Search results for: diffusive Johnson-Segalman model
15487 The Methodology of System Modeling of Mechatronic Systems
Authors: Lakhoua Najeh
Abstract:
Aims of the work: After a presentation of the functionality of an example of a mechatronic system which is a paint mixer system, we present the concepts of modeling and safe operation. This paper briefly discusses how to model and protect the functioning of a mechatronic system relying mainly on functional analysis and safe operation techniques. Methods: For the study of an example of a mechatronic system, we use methods for external functional analysis that illustrate the relationships between a mechatronic system and its external environment. Thus, we present the Safe-Structured Analysis Design Technique method (Safe-SADT) which allows the representation of a mechatronic system. A model of operating safety and automation is proposed. This model enables us to use a functional analysis technique of the mechatronic system based on the GRAFCET (Graphe Fonctionnel de Commande des Etapes et Transitions: Step Transition Function Chart) method; study of the safe operation of the mechatronic system based on the Safe-SADT method; automation of the mechatronic system based on a software tool. Results: The expected results are to propose a model and safe operation of a mechatronic system. This methodology enables us to analyze the relevance of the different models based on Safe-SADT and GRAFCET in relation to the control and monitoring functions and to study the means allowing exploiting their synergy. Conclusion: In order to propose a general model of a mechatronic system, a model of analysis, safety operation and automation of a mechatronic system has been developed. This is how we propose to validate this methodology through a case study of a paint mixer system.Keywords: mechatronic systems, system modeling, safe operation, Safe-SADT
Procedia PDF Downloads 24315486 Sensitive Analysis of the ZF Model for ABC Multi Criteria Inventory Classification
Authors: Makram Ben Jeddou
Abstract:
The ABC classification is widely used by managers for inventory control. The classical ABC classification is based on the Pareto principle and according to the criterion of the annual use value only. Single criterion classification is often insufficient for a closely inventory control. Multi-criteria inventory classification models have been proposed by researchers in order to take into account other important criteria. From these models, we will consider the ZF model in order to make a sensitive analysis on the composite score calculated for each item. In fact, this score based on a normalized average between a good and a bad optimized index can affect the ABC items classification. We will then focus on the weights assigned to each index and propose a classification compromise.Keywords: ABC classification, multi criteria inventory classification models, ZF-model
Procedia PDF Downloads 50515485 An Economic Order Quantity Model for Deteriorating Items with Ramp Type Demand, Time Dependent Holding Cost and Price Discount Offered on Backorders
Authors: Arjun Paul, Adrijit Goswami
Abstract:
In our present work, an economic order quantity inventory model with shortages is developed where holding cost is expressed as linearly increasing function of time and demand rate is a ramp type function of time. The items considered in the model are deteriorating in nature so that a small fraction of the items is depleted with the passage of time. In order to consider a more realistic situation, the deterioration rate is assumed to follow a continuous uniform distribution with the parameters involved being triangular fuzzy numbers. The inventory manager offers his customer a discount in case he is willing to backorder his demand when there is a stock-out. The optimum ordering policy and the optimum discount offered for each backorder are determined by minimizing the total cost in a replenishment interval. For better illustration of our proposed model in both the crisp and fuzzy sense and for providing richer insights, a numerical example is cited to exemplify the policy and to analyze the sensitivity of the model parameters.Keywords: fuzzy deterioration rate, price discount on backorder, ramp type demand, shortage, time varying holding cost
Procedia PDF Downloads 19615484 Enhancing Model Interoperability and Reuse by Designing and Developing a Unified Metamodel Standard
Authors: Arash Gharibi
Abstract:
Mankind has always used models to solve problems. Essentially, models are simplified versions of reality, whose need stems from having to deal with complexity; many processes or phenomena are too complex to be described completely. Thus a fundamental model requirement is that it contains the characteristic features that are essential in the context of the problem to be solved or described. Models are used in virtually every scientific domain to deal with various problems. During the recent decades, the number of models has increased exponentially. Publication of models as part of original research has traditionally been in in scientific periodicals, series, monographs, agency reports, national journals and laboratory reports. This makes it difficult for interested groups and communities to stay informed about the state-of-the-art. During the modeling process, many important decisions are made which impact the final form of the model. Without a record of these considerations, the final model remains ill-defined and open to varying interpretations. Unfortunately, the details of these considerations are often lost or in case there is any existing information about a model, it is likely to be written intuitively in different layouts and in different degrees of detail. In order to overcome these issues, different domains have attempted to implement their own approaches to preserve their models’ information in forms of model documentation. The most frequently cited model documentation approaches show that they are domain specific, not to applicable to the existing models and evolutionary flexibility and intrinsic corrections and improvements are not possible with the current approaches. These issues are all because of a lack of unified standards for model documentation. As a way forward, this research will propose a new standard for capturing and managing models’ information in a unified way so that interoperability and reusability of models become possible. This standard will also be evolutionary, meaning members of modeling realm could contribute to its ongoing developments and improvements. In this paper, the current 3 of the most common metamodels are reviewed and according to pros and cons of each, a new metamodel is proposed.Keywords: metamodel, modeling, interoperability, reuse
Procedia PDF Downloads 19715483 Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies
Authors: Ahmed H. Amer, A. Amar, Sh. Hamada, I. I. Bondouk, F. A. El-Hussiny
Abstract:
Elastic scattering of α-particles from 9Be and 11B nuclei at different alpha energies have been analyzed. Optical model parameters (OMPs) of α-particles elastic scattering by these nuclei at different energies have been obtained. In the present calculations, the real part of the optical potential are derived by folding of nucleon-nucleon (NN) interaction into nuclear matter density distribution of the projectile and target nuclei using computer code FRESCO. A density-dependent version of the M3Y interaction (CDM3Y6), which is based on the G-matrix elements of the Paris NN potential, has been used. Volumetric integrals of the real and imaginary potential depth (JR, JW) have been calculated and found to be energy dependent. Good agreement between the experimental data and the theoretical predictions in the whole angular range. In double folding (DF) calculations, the obtained normalization coefficient Nr is in the range 0.70–1.32.Keywords: elastic scattering, optical model, double folding model, density distribution
Procedia PDF Downloads 28915482 Comparison of Solar Radiation Models
Authors: O. Behar, A. Khellaf, K. Mohammedi, S. Ait Kaci
Abstract:
Up to now, most validation studies have been based on the MBE and RMSE, and therefore, focused only on long and short terms performance to test and classify solar radiation models. This traditional analysis does not take into account the quality of modeling and linearity. In our analysis we have tested 22 solar radiation models that are capable to provide instantaneous direct and global radiation at any given location Worldwide. We introduce a new indicator, which we named Global Accuracy Indicator (GAI) to examine the linear relationship between the measured and predicted values and the quality of modeling in addition to long and short terms performance. Note that the quality of model has been represented by the T-Statistical test, the model linearity has been given by the correlation coefficient and the long and short term performance have been respectively known by the MBE and RMSE. An important founding of this research is that the use GAI allows avoiding default validation when using traditional methodology that might results in erroneous prediction of solar power conversion systems performances.Keywords: solar radiation model, parametric model, performance analysis, Global Accuracy Indicator (GAI)
Procedia PDF Downloads 34815481 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment
Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova
Abstract:
Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper
Procedia PDF Downloads 4315480 An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing
Authors: Angela Luft, Sebastian Bremen, Nicolae Balc
Abstract:
Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper.Keywords: additive manufacturing, capacity planning, production systems, strategic production planning, flexibility enhancement
Procedia PDF Downloads 15515479 Groundwater Level Modelling by ARMA and PARMA Models (Case Study: Qorveh Aquifer)
Authors: Motalleb Byzedi, Seyedeh Chaman Naderi Korvandan
Abstract:
Regarding annual statistics of groundwater level resources about current piezometers at Qorveh plains, both ARMA & PARMA modeling methods were applied in this study by the using of SAMS software. Upon performing required tests, a model was used with minimum amount of Akaike information criteria and suitable model was selected for piezometers. Then it was possible to make necessary estimations by using these models for future fluctuations in each piezometer. According to the results, ARMA model had more facilities for modeling of aquifer. Also it was cleared that eastern parts of aquifer had more failures than other parts. Therefore it is necessary to prohibit critical parts along with more supervision on taking rates of wells.Keywords: qorveh plain, groundwater level, ARMA, PARMA
Procedia PDF Downloads 28515478 Credit Risk Prediction Based on Bayesian Estimation of Logistic Regression Model with Random Effects
Authors: Sami Mestiri, Abdeljelil Farhat
Abstract:
The aim of this current paper is to predict the credit risk of banks in Tunisia, over the period (2000-2005). For this purpose, two methods for the estimation of the logistic regression model with random effects: Penalized Quasi Likelihood (PQL) method and Gibbs Sampler algorithm are applied. By using the information on a sample of 528 Tunisian firms and 26 financial ratios, we show that Bayesian approach improves the quality of model predictions in terms of good classification as well as by the ROC curve result.Keywords: forecasting, credit risk, Penalized Quasi Likelihood, Gibbs Sampler, logistic regression with random effects, curve ROC
Procedia PDF Downloads 54015477 The Magnitude Scale Evaluation of Cross-Platform Internet Public Opinion
Abstract:
This paper introduces a model of internet public opinion waves, which describes the message propagation and measures the influence of a detected event. We collect data on public opinion propagation from different platforms on the internet, including micro-blogs and news. Then, we compare the spread of public opinion to the seismic waves and correspondently define the P-wave and S-wave and other essential attributes and characteristics in the process. Further, a model is established to evaluate the magnitude scale of the events. In the end, a practical example is used to analyze the influence of network public opinion and test the reasonability and effectiveness of the proposed model.Keywords: internet public opinion waves (IPOW), magnitude scale, cross-platform, information propagation
Procedia PDF Downloads 28715476 Degradation Model for UK Railway Drainage System
Authors: Yiqi Wu, Simon Tait, Andrew Nichols
Abstract:
Management of UK railway drainage assets is challenging due to the large amounts of historical assets with long asset life cycles. A major concern for asset managers is to maintain the required performance economically and efficiently while complying with the relevant regulation and legislation. As the majority of the drainage assets are buried underground and are often difficult or costly to examine, it is important for asset managers to understand and model the degradation process in order to foresee the upcoming reduction in asset performance and conduct proactive maintenance accordingly. In this research, a Markov chain approach is used to model the deterioration process of rail drainage assets. The study is based on historical condition scores and characteristics of drainage assets across the whole railway network in England, Scotland, and Wales. The model is used to examine the effect of various characteristics on the probabilities of degradation, for example, the regional difference in probabilities of degradation, and how material and shape can influence the deterioration process for chambers, channels, and pipes.Keywords: deterioration, degradation, markov models, probability, railway drainage
Procedia PDF Downloads 21915475 The Systems Theoretic Accident Model and Process (Stamp) as the New Trend to Promote Safety Culture in Construction
Authors: Natalia Ortega
Abstract:
Safety Culture (SCU) involves various perceptual, psychological, behavioral, and managerial factors. It has been shown that creating and maintaining an SCU is one way to reduce and prevent accidents and fatalities. In the construction sector, safety attitude, knowledge, and a supportive environment are predictors of safety behavior. The highest possible proportion of safety behavior among employees can be achieved by improving their safety attitude and knowledge. Accordingly, top management's commitment to safety is vital in shaping employees' safety attitude; therefore, the first step to improving employees' safety attitude is the genuine commitment of top management to safety. One of the factors affecting the successful implementation of health and safety promotion programs is the construction industry's subcontracting model. The contractual model's complexity, combined with the need for coordination among diverse stakeholders, makes it challenging to implement, manage, and follow up on health and well-being initiatives. The Systems theoretic accident model and process (STAMP) concept has expanded global consideration in recent years, increasing research attention. STAMP focuses attention on the role of constraints in safety management. The findings discover a growth of the research field from the definition in 2004 by Leveson and is being used across multiple domains. A systematic literature review of this novel model aims to meet the safety goals for human space exploration with a powerful and different approach to safety management, safety-driven design, and decision-making. Around two hundred studies have been published about applying the model. However, every single model for safety requires time to transform into research and practice, be tested and debated, and grow further and mature.Keywords: stamp, risk management, accident prevention, safety culture, systems thinking, construction industry, safety
