Search results for: bayesian approach
12757 Customer Acquisition through Time-Aware Marketing Campaign Analysis in Banking Industry
Authors: Harneet Walia, Morteza Zihayat
Abstract:
Customer acquisition has become one of the critical issues of any business in the 21st century; having a healthy customer base is the essential asset of the bank business. Term deposits act as a major source of cheap funds for the banks to invest and benefit from interest rate arbitrage. To attract customers, the marketing campaigns at most financial institutions consist of multiple outbound telephonic calls with more than one contact to a customer which is a very time-consuming process. Therefore, customized direct marketing has become more critical than ever for attracting new clients. As customer acquisition is becoming more difficult to archive, having an intelligent and redefined list is necessary to sell a product smartly. Our aim of this research is to increase the effectiveness of campaigns by predicting customers who will most likely subscribe to the fixed deposit and suggest the most suitable month to reach out to customers. We design a Time Aware Upsell Prediction Framework (TAUPF) using two different approaches, with an aim to find the best approach and technique to build the prediction model. TAUPF is implemented using Upsell Prediction Approach (UPA) and Clustered Upsell Prediction Approach (CUPA). We also address the data imbalance problem by examining and comparing different methods of sampling (Up-sampling and down-sampling). Our results have shown building such a model is quite feasible and profitable for the financial institutions. The Time Aware Upsell Prediction Framework (TAUPF) can be easily used in any industry such as telecom, automobile, tourism, etc. where the TAUPF (Clustered Upsell Prediction Approach (CUPA) or Upsell Prediction Approach (UPA)) holds valid. In our case, CUPA books more reliable. As proven in our research, one of the most important challenges is to define measures which have enough predictive power as the subscription to a fixed deposit depends on highly ambiguous situations and cannot be easily isolated. While we have shown the practicality of time-aware upsell prediction model where financial institutions can benefit from contacting the customers at the specified month, further research needs to be done to understand the specific time of the day. In addition, a further empirical/pilot study on real live customer needs to be conducted to prove the effectiveness of the model in the real world.Keywords: customer acquisition, predictive analysis, targeted marketing, time-aware analysis
Procedia PDF Downloads 12412756 Data-Driven Market Segmentation in Hospitality Using Unsupervised Machine Learning
Authors: Rik van Leeuwen, Ger Koole
Abstract:
Within hospitality, marketing departments use segmentation to create tailored strategies to ensure personalized marketing. This study provides a data-driven approach by segmenting guest profiles via hierarchical clustering based on an extensive set of features. The industry requires understandable outcomes that contribute to adaptability for marketing departments to make data-driven decisions and ultimately driving profit. A marketing department specified a business question that guides the unsupervised machine learning algorithm. Features of guests change over time; therefore, there is a probability that guests transition from one segment to another. The purpose of the study is to provide steps in the process from raw data to actionable insights, which serve as a guideline for how hospitality companies can adopt an algorithmic approach.Keywords: hierarchical cluster analysis, hospitality, market segmentation
Procedia PDF Downloads 10812755 A Modified Open Posterior Approach for the Fixation of Posterior Cruciate Ligament Tibial Avulsion Fractures
Authors: Babak Mirzashahi, Arvin Najafi, Pejman Mansouri, Mahmoud Farzan
Abstract:
Background: The most effective treatment of posterior cruciate ligament (PCL) tears and the consequence of untreated PCL injuries remain controversial. Objectives: The aim of this study is to assess outcomes of fixation of tibial posterior cruciate ligament (PCL) avulsion fractures via a modified technique. Patients and Methods: From January, 2009 to March, 2012, there were 45 cases of PCL tibial avulsion fractures that were referred to our hospital and were managed through a modified open posterior approach. Fixation of Tibial PCL avulsion fractures were fixed by means of a lag screw and washer placed through our modified open posterior approach. Range of motion was begun on the first postoperative day. Clinical stability, range of motion, gastrocnemius muscle strength, radiographic investigation, and patient’s overall quality of life