulus values. The modelcan estimate substructures’ layer moduli and the presence of any localised foundation weakness.

Keywords: finite element (FE) model, drainage defect, falling weight deflectometer (FWD), hybrid ANN-GA

Procedia PDF Downloads 137
2359 Which Mechanisms are Involved by Legume-Rhizobia Symbiosis to Increase Its Phosphorus Use Efficiency under Low Phosphorus Level?

Authors: B. Makoudi, R. Ghanimi, A. Bargaz, M. Mouradi, M. Farissi, A. Kabbaj, J. J. Drevon, C. Ghoulam

Abstract:

Legume species are able to establish a nitrogen fixing symbiosis with soil rhizobia that allows them, when it operates normally, to ensure their necessary nitrogen nutrition. This biological process needs high phosphorus (P) supply and consequently it is limited under low phosphorus availability. To overcome this constraint, legume-rhizobia symbiosis develops many mechanisms to increase P availability in the rhizosphere and also the efficiency of P fertilizers. The objectives of our research works are to understand the physiological and biochemical mechanisms implemented by legume-rhizobia symbiosis to increase its P use efficiency (PUE) in order to select legume genotypes-rhizobia strains combination more performing for BNF under P deficiency. Our studies were carried out on two grain legume species, common bean (Phaseolus vulgaris) and faba bean (Vicia faba) tested in farmers’ fields and in experimental station fewer than two soil phosphorus levels. Under field conditions, the P deficiency caused a significant decrease of Plant and nodule biomasses in all of the tested varieties with a difference between them. This P limitation increased the contents of available P in the rhizospheric soils that was positively correlated with the increase of phosphatases activities in the nodules and the rhizospheric soil. Some legume genotypes showed a significant increase of their P use efficiency under P deficiency. The P solubilization test showed that some rhizobia strains isolated from Haouz region presented an important capacity to grow on solid and liquid media with tricalcium phosphate as the only P source and their P solubilizing activity was confirmed by the assay of the released P in the liquid medium. Also, this P solubilizing activity was correlated with medium acidification and the excretion of acid phosphatases and phytases in the medium. Thus, we concluded that medium acidification and excretion of phosphatases in the rhizosphere are the prominent reactions for legume-rhizobia symbiosis to improve its P nutrition.

Keywords: legume, phosphorus deficiency, rhizobia, rhizospheric soil

Procedia PDF Downloads 295
2358 Defining the Tipping Point of Tolerance to CO₂-Induced Ocean Acidification in Larval Dusky Kob Argyrosomus japonicus (Pisces: Sciaenidae)

Authors: Pule P. Mpopetsi, Warren M. Potts, Nicola James, Amber Childs

Abstract:

Increased CO₂ production and the consequent ocean acidification (OA) have been identified as one of the greatest threats to both calcifying and non-calcifying marine organisms. Traditionally, marine fishes, as non-calcifying organisms, were considered to have a higher tolerance to near-future OA conditions owing to their well-developed ion regulatory mechanisms. However, recent studies provide evidence to suggest that they may not be as resilient to near-future OA conditions as previously thought. In addition, earlier life stages of marine fishes are thought to be less tolerant than juveniles and adults of the same species as they lack well-developed ion regulatory mechanisms for maintaining homeostasis. This study focused on the effects of near-future OA on larval Argyrosomus japonicus, an estuarine-dependent marine fish species, in order to identify the tipping point of tolerance for the larvae of this species. Larval A. japonicus in the present study were reared from the egg up to 22 days after hatching (DAH) under three treatments. The three treatments, (pCO₂ 353 µatm; pH 8.03), (pCO₂ 451 µatm; pH 7.93) and (pCO₂ 602 µatm; pH 7.83) corresponded to levels predicted to occur in year 2050, 2068 and 2090 respectively under the Intergovernmental Panel on Climate Change (IPCC) Representative Concentration Pathways (IPCC RCP) 8.5 model. Size-at-hatch, growth, development, and metabolic responses (standard and active metabolic rates and metabolic scope) were assessed and compared between the three treatments throughout the rearing period. Five earlier larval life stages (hatchling – flexion/post-flexion) were identified by the end of the experiment. There were no significant differences in size-at-hatch (p > 0.05), development or the active metabolic (p > 0.05) or metabolic scope (p > 0.05) of fish in the three treatments throughout the study. However, the standard metabolic rate was significantly higher in the year 2068 treatment but only at the flexion/post-flexion stage which could be attributed to differences in developmental rates (including the development of the gills) between the 2068 and the other two treatments. Overall, the metabolic scope was narrowest in the 2090 treatment but varied according to life stage. Although not significantly different, metabolic scope in the 2090 treatment was noticeably lower at the flexion stage compared to the other two treatments, and the development appeared slower, suggesting that this could be the stage most prone to OA. The study concluded that, in isolation, OA levels predicted to occur between 2050 and 2090 will not negatively affect size-at-hatch, growth, development, and metabolic responses of larval A. japonicus up to 22 DAH (flexion/post-flexion stage). The present study also identified the tipping point of tolerance (where negative impacts will begin) in larvae of the species to be between the years 2090 and 2100.