Procedia PDF Downloads 7815474 BIM Model and Virtual Prototyping in Construction Management
Authors: Samar Alkindy
Abstract:
Purpose: The BIM model has been used to support the planning of different construction projects in the industry by showing the different stages of the construction process. The model has been instrumental in identifying some of the common errors in the construction process through the spatial arrangement. The continuous use of the BIM model in the construction industry has resulted in various radical changes such as virtual prototyping. Construction virtual prototyping is a highly advanced technology that incorporates a BIM model with realistic graphical simulations, and facilitates the simulation of the project before a product is built in the factory. The paper presents virtual prototyping in the construction industry by examining its application, challenges and benefits to a construction project. Methodology approach: A case study was conducted for this study in four major construction projects, which incorporate virtual construction prototyping in several stages of the construction project. Furthermore, there was the administration of interviews with the project manager and engineer and the planning manager. Findings: Data collected from the methodological approach shows a positive response for virtual construction prototyping in construction, especially concerning communication and visualization. Furthermore, the use of virtual prototyping has increased collaboration and efficiency between construction experts handling a project. During the planning stage, virtual prototyping has increased accuracy, reduced planning time, and reduced the amount of rework during the implementation stage. Irrespective of virtual prototyping being a new concept in the construction industry, the findings outline that the approach will benefit the management of construction projects.Keywords: construction operations, construction planning, process simulation, virtual prototyping
Procedia PDF Downloads 22915473 Epistemic Uncertainty Analysis of Queue with Vacations
Authors: Baya Takhedmit, Karim Abbas, Sofiane Ouazine
Abstract:
The vacations queues are often employed to model many real situations such as computer systems, communication networks, manufacturing and production systems, transportation systems and so forth. These queueing models are solved at fixed parameters values. However, the parameter values themselves are determined from a finite number of observations and hence have uncertainty associated with them (epistemic uncertainty). In this paper, we consider the M/G/1/N queue with server vacation and exhaustive discipline where we assume that the vacation parameter values have uncertainty. We use the Taylor series expansions approach to estimate the expectation and variance of model output, due to epistemic uncertainties in the model input parameters.Keywords: epistemic uncertainty, M/G/1/N queue with vacations, non-parametric sensitivity analysis, Taylor series expansion
Procedia PDF Downloads 43215472 Study the Effect of Friction on Barreling Behavior during Upsetting Process Using Anand Model
Authors: H. Mohammadi Majd, M. Jalali Azizpour, V. Tavaf, A. Jaderi
Abstract:
In upsetting processes contact friction significantly influence metal flow, stress-strain state and process parameters. Furthermore, tribological conditions influence workpiece deformation and its dimensional precision. A viscoplastic constitutive law, the Anand model, was applied to represent the inelastic deformation behavior in upsetting process. This paper presents research results of the influence of contact friction coefficient on a workpiece deformation in upsetting process.finite element parameters. This technique was tested for three different specimens simulations of the upsetting and the corresponding material and can be successfully employed to predict the deformation of the upsetting process.Keywords: friction, upsetting, barreling, Anand model
Procedia PDF Downloads 33315471 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 15815470 The Impact of City Mobility on Propagation of Infectious Diseases: Mathematical Modelling Approach
Authors: Asrat M.Belachew, Tiago Pereira, Institute of Mathematics, Computer Sciences, Avenida Trabalhador São Carlense, 400, São Carlos, 13566-590, Brazil
Abstract:
Infectious diseases are among the most prominent threats to human beings. They cause morbidity and mortality to an individual and collapse the social, economic, and political systems of the whole world collectively. Mathematical models are fundamental tools and provide a comprehensive understanding of how infectious diseases spread and designing the control strategy to mitigate infectious diseases from the host population. Modeling the spread of infectious diseases using a compartmental model of inhomogeneous populations is good in terms of complexity. However, in the real world, there is a situation that accounts for heterogeneity, such as ages, locations, and contact patterns of the population which are ignored in a homogeneous setting. In this work, we study how classical an SEIR infectious disease spreading of the compartmental model can be extended by incorporating the mobility of population between heterogeneous cities during an outbreak of infectious disease. We have formulated an SEIR multi-cities epidemic spreading model using a system of 4k ordinary differential equations to describe the disease transmission dynamics in k-cities during the day and night. We have shownthat the model is epidemiologically (i.e., variables have biological interpretation) and mathematically (i.e., a unique bounded solution exists all the time) well-posed. We constructed the next-generation matrix (NGM) for the model and calculated the basic reproduction number R0for SEIR-epidemic spreading model with cities mobility. R0of the disease depends on the spectral radius mobility operator, and it is a threshold between asymptotic stability of the disease-free equilibrium and disease persistence. Using the eigenvalue perturbation theorem, we showed that sending a fraction of the population between cities decreases the reproduction number of diseases in interconnected cities. As a result, disease transmissiondecreases in the population.Keywords: SEIR-model, mathematical model, city mobility, epidemic spreading
Procedia PDF Downloads 10815469 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model
Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li
Abstract:
Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.Keywords: spatial information network, traffic prediction, wavelet decomposition, time series model
Procedia PDF Downloads 14415468 Intersection of Racial and Gender Microaggressions: Social Support as a Coping Strategy among Indigenous LGBTQ People in Taiwan
Authors: Ciwang Teyra, A. H. Y. Lai
Abstract:
Introduction: Indigenous LGBTQ individuals face with significant life stress such as racial and gender discrimination and microaggressions, which may lead to negative impacts of their mental health. Although studies relevant to Taiwanese indigenous LGBTQpeople gradually increase, most of them are primarily conceptual or qualitative in nature. This research aims to fulfill the gap by offering empirical quantitative evidence, especially investigating the impact of racial and gender microaggressions on mental health among Taiwanese indigenous LGBTQindividuals with an intersectional perspective, as well as examine whether social support can help them to cope with microaggressions. Methods: Participants were (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Standardised measurements was used, including Racial Microaggression Scale (10 items), Gender Microaggression Scale (9 items), Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender, and perceived economic hardships. Structural equation modelling (SEM) was employed using Mplus 8.0 with the latent variables of depression and anxiety as outcomes. A main effect SEM model was first established (Model1).To test the moderation effects of perceived social support, an interaction effect model (Model 2) was created with interaction terms entered into Model1. Numerical integration was used with maximum likelihood estimation to estimate the interaction model. Results: Model fit statistics of the Model 1:X2(df)=1308.1 (795), p<.05; CFI/TLI=0.92/0.91; RMSEA=0.06; SRMR=0.06. For Model, the AIC and BIC values of Model 2 improved slightly compared to Model 1(AIC =15631 (Model1) vs. 15629 (Model2); BIC=16098 (Model1) vs. 16103 (Model2)). Model 2 was adopted as the final model. In main effect model 1, racialmicroaggressionand perceived social support were associated with depression and anxiety, but not sexual orientation microaggression(Indigenous microaggression: b = 0.27 for depression; b=0.38 for anxiety; Social support: b=-0.37 for depression; b=-0.34 for anxiety). Thus, an interaction term between social support and indigenous microaggression was added in Model 2. In the final Model 2, indigenous microaggression and perceived social support continues to be statistically significant predictors of both depression and anxiety. Social support moderated the effect of indigenous microaggression of depression (b=-0.22), but not anxiety. All covariates were not statistically significant. Implications: Results indicated that racial microaggressions have a significant impact on indigenous LGBTQ people’s mental health. Social support plays as a crucial role to buffer the negative impact of racial microaggression. To promote indigenous LGBTQ people’s wellbeing, it is important to consider how to support them to develop social support network systems.Keywords: microaggressions, intersectionality, indigenous population, mental health, social support
Procedia PDF Downloads 14615467 Gas-Solid Nitrocarburizing of Steels: Kinetic Modelling and Experimental Validation
Authors: L. Torchane
Abstract:
This study is devoted to defining the optimal conditions for the nitriding of pure iron at atmospheric pressure by using NH3-Ar-C3H8 gas mixtures. After studying the mechanisms of phase formation and mass transfer at the gas-solid interface, a mathematical model is developed in order to predict the nitrogen transfer rate in the solid, the ε-carbonitride layer growth rate and the nitrogen and carbon concentration profiles. In order to validate the model and to show its possibilities, it is compared with thermogravimetric experiments, analyses and metallurgical observations (X-ray diffraction, optical microscopy and electron microprobe analysis). Results obtained allow us to demonstrate the sound correlation between the experimental results and the theoretical predictions.Keywords: gaseous nitrocarburizing, kinetic model, diffusion, layer growth kinetic
Procedia PDF Downloads 53315466 Direct Growth Rates of the Information Model for Traffic at the Service of Sustainable Development of Tourism in Dubrovacko-Neretvanska County 2014-2020
Authors: Vinko Viducic, Jelena Žanic Mikulicic, Maja Racic, Kristina Sladojevic
Abstract:
The research presented in this paper has been focused on analyzing the impact of traffic on the sustainable development of tourism in Croatia's Dubrovacko-Neretvanska County by the year 2020, based on the figures and trends reported in 2014 and using the relevant variables that characterise the synergy of traffic and tourism in, speaking from the geographic viewpoint, the most problematic county in the Republic of Croatia. The basic hypothesis has been confirmed through scientifically obtained research results, through the quantification of the model's variables and the direct growth rates of the designed model. On the basis of scientific insights into the sustainable development of traffic and tourism in Dubrovacko-Neretvanska County, it is possible to propose a new information model for traffic at the service of the sustainable development of tourism in the County for the period 2014-2020.Keywords: environment protection, hotel industry, private sector, quantification
Procedia PDF Downloads 27815465 A Design for Customer Preferences Model by Cluster Analysis of Geometric Features and Customer Preferences
Authors: Yuan-Jye Tseng, Ching-Yen Chen
Abstract:
In the design cycle, a main design task is to determine the external shape of the product. The external shape of a product is one of the key factors that can affect the customers’ preferences linking to the motivation to buy the product, especially in the case of a consumer electronic product such as a mobile phone. The relationship between the external shape and the customer preferences needs to be studied to enhance the customer’s purchase desire and action. In this research, a design for customer preferences model is developed for investigating the relationships between the external shape and the customer preferences of a product. In the first stage, the names of the geometric features are collected and evaluated from the data of the specified internet web pages using the developed text miner. The key geometric features can be determined if the number of occurrence on the web pages is relatively high. For each key geometric feature, the numerical values are explored using the text miner to collect the internet data from the web pages. In the second stage, a cluster analysis model is developed to evaluate the numerical values of the key geometric features to divide the external shapes into several groups. Several design suggestion cases can be proposed, for example, large model, mid-size model, and mini model, for designing a mobile phone. A customer preference index is developed by evaluating the numerical data of each of the key geometric features of the design suggestion cases. The design suggestion case with the top ranking of the customer preference index can be selected as the final design of the product. In this paper, an example product of a notebook computer is illustrated. It shows that the external shape of a product can be used to drive customer preferences. The presented design for customer preferences model is useful for determining a suitable external shape of the product to increase customer preferences.Keywords: cluster analysis, customer preferences, design evaluation, design for customer preferences, product design
Procedia PDF Downloads 18915464 ‘Daily Speaking’: Designing an App for Construction of Language Learning Model Supporting ‘Seamless Flipped’ Environment
Authors: Zhou Hong, Gu Xiao-Qing, Lıu Hong-Jiao, Leng Jing
Abstract:
Seamless learning is becoming a research hotspot in recent years, and the emerging of micro-lectures, flipped classroom has strengthened the development of seamless learning. Based on the characteristics of the seamless learning across time and space and the course structure of the flipped classroom, and the theories of language learning, we put forward the language learning model which can support ‘seamless flipped’ environment (abbreviated as ‘S-F’). Meanwhile, the characteristics of the ‘S-F’ learning environment, the corresponding framework construction and the activity design of diversified corpora were introduced. Moreover, a language learning app named ‘Daily Speaking’ was developed to facilitate the practice of the language learning model in ‘S-F’ environment. In virtue of the learning case of Shanghai language, the rationality and feasibility of this framework were examined, expecting to provide a reference for the design of ‘S-F’ learning in different situations.Keywords: seamless learning, flipped classroom, seamless-flipped environment, language learning model
