Search results for: corrosion prediction ductile fracture
2214 Combining Multiscale Patterns of Weather and Sea States into a Machine Learning Classifier for Mid-Term Prediction of Extreme Rainfall in North-Western Mediterranean Sea
Authors: Pinel Sebastien, Bourrin François, De Madron Du Rieu Xavier, Ludwig Wolfgang, Arnau Pedro
Abstract:
Heavy precipitation constitutes a major meteorological threat in the western Mediterranean. Research has investigated the relationship between the states of the Mediterranean Sea and the atmosphere with the precipitation for short temporal windows. However, at a larger temporal scale, the precursor signals of heavy rainfall in the sea and atmosphere have drawn little attention. Moreover, despite ongoing improvements in numerical weather prediction, the medium-term forecasting of rainfall events remains a difficult task. Here, we aim to investigate the influence of early-spring environmental parameters on the following autumnal heavy precipitations. Hence, we develop a machine learning model to predict extreme autumnal rainfall with a 6-month lead time over the Spanish Catalan coastal area, based on i) the sea pattern (main current-LPC and Sea Surface Temperature-SST) at the mesoscale scale, ii) 4 European weather teleconnection patterns (NAO, WeMo, SCAND, MO) at synoptic scale, and iii) the hydrological regime of the main local river (Rhône River). The accuracy of the developed model classifier is evaluated via statistical analysis based on classification accuracy, logarithmic and confusion matrix by comparing with rainfall estimates from rain gauges and satellite observations (CHIRPS-2.0). Sensitivity tests are carried out by changing the model configuration, such as sea SST, sea LPC, river regime, and synoptic atmosphere configuration. The sensitivity analysis suggests a negligible influence from the hydrological regime, unlike SST, LPC, and specific teleconnection weather patterns. At last, this study illustrates how public datasets can be integrated into a machine learning model for heavy rainfall prediction and can interest local policies for management purposes.Keywords: extreme hazards, sensitivity analysis, heavy rainfall, machine learning, sea-atmosphere modeling, precipitation forecasting
Procedia PDF Downloads 1352213 Analysis and Prediction of COVID-19 by Using Recurrent LSTM Neural Network Model in Machine Learning
Authors: Grienggrai Rajchakit
Abstract:
As we all know that coronavirus is announced as a pandemic in the world by WHO. It is speeded all over the world with few days of time. To control this spreading, every citizen maintains social distance and self-preventive measures are the best strategies. As of now, many researchers and scientists are continuing their research in finding out the exact vaccine. The machine learning model finds that the coronavirus disease behaves in an exponential manner. To abolish the consequence of this pandemic, an efficient step should be taken to analyze this disease. In this paper, a recurrent neural network model is chosen to predict the number of active cases in a particular state. To make this prediction of active cases, we need a database. The database of COVID-19 is downloaded from the KAGGLE website and is analyzed by applying a recurrent LSTM neural network with univariant features to predict the number of active cases of patients suffering from the corona virus. The downloaded database is divided into training and testing the chosen neural network model. The model is trained with the training data set and tested with a testing dataset to predict the number of active cases in a particular state; here, we have concentrated on Andhra Pradesh state.Keywords: COVID-19, coronavirus, KAGGLE, LSTM neural network, machine learning
Procedia PDF Downloads 1602212 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins
Abstract:
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.Keywords: dimensional affect prediction, output-associative RVM, multivariate regression, fast testing
Procedia PDF Downloads 2862211 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 1302210 Behavior of Oil Palm Shell Reinforced Concrete Beams Added with Kenaf Fibres
Authors: Sharifah M. Syed Mohsin, Sayid J. Azimi, Abdoullah Namdar
Abstract:
The present article reports the findings of a study into the behavior of oil palm shell reinforced concrete (OPSRC) beams with the addition of kenaf fibres. The work aim is to examine the potential of using kenaf fibres to improve the strength and ductility of the OPSRC beams and also observe its potential in serving as part of shear reinforcement in the beams. Two different arrangements of the shear links in OPSRC beams with a selection of kenaf fibres (amount of [10kg/m] ^3 and [20kg/m] ^3) content are tested under monotonic loading. In the first arrangement, the kenaf fibres are added to the beam which has full shear reinforcement to study the structural behavior of OPSRC beams with fibres. In the second arrangement, the spacing between the shear links in the OPSRC beams are increased by 50% and experimental work is carried out to study the effect of kenaf fibres without compromising the beams strength and ductility. The results show that the addition of kenaf fibres enhanced the load carrying capacity, ductility and also altered the failure mode of the beams from a brittle shear mode to a flexural ductile one. Furthermore, the study depicts that kenaf fibres are compatible with OPSRC and suggest prospective results.Keywords: oil palm shell reinforced concrete, kenaf fibres, peak strength, ductility