was analyzed at final follow up visit. Results: The average of overall musculoskeletal functional evaluation scores was 15 (range 3–35). All patients achieved union of their fracture and had clinically stable knees at the latest follow-up. The mean preoperative Lysholm score for 15 knees was 62 ± 8 (range, 50-75); the mean postoperative Lysholm score was 92± 7 (range, 75-101). A significant difference in Lysholm scores between preoperative and final follow-up evaluations was found (P < .05). At first-year follow-up, 42 (93%) patients revealed a difference of less than 10 mm in thigh circumference between their injured and healthy knees. Conclusions: The management of displaced large PCL avulsion fractures with placement of a cancellous lag screw with washer by means of the modified open posterior approach leads to satisfactory clinical, radiographic, and functional results and reduces the operation time and less blood loss. Level of evidence: IV.Keywords: posterior cruciate ligament, tibial fracture, lysholm knee score, patient outcome assessment
Procedia PDF Downloads 30112754 Common Laws Principles: A Way to Solve Global Environmental Change
Authors: Neelam Kadyan
Abstract:
Global environmental change is happening at an alarming rate in the present world. Floods, Tsunamis’, Avalanches, Change in Weather patterns, Rise in sea temperature, Landslides, are only few evidences of this change. To regulate such alarming growth of global change in environment certain regulatory system or mechanism is required. Nuisance,negligence,absolute liability,strict liability and trespass are some of the effective common law principles which are helpful in environmental problems. What we need today is sufficient law and adequate machinery to enforce the legal standards. Without law environmental standards cannot be enforced and once again there is need to adopt the common law approach in solving the problem of environmental change as through this approach the affected person can get compensation and as the same time it puts check on wrongdoer.Keywords: global environmental problems, nuisance, negligence, trespass, strict liability, absolute liability
Procedia PDF Downloads 56612753 Career Path: A Tool to Support Talent Management
Authors: Rashi Mahato
Abstract:
Talent management represents an organization’s effort to attract, develop and retain highly skilled and valuable employees. The goal is to have people with capabilities and commitment needed for current and future organizational success. The organizational talent pool is its managerial talent referred to as leadership pipeline. It is managed through various systems and processes to help the organization source, reward, evaluate, develop and move employees into various functions and roles. The pipeline bends, turns, and sometimes breaks as organizations identify who is 'ready now' and who is 'on track' for larger leadership roles. From this perspective, talent management designs structured approach and a robust mechanism for high potential employees to meet organization’s needs. The paper attempts to provide a roadmap and a structured approach towards building a high performing organization through well-defined career path. Managers want career paths to be defined, so that an adequate number of individuals may be identified and prepared to fill future vacancies. Once career progression patterns are identified, more systematic forecasting of talent requirements is possible. For the development of senior management talent or leadership team, career paths are needed as guidelines for talent management across functional and organizational lines. Career path is one of the important tools for talent management and aligning talent with business strategy. This paper briefly describes the approach for career path and the concept ofKeywords: career path, career path framework, lateral movement, talent management
Procedia PDF Downloads 21512752 Micromechanical Modelling of Ductile Damage with a Cohesive-Volumetric Approach
Authors: Noe Brice Nkoumbou Kaptchouang, Pierre-Guy Vincent, Yann Monerie
Abstract:
The present work addresses the modelling and the simulation of crack initiation and propagation in ductile materials which failed by void nucleation, growth, and coalescence. One of the current research frameworks on crack propagation is the use of cohesive-volumetric approach where the crack growth is modelled as a decohesion of two surfaces in a continuum material. In this framework, the material behavior is characterized by two constitutive relations, the volumetric constitutive law relating stress and strain, and a traction-separation law across a two-dimensional surface embedded in the three-dimensional continuum. Several cohesive models have been proposed for the simulation of crack growth in brittle materials. On the other hand, the application of cohesive models in modelling crack growth in ductile material is still a relatively open field. One idea developed in the literature is to identify the traction separation for ductile material based on the behavior of a continuously-deforming unit cell failing by void growth and coalescence. Following this method, the present study proposed a semi-analytical cohesive model for ductile material based on a micromechanical approach. The strain localization band prior to ductile failure is modelled as a cohesive band, and the Gurson-Tvergaard-Needleman plasticity model (GTN) is used to model the behavior of the cohesive band and derived a corresponding traction separation law. The numerical implementation of the model is realized using the non-smooth contact method (NSCD) where cohesive models are introduced as mixed boundary conditions between each volumetric finite element. The present approach is applied to the simulation of crack growth in nuclear ferritic steel. The model provides an alternative way to simulate crack propagation using the numerical efficiency of cohesive model with a traction separation law directly derived from porous continuous model.Keywords: ductile failure, cohesive model, GTN model, numerical simulation
Procedia PDF Downloads 14912751 Human Identification Using Local Roughness Patterns in Heartbeat Signal
Authors: Md. Khayrul Bashar, Md. Saiful Islam, Kimiko Yamashita, Yano Midori
Abstract:
Despite having some progress in human authentication, conventional biometrics (e.g., facial features, fingerprints, retinal scans, gait, voice patterns) are not robust against falsification because they are neither confidential nor secret to an individual. As a non-invasive tool, electrocardiogram (ECG) has recently shown a great potential in human recognition due to its unique rhythms characterizing the variability of human heart structures (chest geometry, sizes, and positions). Moreover, ECG has a real-time vitality characteristic that signifies the live signs, which ensure legitimate individual to be identified. However, the detection accuracy of the current ECG-based methods is not sufficient due to a high variability of the individual’s heartbeats at a different instance of time. These variations may occur due to muscle flexure, the change of mental or emotional states, and the change of sensor positions or long-term baseline shift during the recording of ECG signal. In this study, a new method is proposed for human identification, which is based on the extraction of the local roughness of ECG heartbeat signals. First ECG signal is preprocessed using a second order band-pass Butterworth filter having cut-off frequencies of 0.00025 and 0.04. A number of local binary patterns are then extracted by applying a moving neighborhood window along the ECG signal. At each instant of the ECG signal, the pattern is formed by comparing the ECG intensities at neighboring time points with the central intensity in the moving window. Then, binary weights are multiplied with the pattern to come up with the local roughness description of the signal. Finally, histograms are constructed that describe the heartbeat signals of individual subjects in the database. One advantage of the proposed feature is that it does not depend on the accuracy of detecting QRS complex, unlike the conventional methods. Supervised recognition methods are then designed using minimum distance to mean and Bayesian classifiers to identify authentic human subjects. An experiment with sixty (60) ECG signals from sixty adult subjects from National Metrology Institute of Germany (NMIG) - PTB database, showed that the proposed new method is promising compared to a conventional interval and amplitude feature-based method.Keywords: human identification, ECG biometrics, local roughness patterns, supervised classification
Procedia PDF Downloads 40412750 Asymmetrical Informative Estimation for Macroeconomic Model: Special Case in the Tourism Sector of Thailand
Authors: Chukiat Chaiboonsri, Satawat Wannapan
Abstract:
This paper used an asymmetric informative concept to apply in the macroeconomic model estimation of the tourism sector in Thailand. The variables used to statistically analyze are Thailand international and domestic tourism revenues, the expenditures of foreign and domestic tourists, service investments by private sectors, service investments by the government of Thailand, Thailand service imports and exports, and net service income transfers. All of data is a time-series index which was observed between 2002 and 2015. Empirically, the tourism multiplier and accelerator were estimated by two statistical approaches. The first was the result of the Generalized Method of Moments model (GMM) based on the assumption which the tourism market in Thailand had perfect information (Symmetrical data). The second was the result of the Maximum Entropy Bootstrapping approach (MEboot) based on the process that attempted to deal with imperfect information and reduced uncertainty in data observations (Asymmetrical data). In addition, the tourism leakages were investigated by a simple model based on the injections and leakages concept. The empirical findings represented the parameters computed from the MEboot approach which is different from the GMM method. However, both of the MEboot estimation and GMM model suggests that Thailand’s tourism sectors are in a period capable of stimulating the economy.Keywords: TThailand tourism, Maximum Entropy Bootstrapping approach, macroeconomic model, asymmetric information
Procedia PDF Downloads 29412749 The Agile Management and Its Relationship to Administrative Ambidexterity: An Applied Study in Alexandria Library
Authors: Samar Sheikhelsouk, Dina Abdel Qader, Nada Rizk
Abstract:
The plan of the organization may impede its progress and creativity, especially in the framework of its work in independent environments and fast-shifting markets, unless the leaders and minds of the organization use a set of practices, tools, and techniques encapsulated in so-called “agile methods” or “lightweight” methods. Thus, this research paper examines the agile management approach as a flexible and dynamic approach and its relationship to the administrative ambidexterity at the Alexandria library. The sample of the study is the employees of the Alexandria library. The study is expected to provide both theoretical and practical implications. The current study will bridge the gap between agile management and administrative approaches in the literature. The study will lead managers to comprehend how the role of agile management in establishing administrative ambidexterity in the organization.Keywords: agile management, administrative innovation, Alexandria library, Egypt
Procedia PDF Downloads 8512748 Generating 3D Battery Cathode Microstructures using Gaussian Mixture Models and Pix2Pix
Authors: Wesley Teskey, Vedran Glavas, Julian Wegener
Abstract:
Generating battery cathode microstructures is an important area of research, given the proliferation of the use of automotive batteries. Currently, finite element analysis (FEA) is often used for simulations of battery cathode microstructures before physical batteries can be manufactured and tested to verify the simulation results. Unfortunately, a key drawback of using FEA is that this method of simulation is very slow in terms of computational runtime. Generative AI offers the key advantage of speed when compared to FEA, and because of this, generative AI is capable of evaluating very large numbers of candidate microstructures. Given AI generated candidate microstructures, a subset of the promising microstructures can be selected for further validation using FEA. Leveraging the speed advantage of AI allows for a better final microstructural selection because high speed allows for the evaluation of many more candidate microstructures. For the approach presented, battery cathode 3D candidate microstructures are generated using Gaussian Mixture Models (GMMs) and pix2pix. This approach first uses GMMs to generate a population of spheres (representing the “active material” of the cathode). Once spheres have been sampled from the GMM, they are placed within a microstructure. Subsequently, the pix2pix sweeps over the 3D microstructure (iteratively) slice by slice and adds details to the microstructure to determine what portions of the microstructure will become electrolyte and what part of the microstructure will become binder. In this manner, each subsequent slice of the microstructure is evaluated using pix2pix, where the inputs into pix2pix are the previously processed layers of the microstructure. By feeding into pix2pix previously fully processed layers of the microstructure, pix2pix can be used to ensure candidate microstructures represent a realistic physical reality. More specifically, in order for the microstructure to represent a realistic physical reality, the locations of electrolyte and binder in each layer of the microstructure must reasonably match the locations of electrolyte and binder in previous layers to ensure geometric continuity. Using the above outlined approach, a 10x to 100x speed increase was possible when generating candidate microstructures using AI when compared to using a FEA only approach for this task. A key metric for evaluating microstructures was the battery specific power value that the microstructures would be able to produce. The best generative AI result obtained was a 12% increase in specific power for a candidate microstructure when compared to what a FEA only approach was capable of producing. This 12% increase in specific power was verified by FEA simulation.Keywords: finite element analysis, gaussian mixture models, generative design, Pix2Pix, structural design