Keywords: climate change, ecology, marine, ocean acidification

Procedia PDF Downloads 118
2357 Investigation of the Cyclic Response of Mudrock

Authors: Shaymaa Kennedy, Sam Clark, Paul Shaply

Abstract:

With the upcoming construction of high-speed rail HS2 in the UK, a number of issues surrounding the construction technology and track design need to be answered. In this paper performance of subsoil subjected to dynamic loads were studied. The material of study is Mudrock backfill, a weak prevalent rock which response under indicative loading of high-speed rail line is unknown. This paper aims to investigate the use of different track types and the influence they will have on the underlying soil, in order to evaluate the behaviour of it. Ballstless track is a well-established concept in Europe, and the investigation the benefit of the form of construction due to its known savings in maintenance costs. Physical test using a triaxial cyclic loading machine was conducted to assess the expected mechanical behaviour of mudrock under a range of dynamic loads which could be generated beneath different track constructions. Some further parameters are required to frame the problem including determining the stress change with depth and cyclic response are vital to determine the residual plastic strain which is a major concern. In addition, Stress level is discussed in this paper, which are applied to recreate conditions of soil in the laboratory. Results indicate that stress levels are highly influential on the performance of soil at shallower depth and become insignificant with increasing depth.

Keywords: stress level, dynamic load, residual plastic strain, high speed railway

Procedia PDF Downloads 236
2356 Comparison of the Seismic Response of Planar Regular and Irregular Steel Frames

Authors: Robespierre Chavez, Eden Bojorquez, Alfredo Reyes-Salazar

Abstract:

This study compares the seismic response of regular and vertically irregular steel frames determined by nonlinear time history analysis and by using several sets of earthquake records, which are divided in two categories: The first category having 20 stiff-soil ground motion records obtained from the NGA database, and the second category having 30 soft-soil ground motions recorded in the Lake Zone of Mexico City and exhibiting a dominant period (Ts) of two seconds. The steel frames in both format regular and irregular were designed according to the Mexico City Seismic Design Provisions (MCSDP). The effects of irregularity throught the height on the maximum interstory drifts are estimated.

Keywords: irregular steel frames, maximum interstory drifts, seismic response, seismic records

Procedia PDF Downloads 305
2355 A Microcosm Study on the Response of Phytoplankton and Bacterial Community of the Subarctic Northeast Atlantic Ocean to Oil Pollution under Projected Atmospheric CO₂ Conditions

Authors: Afiq Mohd Fahmi, Tony Gutierrez, Sebastian Hennige

Abstract:

Increasing amounts of CO₂ entering the marine environment, also known as ocean acidification, is documented as having harmful impacts on a variety of marine organisms. When considering the future risk of hydrocarbon pollution, which is generally detrimental to marine life as well, this needs to consider how OA-induced changes to microbial communities will compound this since hydrocarbon degradation is influenced by the community-level microbial response. This study aims to evaluate the effects of increased atmospheric CO₂ conditions and oil enrichment on the phytoplankton-associated bacterial communities. Faroe Shetland Channel (FSC) is a subarctic region in the northeast Atlantic where crude oil extraction has recently been expanded. In the event of a major oil spill in this region, it is vital that we understand the response of the bacterial community and its consequence on primary production within this region—some phytoplankton communities found in the ocean harbor hydrocarbon-degrading bacteria that are associated with its psychosphere. Surface water containing phytoplankton and bacteria from FSC were cultured in ambient and elevated atmospheric CO₂ conditions for 4 days of acclimation in microcosms before introducing 1% (v/v) of crude oil into the microcosms to simulate oil spill conditions at sea. It was found that elevated CO₂ conditions do not significantly affect the chl a concentration, and exposure to crude oil detrimentally affected chl a concentration up to 10 days after exposure to crude oil. The diversity and richness of the bacterial community were not significantly affected by both CO₂ treatment and oil enrichment. The increase in the relative abundance of known hydrocarbon degraders such as Oleispira, Marinobacter and Halomonas indicates potential for biodegradation of crude oil, while the resilience of dominant taxa Colwellia, unclassified Gammaproteobacteria, unclassified Rnodobacteria and unclassified Halomonadaceae could be associated with the recovery of microalgal community 13 days after oil exposure. Therefore, the microbial community from the subsurface of FSC has the potential to recover from crude oil pollution even under elevated CO₂ (750 ppm) conditions.