Procedia PDF Downloads 18615463 A Statistical Model for the Geotechnical Parameters of Cement-Stabilised Hightown’s Soft Soil: A Case Stufy of Liverpool, UK
Authors: Hassnen M. Jafer, Khalid S. Hashim, W. Atherton, Ali W. Alattabi
Abstract:
This study investigates the effect of two important parameters (length of curing period and percentage of the added binder) on the strength of soil treated with OPC. An intermediate plasticity silty clayey soil with medium organic content was used in this study. This soft soil was treated with different percentages of a commercially available cement type 32.5-N. laboratory experiments were carried out on the soil treated with 0, 1.5, 3, 6, 9, and 12% OPC by the dry weight to determine the effect of OPC on the compaction parameters, consistency limits, and the compressive strength. Unconfined compressive strength (UCS) test was carried out on cement-treated specimens after exposing them to different curing periods (1, 3, 7, 14, 28, and 90 days). The results of UCS test were used to develop a non-linear multi-regression model to find the relationship between the predicted and the measured maximum compressive strength of the treated soil (qu). The results indicated that there was a significant improvement in the index of plasticity (IP) by treating with OPC; IP was decreased from 20.2 to 14.1 by using 12% of OPC; this percentage was enough to increase the UCS of the treated soil up to 1362 kPa after 90 days of curing. With respect to the statistical model of the predicted qu, the results showed that the regression coefficients (R2) was equal to 0.8534 which indicates a good reproducibility for the constructed model.Keywords: cement admixtures, soft soil stabilisation, geotechnical parameters, multi-regression model
Procedia PDF Downloads 36515462 Post-Earthquake Damage Detection Using System Identification with a Pair of Seismic Recordings
Authors: Lotfi O. Gargab, Ruichong R. Zhang
Abstract:
A wave-based framework is presented for modeling seismic motion in multistory buildings and using measured response for system identification which can be utilized to extract important information regarding structure integrity. With one pair of building response at two locations, a generalized model response is formulated based on wave propagation features and expressed as frequency and time response functions denoted, respectively, as GFRF and GIRF. In particular, GIRF is fundamental in tracking arrival times of impulsive wave motion initiated at response level which is dependent on local model properties. Matching model and measured-structure responses can help in identifying model parameters and infer building properties. To show the effectiveness of this approach, the Millikan Library in Pasadena, California is identified with recordings of the Yorba Linda earthquake of September 3, 2002.Keywords: system identification, continuous-discrete mass modeling, damage detection, post-earthquake
Procedia PDF Downloads 36815461 Computational Fluid Dynamics (CFD) Simulation of Transient Flow in a Rectangular Bubble Column Using a Coupled Discrete Phase Model (DPM) and Volume of Fluid (VOF) Model
Authors: Sonia Besbes, Mahmoud El Hajem, Habib Ben Aissia, Jean Yves Champagne, Jacques Jay
Abstract:
In this work, we present a computational study for the characterization of the flow in a rectangular bubble column. To simulate the dynamic characteristics of the flow, a three-dimensional transient numerical simulations based on a coupled discrete phase model (DPM) and Volume of Fluid (VOF) model are performed. Modeling of bubble column reactor is often carried out under the assumption of a flat liquid surface with a degassing boundary condition. However, the dynamic behavior of the top surface surmounting the liquid phase will to some extent influence the meandering oscillations of the bubble plume. Therefore it is important to capture the surface behavior, and the assumption of a flat surface may not be applicable. So, the modeling approach needs to account for a dynamic liquid surface induced by the rising bubble plume. The volume of fluid (VOF) model was applied for the liquid and top gas which both interacts with bubbles implemented with a discrete phase model. This model treats the bubbles as Lagrangian particles and the liquid and the top gas as Eulerian phases with a sharp interface. Two-way coupling between Eulerian phases and Lagrangian bubbles are accounted for in a single set continuous phase momentum equation for the mixture of the two Eulerian phases. The effect of gas flow rate on the dynamic and time-averaged flow properties was studied. The time averaged liquid velocity field predicted from simulations and from our previous PIV measurements shows that the liquid is entrained up flow in the wake of the bubbles and down flow near the walls. The simulated and measured vertical velocity profiles exhibit a reasonable agreement looking at the minimum velocity values near the walls and the maximum values at the column center.Keywords: bubble column, computational fluid dynamics (CFD), coupled DPM and VOF model, hydrodynamics