Procedia PDF Downloads 4312209 Reformulation of Theory of Critical Distances to Predict the Strength of Notched Plain Concrete Beams under Quasi Static Loading
Authors: Radhika V., J. M. Chandra Kishen
Abstract:
The theory of critical distances (TCD), due to its appealing characteristics, has been successfully used in the past to predict the strength of brittle as well as ductile materials, weakened by the presence of stress risers under both static and fatigue loading. By utilising most of the TCD's unique features, this paper summarises an attempt for a reformulation of the point method of the TCD to predict the strength of notched plain concrete beams under mode I quasi-static loading. A zone of micro cracks, which is responsible for the non-linearity of concrete, is taken into account considering the concept of an effective elastic crack. An attempt is also made to correlate the value of the material characteristic length required for the application of TCD with the maximum aggregate size in the concrete mix, eliminating the need for any extensive experimentation prior to the application of TCD. The devised reformulation and the proposed power law based relationship is found to yield satisfactory predictions for static strength of notched plain concrete beams, with geometric dimensions of the beam, tensile strength, and maximum aggregate size of the concrete mix being the only needed input parameters.Keywords: characteristic length, effective elastic crack, inherent material strength, modeI loading, theory of critical distances
Procedia PDF Downloads 982208 Comparative Study on the Precipitation Behavior in Two Al-Mg Alloys (Al-12 wt. % Mg and Al-8 wt. % Mg)
Abstract:
Aluminum-magnesium alloys are widely used in industry thanks to their mechanical properties and corrosion resistivity. These properties are related to the magnesium content and to the applied heat treatments. Although they are already well studied, questions concerning the microstructural stability and the effect of different heat treatments are still being asked. In this work we have presented a comparative study on the behavior of the precipitation reactions during different heat treatment in two different Al-Mg alloys (Al–8 wt. % Mg and Al–12 wt. % Mg). For this purpose, we have used various experimental techniques as dilatometry, calorimetry, optical microscopy, and microhardness measurements. The obtained results shown that, the precipitation kinetics and the mechanical responses to the applied heat treatments, of the two studied alloys, are different.Keywords: Al-Mg alloys, precipitation, hardness, heat treatments
Procedia PDF Downloads 3872207 Long-Term Deformations of Concrete Structures
Authors: Abdelmalk Brahma
Abstract:
Drying is a phenomenon that accompanies the hardening of hydraulic materials. It can, if it is not prevented, lead to significant spontaneous dimensional variations, which the cracking is one of events. In this context, cracking promotes the transport of aggressive agents in the material, which can affect the durability of concrete structures. Drying shrinkage develops over a long period almost 30 years although most occurred during the first three years. Drying shrinkage stabilizes when the material is water balance with the external environment. The drying shrinkage of cementitious materials is due to the formation of capillary tensions in the pores of the material, which has the consequences of bringing the solid walls of each other. Knowledge of the shrinkage characteristics of concrete is a necessary starting point in the design of structures for crack control. Such knowledge will enable the designer to estimate the probable shrinkage movement in reinforced or prestressed concrete and the appropriate steps can be taken in design to accommodate this movement. This study is concerned the modelling of drying shrinkage of the hydraulic materials and the prediction of the rate of spontaneous deformations of hydraulic materials during hardening. The model developed takes in consideration the main factors affecting drying shrinkage. There was agreement between drying shrinkage predicted by the developed model and experimental results. In last we show that developed model describe the evolution of the drying shrinkage of high performances concretes correctly.Keywords: drying, hydraulic concretes, shrinkage, modeling, prediction
Procedia PDF Downloads 2642206 Selection of Designs in Ordinal Regression Models under Linear Predictor Misspecification
Authors: Ishapathik Das
Abstract:
The purpose of this article is to find a method of comparing designs for ordinal regression models using quantile dispersion graphs in the presence of linear predictor misspecification. The true relationship between response variable and the corresponding control variables are usually unknown. Experimenter assumes certain form of the linear predictor of the ordinal regression models. The assumed form of the linear predictor may not be correct always. Thus, the maximum likelihood estimates (MLE) of the unknown parameters of the model may be biased due to misspecification of the linear predictor. In this article, the uncertainty in the linear predictor is represented by an unknown function. An algorithm is provided to estimate the unknown function at the design points where observations are available. The unknown function is estimated at all points in the design region using multivariate parametric kriging. The comparison of the designs are based on a scalar valued function of the mean squared error of prediction (MSEP) matrix, which incorporates both variance and bias of the prediction caused by the misspecification in the linear predictor. The designs are compared using quantile dispersion graphs approach. The graphs also visually depict the robustness of the designs on the changes in the parameter values. Numerical examples are presented to illustrate the proposed methodology.Keywords: model misspecification, multivariate kriging, multivariate logistic link, ordinal response models, quantile dispersion graphs
Procedia PDF Downloads 3932205 The Creep and Fracture Behavior of Additively Manufactured Inconel 625
Authors: Michael Kassner
Abstract:
Elevated-temperature creep tests were performed on additively manufactured (AM) Inconel 625 over a relatively wide range of stress. The behavior was compared to conventional wrought alloy. It was found that the steady-state creep rates of the AM alloys were comparable, or even more favorable, than that of the wrought Inconel. However, the ductility of the AM alloy was significantly less than the wrought alloy. The ductility however was recovered with hot isostatic pressing (HIP) of the AM specimens. The basis for the loss and recovery of the ductility will be discussed in terms of the differences in the details of the microstructures. In summary, it appears that HIP AM Inconel 625, over the long-term testing of a year, has very favorable mechanical properties compared to the conventional alloy.Keywords: Inconel, creep, additive, manufacturing
Procedia PDF Downloads 1702204 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 2992203 The Role and Impact of Cold Spray Technology on Surface Engineering
Authors: Ionel Botef
Abstract:
Studies show that, for viable product realisation and maintenance, a spectrum of novel processing technologies and materials to improve performance and reduce costs and environmental impact must constantly be addressed. One of these technologies, namely the cold spray process, has enabled a broad range of coatings and applications, including many that have not been previously possible or commercially practical, hence its potential for new aerospace, electronics, or medical applications. Therefore, the purpose of this paper is to summarise the state of the art of this technology alongside its theoretical and experimental studies, and explore the role and impact of cold spraying on surface engineering.Keywords: surface engineering, cold spray, ageing aircrafts, corrosion, microchannels, maintenance
Procedia PDF Downloads 6062202 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites
Authors: Jifeng Zhang , Yongpeng Lei
Abstract:
Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface
Procedia PDF Downloads 1212201 Architectural and Sedimentological Parameterization for Reservoir Quality of Miocene Onshore Sandstone, Borneo
Authors: Numair A. Siddiqui, Usman Muhammad, Manoj J. Mathew, Ramkumar M., Benjamin Sautter, Muhammad A. K. El-Ghali, David Menier, Shiqi Zhang
Abstract:
The sedimentological parameterization of shallow-marine siliciclastic reservoirs in terms of reservoir quality and heterogeneity from outcrop study can help improve the subsurface reservoir prediction. An architectural analysis has documented variations in sandstone geometry and rock properties within shallow-marine sandstone exposed in the Miocene Sandakan Formation of Sabah, Borneo. This study demonstrates reservoir sandstone quality assessment for subsurface rock evaluation, from well-exposed successions of the Sandakan Formation, Borneo, with which applicable analogues can be identified. The analyses were based on traditional conventional field investigation of outcrops, grain-size and petrographic studies of hand specimens of different sandstone facies and gamma-ray and permeability measurements. On the bases of these evaluations, the studied sandstone was grouped into three qualitative reservoir rock classes; high (Ø=18.10 – 43.60%; k=1265.20 – 5986.25 mD), moderate (Ø=17.60 – 37%; k=21.36 – 568 mD) and low quality (Ø=3.4 – 15.7%; k=3.21 – 201.30 mD) for visualization and prediction of subsurface reservoir quality. These results provided analogy for shallow marine sandstone reservoir complexity that can be utilized in the evaluation of reservoir quality of regional and subsurface analogues.Keywords: architecture and sedimentology, subsurface rock evaluation, reservoir quality, borneo
Procedia PDF Downloads 1422200 Advancements in Hydraulic Fracturing for Unconventional Resources
Authors: Salar Ahmed Ali
Abstract:
Hydraulic fracturing has revolutionized the extraction of unconventional oil and gas resources, significantly increasing global energy reserves. This paper explores recent advancements in hydraulic fracturing technologies, focusing on the integration of real-time monitoring systems, environmentally friendly fracturing fluids, and nanotechnology applications. Case studies demonstrate how innovative approaches have enhanced resource recovery while minimizing environmental impact and operational costs. Additionally, the paper addresses challenges such as induced seismicity and regulatory constraints, proposing solutions to ensure sustainable development. These advancements promise to make hydraulic fracturing more efficient, sustainable, and adaptable to the evolving energy landscape.Keywords: oil, gas, fracture, hydraulic