Procedia PDF Downloads 10712747 Mechanical Characterization of Porcine Skin with the Finite Element Method Based Inverse Optimization Approach
Authors: Djamel Remache, Serge Dos Santos, Michael Cliez, Michel Gratton, Patrick Chabrand, Jean-Marie Rossi, Jean-Louis Milan
Abstract:
Skin tissue is an inhomogeneous and anisotropic material. Uniaxial tensile testing is one of the primary testing techniques for the mechanical characterization of skin at large scales. In order to predict the mechanical behavior of materials, the direct or inverse analytical approaches are often used. However, in case of an inhomogeneous and anisotropic material as skin tissue, analytical approaches are not able to provide solutions. The numerical simulation is thus necessary. In this work, the uniaxial tensile test and the FEM (finite element method) based inverse method were used to identify the anisotropic mechanical properties of porcine skin tissue. The uniaxial tensile experiments were performed using Instron 8800 tensile machine®. The uniaxial tensile test was simulated with FEM, and then the inverse optimization approach (or the inverse calibration) was used for the identification of mechanical properties of the samples. Experimentally results were compared to finite element solutions. The results showed that the finite element model predictions of the mechanical behavior of the tested skin samples were well correlated with experimental results.Keywords: mechanical skin tissue behavior, uniaxial tensile test, finite element analysis, inverse optimization approach
Procedia PDF Downloads 40812746 A Stepped Care mHealth-Based Approach for Obesity with Type 2 Diabetes in Clinical Health Psychology
Authors: Gianluca Castelnuovo, Giada Pietrabissa, Gian Mauro Manzoni, Margherita Novelli, Emanuele Maria Giusti, Roberto Cattivelli, Enrico Molinari
Abstract:
Diabesity could be defined as a new global epidemic of obesity and being overweight with many complications and chronic conditions. Such conditions include not only type 2 diabetes, but also cardiovascular diseases, hypertension, dyslipidemia, hypercholesterolemia, cancer, and various psychosocial and psychopathological disorders. The financial direct and indirect burden (considering also the clinical resources involved and the loss of productivity) is a real challenge in many Western health-care systems. Recently the Lancet journal defined diabetes as a 21st-century challenge. In order to promote patient compliance in diabesity treatment reducing costs, evidence-based interventions to improve weight-loss, maintain a healthy weight, and reduce related comorbidities combine different treatment approaches: dietetic, nutritional, physical, behavioral, psychological, and, in some situations, pharmacological and surgical. Moreover, new technologies can provide useful solutions in this multidisciplinary approach, above all in maintaining long-term compliance and adherence in order to ensure clinical efficacy. Psychological therapies with diet and exercise plans could better help patients in achieving weight loss outcomes, both inside hospitals and clinical centers and during out-patient follow-up sessions. In the management of chronic diseases clinical psychology play a key role due to the need of working on psychological conditions of patients, their families and their caregivers. mHealth approach could overcome limitations linked with the traditional, restricted and highly expensive in-patient treatment of many chronic pathologies: one of the best up-to-date application is the management of obesity with type 2 diabetes, where mHealth solutions can provide remote opportunities for enhancing weight reduction and reducing complications from clinical, organizational and economic perspectives. A stepped care mHealth-based approach is an interesting perspective in chronic care management of obesity with type 2 diabetes. One promising future direction could be treating obesity, considered as a chronic multifactorial disease, using a stepped-care approach: -mhealth or traditional based lifestyle psychoeducational and nutritional approach. -health professionals-driven multidisciplinary protocols tailored for each patient. -inpatient approach with the inclusion of drug therapies and other multidisciplinary treatments. -bariatric surgery with psychological and medical follow-up In the chronic care management of globesity mhealth solutions cannot substitute traditional approaches, but they can supplement some steps in clinical psychology and medicine both for obesity prevention and for weight loss management.Keywords: clinical health psychology, mhealth, obesity, type 2 diabetes, stepped care, chronic care management