Keywords: phytoplankton, bacteria, crude oil, ocean acidification

Procedia PDF Downloads 218
2354 Graphene-Based Nanocomposites as Ecofriendly Antifouling Surfaces

Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Zhifeng Hao, Xiang Chen

Abstract:

After the prohibition of tin-based fouling-prevention coatings in 2003, the researchers were directed toward eco-friendly coatings. Because of their nonstick, environmental, and economic benefits, foul-release nanocoatings have received a lot of attention. They use physical anti-adhesion terminology to deter any fouling attachment.Natural bioinspired surfaces have micro/nano-roughness and low surface free energy features, which may inspire the design of dynamic antifouling coatings. Graphene-based nanocomposite surfaces were designed to combat marine-fouling adhesion with ecological as well as eco-friendly effects rather than biocidal solutions. Polymer–graphenenanofiller hybrids are a novel class of composite materials in fouling-prevention applications. The controlled preparation of nanoscale orientation, arrangement, and direction along the composite building blocks would result in superior fouling prohibition. This work representsfoul-release nanocomposite top coats for marine coating applications with superhydrophobicity, surface inertness against fouling adherence, cost-effectiveness, and increased lifetime.

Keywords: foul-release nanocoatings, graphene-based nanocomposite, polymer, nanofillers

Procedia PDF Downloads 116
2353 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan

Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed

Abstract:

Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.

Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot

Procedia PDF Downloads 37
2352 Vegetation Assessment Under the Influence of Environmental Variables; A Case Study from the Yakhtangay Hill of Himalayan Range, Pakistan

Authors: Hameed Ullah, Shujaul Mulk Khan, Zahid Ullah, Zeeshan Ahmad Sadia Jahangir, Abdullah, Amin Ur Rahman, Muhammad Suliman, Dost Muhammad

Abstract:

The interrelationship between vegetation and abiotic variables inside an ecosystem is one of the main jobs of plant scientists. This study was designed to investigate the vegetation structure and species diversity along with the environmental variables in the Yakhtangay hill district Shangla of the Himalayan Mountain series Pakistan by using multivariate statistical analysis. Quadrat’s method was used and a total of 171 Quadrats were laid down 57 for Tree, Shrubs and Herbs, respectively, to analyze the phytosociological attributes of the vegetation. The vegetation of the selected area was classified into different Life and leaf-forms according to Raunkiaer classification, while PCORD software version 5 was used to classify the vegetation into different plants communities by Two-way indicator species Analysis (TWINSPAN). The CANOCCO version 4.5 was used for DCA and CCA analysis to find out variation directories of vegetation with different environmental variables. A total of 114 plants species belonging to 45 different families was investigated inside the area. The Rosaceae (12 species) was the dominant family followed by Poaceae (10 species) and then Asteraceae (7 species). Monocots were more dominant than Dicots and Angiosperms were more dominant than Gymnosperms. Among the life forms the Hemicryptophytes and Nanophanerophytes were dominant, followed by Therophytes, while among the leaf forms Microphylls were dominant, followed by Leptophylls. It is concluded that among the edaphic factors such as soil pH, the concentration of soil organic matter, Calcium Carbonates concentration in soil, soil EC, soil TDS, and physiographic factors such as Altitude and slope are affecting the structure of vegetation, species composition and species diversity at the significant level with p-value ≤0.05. The Vegetation of the selected area was classified into four major plants communities and the indicator species for each community was recorded. Classification of plants into 4 different communities based upon edaphic gradients favors the individualistic hypothesis. Indicator Species Analysis (ISA) shows the indicators of the study area are mostly indicators to the Himalayan or moist temperate ecosystem, furthermore, these indicators could be considered for micro-habitat conservation and respective ecosystem management plans.