Procedia PDF Downloads 82199 Evaluating the Educational Intervention Based on Web and Integrative Model of Behavior Prediction to Promote Physical Activities and HS-CRP Factor among Nurses
Authors: Arsalan Ghaderi
Abstract:
Introduction: Inactivity is one of the most important risk factors for cardiovascular disease. According to the study prevalence of inactivity in Iran, about 67.5% and in the staff, and especially nurses, are similar. The inflammatory index (HS-CRP) is highly predictive of the progression of these diseases. Physical activity education is very important in preventing these diseases. One of the modern educational methods is web-based theory-based education. Methods: This is a semi-experimental interventional study which was conducted in Isfahan and Kurdistan universities of medical sciences in two stages. A cross-sectional study was done to determine the status of physical activity and its predictive factors. Then, intervention was performed, and six months later the data were retrieved. The data was collected using a demographic questionnaire, an integrative model of behavior prediction constructs, a standard physical activity questionnaire and (HS-CRP) test. Data were analyzed by SPSS software. Results: Physical activity was low in 66.6% of nurses, 25.4% were moderate and 8% severe. According to Pearson correlation matrix, the highest correlation was found between behavioral intention and skill structures (0.553**), subjective norms (0.222**) and self-efficacy (0.198**). The relationship between age and physical activity in the first study was reverse and significant. After intervention, there was a significant change in attitudes, self-efficacy, skill and behavioral intention in the intervention group. This change was significant in attitudes, self-efficacy and environmental conditions of the control group. HS-CRP index decreased significantly after intervention in both groups, but there was not a significant relationship between inflammatory index and physical activity score. The change in physical activity level was significant only in the control group. Conclusion: Despite the effect of educational intervention on attitude, self-efficacy, skill, and behavioral intention, the results showed that if factors such as environmental factors are not corrected, training and changing structures cannot lead to physical activity behavior. On the other hand, no correlation between physical activity and HS-CRP showed that this index can be influenced by other factors, and this should be considered in any intervention to reduce the HS-CRP index.Keywords: HS-CRP, integrative model of behavior prediction, physical activity, nurses, web-based education
Procedia PDF Downloads 1142198 Response Surface Methodology for Optimum Hardness of TiN on Steel Substrate
Authors: R. Joseph Raviselvan, K. Ramanathan, P. Perumal, M. R. Thansekhar
Abstract:
Hard coatings are widely used in cutting and forming tool industries. Titanium Nitride (TiN) possesses good hardness, strength and corrosion resistant. The coating properties are influenced by many process parameters. The coatings were deposited on steel substrate by changing the process parameters such as substrate temperature, nitrogen flow rate and target power in a D.C planer magnetron sputtering. The structure of coatings were analysed using XRD. The hardness of coatings was found using Micro hardness tester. From the experimental data, a regression model was developed and the optimum response was determined using Response Surface Methodology (RSM).Keywords: hardness, RSM, sputtering, TiN XRD
Procedia PDF Downloads 3212197 Predicting Relative Performance of Sector Exchange Traded Funds Using Machine Learning
Abstract:
Machine learning has been used in many areas today. It thrives at reviewing large volumes of data and identifying patterns and trends that might not be apparent to a human. Given the huge potential benefit and the amount of data available in the financial market, it is not surprising to see machine learning applied to various financial products. While future prices of financial securities are extremely difficult to forecast, we study them from a different angle. Instead of trying to forecast future prices, we apply machine learning algorithms to predict the direction of future price movement, in particular, whether a sector Exchange Traded Fund (ETF) would outperform or underperform the market in the next week or in the next month. We apply several machine learning algorithms for this prediction. The algorithms are Linear Discriminant Analysis (LDA), k-Nearest Neighbors (KNN), Decision Tree (DT), Gaussian Naive Bayes (GNB), and Neural Networks (NN). We show that these machine learning algorithms, most notably GNB and NN, have some predictive power in forecasting out-performance and under-performance out of sample. We also try to explore whether it is possible to utilize the predictions from these algorithms to outperform the buy-and-hold strategy of the S&P 500 index. The trading strategy to explore out-performance predictions does not perform very well, but the trading strategy to explore under-performance predictions can earn higher returns than simply holding the S&P 500 index out of sample.Keywords: machine learning, ETF prediction, dynamic trading, asset allocation