Procedia PDF Downloads 38615460 Development of Numerical Model to Compute Water Hammer Transients in Pipe Flow
Authors: Jae-Young Lee, Woo-Young Jung, Myeong-Jun Nam
Abstract:
Water hammer is a hydraulic transient problem which is commonly encountered in the penstocks of hydropower plants. The numerical model was developed to estimate the transient behavior of pressure waves in pipe systems. The computational algorithm was proposed to model the water hammer phenomenon in a pipe system with pump shutdown at midstream and sudden valve closure at downstream. To predict the pressure head and flow velocity as a function of time as a result of rapidly closing a valve and pump shutdown, two boundary conditions at the ends considering pump operation and valve control can be implemented as specified equations of the pressure head and flow velocity based on the characteristics method. It was shown that the effects of transient flow make it determine the needs for protection devices, such as surge tanks, surge relief valves, or air valves, at various points in the system against overpressure and low pressure. It produced reasonably good performance with the results of the proposed transient model for pipeline systems. The proposed numerical model can be used as an efficient tool for the safety assessment of hydropower plants due to water hammer.Keywords: water hammer, hydraulic transient, pipe systems, characteristics method
Procedia PDF Downloads 13415459 Parameter and Lose Effect Analysis of Beta Stirling Cycle Refrigerating Machine
Authors: Muluken Z. Getie, Francois Lanzetta, Sylvie Begot, Bimrew T. Admassu
Abstract:
This study is aimed at the numerical analysis of the effects of phase angle and losses (shuttle heat loss and gas leakage to the crankcase) that could have an impact on the pressure and temperature of working fluid for a β-type Stirling cycle refrigerating machine. First, the developed numerical model incorporates into the ideal adiabatic analysis, the shuttle heat transfer (heat loss from compression space to expansion space), and gas leakage from the working space to the buffer space into the crankcase. The other losses that may not have a direct effect on the temperature and pressure of working fluid are simply incorporated in a simple analysis. The model is then validated by reversing the model to the engine model and compared with other literature results using (GPU-3) engine. After validating the model with other engine model and experiment results, analysis of the effect of phase angle, shuttle heat lose and gas leakage on temperature, pressure, and performance (power requirement, cooling capacity and coefficient of performance) of refrigerating machine considering the FEMTO 60 Stirling engine as a case study have been conducted. Shuttle heat loss has a greater effect on the temperature of working gas; gas leakage to the crankcase has more effect on the pressure of working spaces and hence both have a considerable impact on the performance of the Stirling cycle refrigerating machine. The optimum coefficient of performance exists between phase angles of 900-950, and optimum cooling capacity could be found between phase angles of 950-980.Keywords: beta configuration, engine model, moderate cooling, stirling refrigerator, and validation
Procedia PDF Downloads 10115458 Non-Targeted Adversarial Image Classification Attack-Region Modification Methods
Authors: Bandar Alahmadi, Lethia Jackson
Abstract:
Machine Learning model is used today in many real-life applications. The safety and security of such model is important, so the results of the model are as accurate as possible. One challenge of machine learning model security is the adversarial examples attack. Adversarial examples are designed by the attacker to cause the machine learning model to misclassify the input. We propose a method to generate adversarial examples to attack image classifiers. We are modifying the successfully classified images, so a classifier misclassifies them after the modification. In our method, we do not update the whole image, but instead we detect the important region, modify it, place it back to the original image, and then run it through a classifier. The algorithm modifies the detected region using two methods. First, it will add abstract image matrix on back of the detected image matrix. Then, it will perform a rotation attack to rotate the detected region around its axes, and embed the trace of image in image background. Finally, the attacked region is placed in its original position, from where it was removed, and a smoothing filter is applied to smooth the background with foreground. We test our method in cascade classifier, and the algorithm is efficient, the classifier confident has dropped to almost zero. We also try it in CNN (Convolutional neural network) with higher setting and the algorithm was successfully worked.Keywords: adversarial examples, attack, computer vision, image processing
Procedia PDF Downloads 338