Keywords: species richness, edaphic gradients, canonical correspondence analysis (CCA), TWCA

Procedia PDF Downloads 131
2351 Experimental Evaluation of Foundation Settlement Mitigations in Liquefiable Soils using Press-in Sheet Piling Technique: 1-g Shake Table Tests

Authors: Md. Kausar Alam, Ramin Motamed

Abstract:

The damaging effects of liquefaction-induced ground movements have been frequently observed in past earthquakes, such as the 2010-2011 Canterbury Earthquake Sequence (CES) in New Zealand and the 2011 Tohoku earthquake in Japan. To reduce the consequences of soil liquefaction at shallow depths, various ground improvement techniques have been utilized in engineering practice, among which this research is focused on experimentally evaluating the press-in sheet piling technique. The press-in sheet pile technique eliminates the vibration, hammering, and noise pollution associated with dynamic sheet pile installation methods. Unfortunately, there are limited experimental studies on the press-in sheet piling technique for liquefaction mitigation using 1g shake table tests in which all the controlling mechanisms of liquefaction-induced foundation settlement, including sand ejecta, can be realistically reproduced. In this study, a series of moderate scale 1g shake table experiments were conducted at the University of Nevada, Reno, to evaluate the performance of this technique in liquefiable soil layers. First, a 1/5 size model was developed based on a recent UC San Diego shaking table experiment. The scaled model has a density of 50% for the top crust, 40% for the intermediate liquefiable layer, and 85% for the bottom dense layer. Second, a shallow foundation is seated atop an unsaturated sandy soil crust. Third, in a series of tests, a sheet pile with variable embedment depth is inserted into the liquefiable soil using the press-in technique surrounding the shallow foundations. The scaled models are subjected to harmonic input motions with amplitude and dominant frequency properly scaled based on the large-scale shake table test. This study assesses the performance of the press-in sheet piling technique in terms of reductions in the foundation movements (settlement and tilt) and generated excess pore water pressures. In addition, this paper discusses the cost-effectiveness and carbon footprint features of the studied mitigation measures.

Keywords: excess pore water pressure, foundation settlement, press-in sheet pile, soil liquefaction

Procedia PDF Downloads 83
2350 Activated Carbon Content Influence in Mineral Barrier Performance

Authors: Raul Guerrero, Sandro Machado, Miriam Carvalho

Abstract:

Soil and aquifer pollution, caused by hydrocarbon liquid spilling, is induced by misguided operational practices and inefficient safety guidelines. According to the Environmental Brazilian Institute (IBAMA), during 2013 alone, over 472.13 m3 of diesel oil leaked into the environment nationwide for those reported cases only. Regarding the aforementioned information, there’s an indisputable need to adopt appropriate environmental safeguards specially in those areas intended for the production, treatment, transportation and storage of hydrocarbon fluids. According to Brazilian norm, ABNT-NBR 7505-1:2000, compacted soil or mineral barriers used in structural contingency levees, such as storage tanks, are required to present a maximum water permeability coefficient, k, of 1x10-6 cm/s. However, as discussed by several authors, water can not be adopted as the reference fluid to determine the site’s containment performance against organic fluids. Mainly, due to the great discrepancy observed in polarity values (dielectric constant) between water and most organic fluids. Previous studies, within this same research group, proposed an optimal range of values for the soil’s index properties for mineral barrier composition focused on organic fluid containment. Unfortunately, in some circumstances, it is not possible to encounter a type of soil with the required geotechnical characteristics near the containment site, increasing prevention and construction costs, as well as environmental risks. For these specific cases, the use of an organic product or material as an additive to enhance mineral-barrier containment performance may be an attractive geotechnical solution. This paper evaluates the effect of activated carbon (AC) content additions into a clayey soil towards hydrocarbon fluid permeability. Variables such as compaction energy, carbon texture and addition content (0%, 10% and 20%) were analyzed through laboratory falling-head permeability tests using distilled water and commercial diesel as percolating fluids. The obtained results showed that the AC with smaller particle-size reduced k values significantly against diesel, indicating a direct relationship between particle-size reduction (surface area increase) of the organic product and organic fluid containment.