Procedia PDF Downloads 982196 Shear Behavior of Ultra High Strength Concrete Beams
Authors: Ghada Diaa, Enas A. Khattab
Abstract:
Ultra High Strength Concrete (UHSC) is a new advanced concrete that is being transferred from laboratory researches to practicable applications. In addition to its excellent durability properties, UHSC has high compressive and tensile strengths, and high modulus of elasticity. Despite of this low degree of hydration, ultra high strength values can be achieved by controlling the mixture proportions. In this research, an experimental program was carried out to investigate the shear behavior of ultra high strength concrete beams. A total of nine beams were tested to determine the effect of different parameters on the shear behavior of UHSC beams. The parameters include concrete strength, steel fiber volume, shear span to depth ratio, and web reinforcement ratio. The results demonstrated that nominal shear stress at cracking load and at ultimate load increased with the increase of concrete strength or the decrease in shear span-depth ratio. Using steel fibers or shear reinforcement increases the ultimate shear strength and makes the shear behavior more ductile. In this study, a simplified analytical model to calculate the shear strength of UHSC beams is introduced. Shear strength estimated according to the proposed method in this research is in good agreement with the experimental results.Keywords: ultra high strength, shear strength, diagonal, cracking, steel fibers
Procedia PDF Downloads 6182195 Groundwater Flow Assessment Based on Numerical Simulation at Omdurman Area, Khartoum State, Sudan
Authors: Adil Balla Elkrail
Abstract:
Visual MODFLOW computer codes were selected to simulate head distribution, calculate the groundwater budgets of the area, and evaluate the effect of external stresses on the groundwater head and to demonstrate how the groundwater model can be used as a comparative technique in order to optimize utilization of the groundwater resource. A conceptual model of the study area, aquifer parameters, boundary, and initial conditions were used to simulate the flow model. The trial-and-error technique was used to calibrate the model. The most important criteria used to check the calibrated model were Root Mean Square error (RMS), Mean Absolute error (AM), Normalized Root Mean Square error (NRMS) and mass balance. The maps of the simulated heads elaborated acceptable model calibration compared to observed heads map. A time length of eight years and the observed heads of the year 2004 were used for model prediction. The predictive simulation showed that the continuation of pumping will cause relatively high changes in head distribution and components of groundwater budget whereas, the low deficit computed (7122 m3/d) between inflows and outflows cannot create a significant drawdown of the potentiometric level. Hence, the area under consideration may represent a high permeability and productive zone and strongly recommended for further groundwater development.Keywords: aquifers, model simulation, groundwater, calibrations, trail-and- error, prediction
Procedia PDF Downloads 2422194 Evaluation of Coastal Erosion in the Jurisdiction of the Municipalities of Puerto Colombia and Tubará, Atlántico – Colombia in Google Earth Engine with Landsat and Sentinel 2 Images
Authors: Francisco Reyes, Hector Ramirez
Abstract:
In the coastal zones are home to mangrove swamps, coral reefs, and seagrass ecosystems, which are the most biodiverse and fragile on the planet. These areas support a great diversity of marine life; they are also extraordinarily important for humans in the provision of food, water, wood, and other associated goods and services; they also contribute to climate regulation. The lack of an automated model that generates information on the dynamics of changes in coastlines and coastal erosion is identified as a central problem. Coastlines were determined from 1984 to 2020 on the Google Earth platform Engine from Landsat and Sentinel images, using the Normalized Differential Water Index (MNDWI) and Digital Shoreline Analysis System (DSAS) v5.0. Starting from the 2020 coastline, the 10-year prediction (Year 2031) was determined with the erosion of 238.32 hectares and an accretion of 181.96 hectares, while the 20-year prediction (Year 2041) will be presented an erosion of 544.04 hectares and an accretion of 133.94 hectares. The erosion and accretion of Playa Muelle in the municipality of Puerto Colombia were established, which will register the highest value of erosion. The coverage that presented the greatest change was that of artificialized Territories.Keywords: coastline, coastal erosion, MNDWI, Google Earth Engine, Colombia
Procedia PDF Downloads 1202193 The Effect of Vertical Shear-link in Improving the Seismic Performance of Structures with Eccentrically Bracing Systems
Authors: Mohammad Reza Baradaran, Farhad Hamzezarghani, Mehdi Rastegari Ghiri, Zahra Mirsanjari
Abstract:
Passive control methods can be utilized to build earthquake resistant structures, and also to strengthen the vulnerable ones. One of the most effective, yet simple passive control methods is the use of vertical shear-links (VSL) in systems with eccentric bracing. In fact, vertical shear-links dissipate the earthquake energy and act like a ductile fuse. In this paper, we studied the effect of this system in increasing the ductility and energy dissipation and also modeled the behavior of this type of eccentric bracing, and compared the hysteresis diagram of the modeled samples with the laboratory samples. We studied several samples of frames with vertical shear-links in order to assess the behavior of this type of eccentric bracing. Each of these samples was modeled in finite element software ANSYS 9.0, and was analyzed under the static cyclic loading. It was found that vertical shear-links have a more stable hysteresis loops. Another analysis showed that using honeycomb beams as the horizontal beam along with steel reinforcement has no negative effect on the hysteresis behavior of the sample.Keywords: vertical shear-link, passive control, cyclic analysis, energy dissipation, honeycomb beam
Procedia PDF Downloads 4962192 The Austenite Role in Duplex Stainless Steel Performance
Authors: Farej Ahmed Emhmmed Alhegagi
Abstract:
Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels
Procedia PDF Downloads 3582191 Next Generation Radiation Risk Assessment and Prediction Tools Generation Applying AI-Machine (Deep) Learning Algorithms
Authors: Selim M. Khan
Abstract:
Indoor air quality is strongly influenced by the presence of radioactive radon (222Rn) gas. Indeed, exposure to high 222Rn concentrations is unequivocally linked to DNA damage and lung cancer and is a worsening issue in North American and European built environments, having increased over time within newer housing stocks as a function of as yet unclear variables. Indoor air radon concentration can be influenced by a wide range of environmental, structural, and behavioral factors. As some of these factors are quantitative while others are qualitative, no single statistical model can determine indoor radon level precisely while simultaneously considering all these variables across a complex and highly diverse dataset. The ability of AI- machine (deep) learning to simultaneously analyze multiple quantitative and qualitative features makes it suitable to predict radon with a high degree of precision. Using Canadian and Swedish long-term indoor air radon exposure data, we are using artificial deep neural network models with random weights and polynomial statistical models in MATLAB to assess and predict radon health risk to human as a function of geospatial, human behavioral, and built environmental metrics. Our initial artificial neural network with random weights model run by sigmoid activation tested different combinations of variables and showed the highest prediction accuracy (>96%) within the reasonable iterations. Here, we present details of these emerging methods and discuss strengths and weaknesses compared to the traditional artificial neural network and statistical methods commonly used to predict indoor air quality in different countries. We propose an artificial deep neural network with random weights as a highly effective method for assessing and predicting indoor radon.Keywords: radon, radiation protection, lung cancer, aI-machine deep learnng, risk assessment, risk prediction, Europe, North America
Procedia PDF Downloads 962190 Structural and Leaching Properties of Irradiated Lead Commercial Glass by Using XRD, Ultrasonic, UV-VIS and AAS Technique
Authors: N. H. Alias, S. A. Aziz, Y. Abdullah, H. M. Kamari, S. Sani, M. P. Ismail, N. U. Saidin, N. A. A. Salim, N. E. E. Abdullah
Abstract:
Gamma (γ) irradiation study has been investigated on the 6 rectangular shape of the standard X-Ray lead glass with 5/16” thick, providing 2.00 mm lead shielding value; at selected Sievert doses (C1; 0, C2; 0.07, C3; 0.035, C4; 0.07, C5; 0.105 and C6; 0.14) by using (XRD) X-ray Diffraction techniques, ultrasonic and (UV-VIS) Ultraviolet-Visible Spectroscopy. Concentration of lead in 0.5 N acid nitric (HNO3) environments is then studied by means of Atomic Absorption Spectroscopy (AAS) as to observe the glass corrosion behavior after irradiation at room temperature. This type of commercial glass is commonly used as radiation shielding glass in medical application.Keywords: gamma irradiation, lead glass, leaching, structural
Procedia PDF Downloads 4342189 Critical Investigation on Performance of Polymeric Materials in Rehabilitation of Metallic Components
Authors: Parastou Kharazmi
Abstract:
Failure and leakage of metallic components because of corrosion in infrastructure structures is a considerably problematic and expensive issue and the traditional solution of replacing the component is costly and time-consuming. Rehabilitation techniques by using advanced polymeric materials are an alternative solution towards this problem. This paper provides a summary of analyses on relined rehabilitated metallic samples after exposure in practice and real condition to study the composite material performance when it is exposed to water, heat and chemicals in real condition. The study was carried out by using different test methods such as microscopy, thermal and chemical as well as mechanical analyses.Keywords: composite, material, rehabilitation, structure
Procedia PDF Downloads 2362188 A Dual-Mode Infinite Horizon Predictive Control Algorithm for Load Tracking in PUSPATI TRIGA Reactor
Authors: Mohd Sabri Minhat, Nurul Adilla Mohd Subha
Abstract:
The PUSPATI TRIGA Reactor (RTP), Malaysia reached its first criticality on June 28, 1982, with power capacity 1MW thermal. The Feedback Control Algorithm (FCA) which is conventional Proportional-Integral (PI) controller, was used for present power control method to control fission process in RTP. It is important to ensure the core power always stable and follows load tracking within acceptable steady-state error and minimum settling time to reach steady-state power. At this time, the system could be considered not well-posed with power tracking performance. However, there is still potential to improve current performance by developing next generation of a novel design nuclear core power control. In this paper, the dual-mode predictions which are proposed in modelling Optimal Model Predictive Control (OMPC), is presented in a state-space model to control the core power. The model for core power control was based on mathematical models of the reactor core, OMPC, and control rods selection algorithm. The mathematical models of the reactor core were based on neutronic models, thermal hydraulic models, and reactivity models. The dual-mode prediction in OMPC for transient and terminal modes was based on the implementation of a Linear Quadratic Regulator (LQR) in designing the core power control. The combination of dual-mode prediction and Lyapunov which deal with summations in cost function over an infinite horizon is intended to eliminate some of the fundamental weaknesses related to MPC. This paper shows the behaviour of OMPC to deal with tracking, regulation problem, disturbance rejection and caters for parameter uncertainty. The comparison of both tracking and regulating performance is analysed between the conventional controller and OMPC by numerical simulations. In conclusion, the proposed OMPC has shown significant performance in load tracking and regulating core power for nuclear reactor with guarantee stabilising in the closed-loop.Keywords: core power control, dual-mode prediction, load tracking, optimal model predictive control
Procedia PDF Downloads 1622187 Investigating Salience Theory’s Implications for Real-Life Decision Making: An Experimental Test for Whether the Allais Paradox Exists under Subjective Uncertainty
Authors: Christoph Ostermair
Abstract:
We deal with the effect of correlation between prospects on human decision making under uncertainty as proposed by the comparatively new and promising model of “salience theory of choice under risk”. In this regard, we show that the theory entails the prediction that the inconsistency of choices, known as the Allais paradox, should not be an issue in the context of “real-life decision making”, which typically corresponds to situations of subjective uncertainty. The Allais paradox, probably the best-known anomaly regarding expected utility theory, would then essentially have no practical relevance. If, however, empiricism contradicts this prediction, salience theory might suffer a serious setback. Explanations of the model for variable human choice behavior are mostly the result of a particular mechanism that does not come to play under perfect correlation. Hence, if it turns out that correlation between prospects – as typically found in real-world applications – does not influence human decision making in the expected way, this might to a large extent cost the theory its explanatory power. The empirical literature regarding the Allais paradox under subjective uncertainty is so far rather moderate. Beyond that, the results are hard to maintain as an argument, as the presentation formats commonly employed, supposably have generated so-called event-splitting effects, thereby distorting subjects’ choice behavior. In our own incentivized experimental study, we control for such effects by means of two different choice settings. We find significant event-splitting effects in both settings, thereby supporting the suspicion that the so far existing empirical results related to Allais paradoxes under subjective uncertainty may not be able to answer the question at hand. Nevertheless, we find that the basic tendency behind the Allais paradox, which is a particular switch of the preference relation due to a modified common consequence, shared by two prospects, is still existent both under an event-splitting and a coalesced presentation format. Yet, the modal choice pattern is in line with the prediction of salience theory. As a consequence, the effect of correlation, as proposed by the model, might - if anything - only weaken the systematic choice pattern behind the Allais paradox.Keywords: Allais paradox, common consequence effect, models of decision making under risk and uncertainty, salience theory
Procedia PDF Downloads 1982186 Influential Parameters in Estimating Soil Properties from Cone Penetrating Test: An Artificial Neural Network Study
Authors: Ahmed G. Mahgoub, Dahlia H. Hafez, Mostafa A. Abu Kiefa
Abstract:
The Cone Penetration Test (CPT) is a common in-situ test which generally investigates a much greater volume of soil more quickly than possible from sampling and laboratory tests. Therefore, it has the potential to realize both cost savings and assessment of soil properties rapidly and continuously. The principle objective of this paper is to demonstrate the feasibility and efficiency of using artificial neural networks (ANNs) to predict the soil angle of internal friction (Φ) and the soil modulus of elasticity (E) from CPT results considering the uncertainties and non-linearities of the soil. In addition, ANNs are used to study the influence of different parameters and recommend which parameters should be included as input parameters to improve the prediction. Neural networks discover relationships in the input data sets through the iterative presentation of the data and intrinsic mapping characteristics of neural topologies. General Regression Neural Network (GRNN) is one of the powerful neural network architectures which is utilized in this study. A large amount of field and experimental data including CPT results, plate load tests, direct shear box, grain size distribution and calculated data of overburden pressure was obtained from a large project in the United Arab Emirates. This data was used for the training and the validation of the neural network. A comparison was made between the obtained results from the ANN's approach, and some common traditional correlations that predict Φ and E from CPT results with respect to the actual results of the collected data. The results show that the ANN is a very powerful tool. Very good agreement was obtained between estimated results from ANN and actual measured results with comparison to other correlations available in the literature. The study recommends some easily available parameters that should be included in the estimation of the soil properties to improve the prediction models. It is shown that the use of friction ration in the estimation of Φ and the use of fines content in the estimation of E considerable improve the prediction models.Keywords: angle of internal friction, cone penetrating test, general regression neural network, soil modulus of elasticity
Procedia PDF Downloads 4152185 Conflicts of Interest in the Private Sector and the Significance of the Public Interest Test
Authors: Opemiposi Adegbulu
Abstract:
Conflicts of interest is an elusive, diverse and engaging subject, a cross-cutting problem of governance; all levels of governance, ranging from local to global, public to corporate or financial sectors. In all these areas, its mismanagement could lead to the distortion of decision-making processes, corrosion of trust and the weakening of administration. According to Professor Peters, an expert in the area, conflict of interest, a problem at the root of many scandals has “become a pervasive ethical concern in our professional, organisational, and political life”. Conflicts of interest corrode trust, and like in the public sector, trust is mandatory for the market, consumers/clients, shareholders and other stakeholders in the private sector. However, conflicts of interest in the private sector are distinct and must be treated in like manner when regulatory efforts are made to address them. The research looks at identifying conflicts of interest in the private sector and differentiating them from those in the public sector. The public interest is submitted as a criterion which allows for such differentiation. This is significant because it would for the use of tailor-made or sector-specific approaches to addressing this complex issue. This is conducted through extensive review of literature and theories on the definition of conflicts of interest. This study will employ theoretical, doctrinal and comparative methods. The nature of conflicts of interest in the private sector will be explored, through an analysis of the public sector where the notion of conflicts of interest appears more clearly identified, reasons, why they are of business ethics concern, will be advanced, and then, once again, looking at public sector solutions and other solutions, the study will identify ways of mitigating and managing conflicts in the private sector. An exploration of public sector conflicts of interest and solutions will be carried out because the typologies of conflicts of interest in both sectors appear very similar at the core and thus, lessons can be learnt with regards to the management of these issues in the private sector. Conflicts of interest corrode trust, and like in the public sector, trust is mandatory for the market, consumers/clients, shareholders and other stakeholders in the private sector. This research will then focus on some specific challenges to understanding and identifying conflicts of interest in the private sector; origin, diverging theories, the psychological barrier to the definition, similarities with public sector conflicts of interest due to the notions of corrosion of trust, ‘being in a particular kind of situation,’ etc. The notion of public interest will be submitted as a key element at the heart of the distinction between public sector and private sector conflicts of interests. It will then be proposed that the appreciation of the notion of conflicts of interest differ according to sector, country to country, based on the public interest test, using the United Kingdom (UK), the United States of America (US), France and the Philippines as illustrations.Keywords: conflicts of interest, corporate governance, global governance, public interest
Procedia PDF Downloads 401