Keywords: activated carbon, clayey soils, permeability, surface area

Procedia PDF Downloads 242
2349 Cover Layer Evaluation in Soil Organic Matter of Mixing and Compressed Unsaturated

Authors: Nayara Torres B. Acioli, José Fernando T. Jucá

Abstract:

The uncontrolled emission of gases in urban residues' embankment located near urban areas is a social and environmental problem, common in Brazilian cities. Several environmental impacts in the local and global scope may be generated by atmospheric air contamination by the biogas resulted from the decomposition of solid urban materials. In Brazil, the cities of small size figure mostly with 90% of all cities, with the population smaller than 50,000 inhabitants, according to the 2011 IBGE' census, most of the landfill covering layer is composed of clayey, pure soil. The embankments undertaken with pure soil may reach up to 60% of retention of methane, for the other 40% it may be dispersed into the atmosphere. In face of this figures the oxidative covering layer is granted some space of study, envisaging to reduce this perceptual available in the atmosphere, releasing, in spite of methane, carbonic gas which is almost 20 times as less polluting than Methane. This paper exposes the results of studies on the characteristics of the soil used for the oxidative coverage layer of the experimental embankment of Solid Urban Residues (SUR), built in Muribeca-PE, Brazil, supported of the Group of Solid Residues (GSR), located at Federal University of Pernambuco, through laboratory vacuum experiments (determining the characteristics curve), granularity, and permeability, that in soil with saturation over 85% offers dramatic drops in the test of permeability to the air, by little increments of water, based in the existing Brazilian norm for this procedure. The suction was studied, as in the other tests, from the division of prospection of an oxidative coverage layer of 60cm, in the upper half (0.1 m to 0.3 m) and lower half (0.4 m to 0.6 m). Therefore, the consequences to be presented from the lixiviation of the fine materials after 5 years of finalization of the embankment, what made its permeability increase. Concerning its humidity, it is most retained in the upper part, that comprises the compound, with a difference in the order of 8 percent the superior half to inferior half, retaining the least suction from the surface. These results reveal the efficiency of the oxidative coverage layer in retaining the rain water, it has a lower cost when compared to the other types of layer, offering larger availability of this layer as an alternative for a solution for the appropriate disposal of residues.

Keywords: oxidative coverage layer, permeability, suction, saturation

Procedia PDF Downloads 275
2348 Changes of Mitochondrial Potential in the Midgut Epithelium of Lithobius forficatus (Myriapoda, Chilopoda) Exposed to Cadmium Concentrated in Soil

Authors: Magdalena Rost-Roszkowska, Izabela Poprawa, Alina Chachulska-Zymelka, Lukasz Chajec, Grazyna Wilczek, Piotr Wilczek, Malgorzata Lesniewska

Abstract:

Lithobius forficatus, commonly known as the brown centipede, is a widespread European species, which lives in the upper layers of soil, under stones, litter, rocks, and leaves. As the soil organism, it is exposed to numerous stressors such as xenobiotics, including heavy metals, temperature, starvation, pathogens, etc. Heavy metals are treated as the environmental pollutants of the soil because of their toxic effects on plants, animals and human being. One of the heavy metals which is xenobiotic and can be taken up by plants or animals from the soil is cadmium. The digestive system of centipedes is composed of three distinct regions: fore-, mid- and hindgut. The salivary glands of centipedes are the organs which belong to the anterior region of the digestive system and take part in the synthesis, accumulation, and secretion of many substances. The middle region having contact with the food masses is treated as one of the barriers which protect the organism against any stressors which originate from the external environment, e.g., toxic metals. As the material for our studies, we chose two organs of the digestive system in brown centipede, the organs which take part in homeostasis maintenance: the salivary glands and the midgut. The main purpose of the project was to investigate the relationship between the percentage of depolarized mitochondria, mitophagy and ATP level in cells of mentioned above organs. The animals were divided into experimental groups: K – the control group, the animals cultured in a laboratory conditions in a horticultural soil and fed with Acheta domesticus larvae; Cd1 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 12 days – short-term exposure; Cd2 – the animals cultured in a horticultural soil supplemented with 80 mg/kg (dry weight) of CdCl2, fed with A. domesticus larvae maintained in tap water, 45 days – long-term exposure. The studies were conducted using transmission electron microscopy (TEM), flow cytometry and confocal microscopy. Quantitative analysis revealed that regardless of the organ, a progressive increase in the percentage of cells with depolarized mitochondria was registered, but only in the salivary glands. These were statistically significant changes from the control. In both organs, there were no differences in the level of the analyzed parameter depending on the duration of exposure of individuals to cadmium. Changes in the ultrastructure of mitochondria have been observed. With the extension of the body's exposure time to metal, an increase in the ADP/ATP index was recorded. However, changes statistically significant to the control were demonstrated in the intestine and salivary glands. The size of this intestinal index and salivary glands in the Cd2 group was about thirty and twenty times higher, respectively than in control. Acknowledgment: The study has been financed by the National Science Centre, Poland, grant no 2017/25/B/NZ4/00420.

Keywords: cadmium, digestive system, ultrastructure, centipede

Procedia PDF Downloads 117