Procedia PDF Downloads 34412745 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process
Authors: Shan-Hong Ying, Ying-Fang Wang
Abstract:
A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC
Procedia PDF Downloads 15012744 A Case for Q-Methodology: Teachers as Policymakers
Authors: Thiru Vandeyar
Abstract:
The present study set out to determine how Q methodology may be used as an inclusive education policy development process. Utilising Q-methodology as a strategy of inquiry, this qualitative instrumental case study set out to explore how teachers, as a crucial but often neglected human resource, may be included in developing policy. A social constructivist lens and the theoretical moorings of Proudford’s emancipatory approach to educational change anchored in teachers’ ‘writerly’ interpretation of policy text was employed. Findings suggest that Q-method is a unique research approach to include teachers’ voices in policy development. Second, that beliefs, attitudes, and professionalism of teachers to improve teaching and learning using ICT are integral to policy formulation. The study indicates that teachers have unique beliefs about what statements should constitute a school’s information and communication (ICT) policy. Teachers’ experiences are an extremely valuable resource in and should not be ignored in the policy formulation process.Keywords: teachers, q-methodology, education policy, ICT
Procedia PDF Downloads 8512743 Impact of Popular Passive Physiological Diversity Drivers on Thermo-Physiology
Authors: Ilango Thiagalingam, Erwann Yvin, Gabriel Crehan, Roch El Khoury
Abstract:
An experimental investigation is carried out in order to evaluate the relevance of a customization approach of the passive thermal mannikin. The promise of this approach consists in the following assumption: physiological differences lead to distinct thermo-physiological responses that explain a part of the thermal appraisal differences between people. Categorizing people and developing an appropriate thermal mannikin for each group would help to reduce the actual dispersion on the subjective thermal comfort perception. The present investigation indicates that popular passive physiological diversity drivers such as sex, age and BMI are not the correct parameters to consider. Indeed, very little or no discriminated global thermo-physiological responses arise from the physiological classification of the population using these parameters.Keywords: thermal comfort, thermo-physiology, customization, thermal mannikin
Procedia PDF Downloads 10012742 Diversity for Safety and Security of Autonomous Vehicles against Accidental and Deliberate Faults
Authors: Anil Ranjitbhai Patel, Clement John Shaji, Peter Liggesmeyer
Abstract:
Safety and security of autonomous vehicles (AVs) is a growing concern, first, due to the increased number of safety-critical functions taken over by automotive embedded systems; second, due to the increased exposure of the software-intensive systems to potential attackers; third, due to dynamic interaction in an uncertain and unknown environment at runtime which results in changed functional and non-functional properties of the system. Frequently occurring environmental uncertainties, random component failures, and compromise security of the AVs might result in hazardous events, sometimes even in an accident, if left undetected. Beyond these technical issues, we argue that the safety and security of AVs against accidental and deliberate faults are poorly understood and rarely implemented. One possible way to overcome this is through a well-known diversity approach. As an effective approach to increase safety and security, diversity has been widely used in the aviation, railway, and aerospace industries. Thus, the paper proposes fault-tolerance by diversity model takes into consideration the mitigation of accidental and deliberate faults by application of structure and variant redundancy. The model can be used to design the AVs with various types of diversity in hardware and software-based multi-version system. The paper evaluates the presented approach by employing an example from adaptive cruise control, followed by discussing the case study with initial findings.Keywords: autonomous vehicles, diversity, fault-tolerance, adaptive cruise control, safety, security
Procedia PDF Downloads 12812741 Environmental Impact of Gas Field Decommissioning
Authors: Muhammad Ahsan
Abstract:
The effective decommissioning of oil and gas fields and related assets is one of the most important challenges facing the oil and gas industry today and in the future. Decommissioning decisions can no longer be avoided by the operators and the industry as a whole. Decommissioning yields no return on investment and carries significant regulatory liabilities. The main objective of this paper is to provide an approach and mechanism for the estimation of emissions associated with decommissioning of Oil and Gas fields. The model uses gate to gate approach and considers field life from development phase up to asset end life. The model incorporates decommissioning processes which includes; well plugging, plant dismantling, wellhead, and pipeline dismantling, cutting and temporary fabrication, new manufacturing from raw material and recycling of metals. The results of the GHG emissions during decommissioning phase are 2.31x10-2 Kg CO2 Eq. per Mcf of the produced natural gas. Well plug and abandonment evolved to be the most GHG emitting activity with 84.7% of total field decommissioning operational emissions.Keywords: LCA (life cycle analysis), gas field, decommissioning, emissions
Procedia PDF Downloads 18612740 Key Success Factors of Customer Relationship Management: An Empirical Study of Tunisian Firms
Authors: Khlif Hamadi
Abstract:
Customer Relationship Management has become the main interest of researchers and practitioners especially in the domains of Management and Information Systems (IS). This paper is an overview of success factors that could facilitate successful adoption of CRM. There are 2 factors: the organizational climate and the capacity for innovation. The survey was developed with 200 CRM users. Empirical research is in the positivist paradigm based on the hypothetico-deductive method. Indeed, the approach adopted is the quantitative approach based on a questionnaire complied by Tunisian companies operating in different sectors of activity. For the data analyses, the structural equations method was used to conduct our exploratory and confirmatory analysis. The results revealed that the creative organizational climate and high innovation capacity positively influence the success of CRM practice.Keywords: CRM practices, innovation capacity, organizational climate, the structural equation
Procedia PDF Downloads 11712739 Shopping Behaviour of Ethnic Groups in Indian Culture
Authors: Hari Govindmishra, Sarabjot Singh
Abstract:
The study offers an approach to understand different determinants of shopping behaviour, and the effect of ethnicity on shopping behaviour. The results reveal that the Indian culture is composite in nature and because of which there is no difference between different ethnic groups in their preference for three shopping behaviour determinants, viz., status consciousness, need for touch and companion opinion. The research model investigates the relevant relationship between these constructs by using a structural equation modelling approach, which reveals that status consciousness, need for touch and companion opinion are significant determinants of shopping behaviour. Consequently, the shopping behaviour managers have to understand the collective nature of Indian ethnic consumers in their shopping behaviour.Keywords: ethnic groups, status consciousness, companion opinion, need for touch, shopping behaviour
Procedia PDF Downloads 45112738 Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources
Authors: Jolly Puri, Shiv Prasad Yadav
Abstract:
Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach.Keywords: multi-component DEA, fuzzy multi-component DEA, fuzzy resources, decision making units (DMUs)
Procedia PDF Downloads 40712737 Recidivism in Brazil: Exploring the Case of the Association of Protection and Assistance to Convicts Methodology
Authors: Robyn Heitzman
Abstract:
The traditional method of punitive justice in Brazil has failed to prevent high levels of recidivism. Combined with overcrowding, a lack of resources, and human rights abuses, the conventional prison approach in Brazil is being questioned; one alternative approach is the association of protection and assistance to convicts (APAC) method. Justice -according to the principles of the APAC methodology- is served through education, reformation, and human development. The model has reported relatively low levels of recidivism and has been internationally recognised for its progress. Through qualitative research such as interviews and case studies, this paper explains why, applying the theory of restorative justice, the APAC methodology yields lower rates of recidivism compared to the traditional models of prisons in Brazil.Keywords: Brazil, justice, prisons, restorative
Procedia PDF Downloads 10912736 Structural Testing and the Finite Element Modelling of Anchors Loaded Against Partially Confined Surfaces
Authors: Ali Karrech, Alberto Puccini, Ben Galvin, Davide Galli
Abstract:
This paper summarises the laboratory tests, numerical models and statistical approach developed to investigate the behaviour of concrete blocks loaded in shear through metallic anchors. This research is proposed to bridge a gap in the state of the art and practice related to anchors loaded against partially confined concrete surfaces. Eight concrete blocks (420 mm x 500 mm x 1000 mm) with 150 and/or 250 deep anchors were tested. The stainless-steel anchors of diameter 16 mm were bonded with HIT-RE 500 V4 injection epoxy resin and were subjected to shear loading against partially supported edges. In addition, finite element models were constructed to validate the laboratory tests and explore the influence of key parameters such as anchor depth, anchor distance from the edge, and compressive strength on the stability of the block. Upon their validation experimentally, the numerical results were used to populate, develop and interpret a systematic parametric study based on the Design of Experiment approach through the Box-Behnken design and Response Surface Methodology. An empirical model has been derived based on this approach, which predicts the load capacity with the desirable intervals of confidence.Keywords: finite element modelling, design of experiment, response surface methodology, Box-Behnken design, empirical model, interval of confidence, load capacity
Procedia PDF Downloads 2412735 Number of Parametrization of Discrete-Time Systems without Unit-Delay Element: Single-Input Single-Output Case
Authors: Kazuyoshi Mori
Abstract:
In this paper, we consider the parametrization of the discrete-time systems without the unit-delay element within the framework of the factorization approach. In the parametrization, we investigate the number of required parameters. We consider single-input single-output systems in this paper. By the investigation, we find, on the discrete-time systems without the unit-delay element, three cases that are (1) there exist plants which require only one parameter and (2) two parameters, and (3) the number of parameters is at most three.Keywords: factorization approach, discrete-time system, parameterization of stabilizing controllers, system without unit-delay
Procedia PDF Downloads 24012734 Modern Seismic Design Approach for Buildings with Hysteretic Dampers
Authors: Vanessa A. Segovia, Sonia E. Ruiz
Abstract:
The use of energy dissipation systems for seismic applications has increased worldwide, thus it is necessary to develop practical and modern criteria for their optimal design. Here, a direct displacement-based seismic design approach for frame buildings with hysteretic energy dissipation systems (HEDS) is applied. The building is constituted by two individual structural systems consisting of: 1) A main elastic structural frame designed for service loads and 2) A secondary system, corresponding to the HEDS, that controls the effects of lateral loads. The procedure implies to control two design parameters: A) The stiffness ratio (α=K_frame/K_(total system)), and B) The strength ratio (γ= V_damper / V_(total system)). The proposed damage-controlled approach contributes to the design of a more sustainable and resilient building because the structural damage is concentrated on the HEDS. The reduction of the design displacement spectrum is done by means of a damping factor (recently published) for elastic structural systems with HEDS, located in Mexico City. Two limit states are verified: Serviceability and near collapse. Instead of the traditional trial-error approach, a procedure that allows the designer to establish the preliminary sizes of the structural elements of both systems is proposed. The design methodology is applied to an 8-story steel building with buckling restrained braces, located in soft soil of Mexico City. With the aim of choosing the optimal design parameters, a parametric study is developed considering different values of α and γ. The simplified methodology is for preliminary sizing, design, and evaluation of the effectiveness of HEDS, and it constitutes a modern and practical tool that enables the structural designer to select the best design parameters.Keywords: damage-controlled buildings, direct displacement-based seismic design, optimal hysteretic energy dissipation systems, hysteretic dampers
Procedia PDF Downloads 48312733 Multidimensional Item Response Theory Models for Practical Application in Large Tests Designed to Measure Multiple Constructs
Authors: Maria Fernanda Ordoñez Martinez, Alvaro Mauricio Montenegro
Abstract:
This work presents a statistical methodology for measuring and founding constructs in Latent Semantic Analysis. This approach uses the qualities of Factor Analysis in binary data with interpretations present on Item Response Theory. More precisely, we propose initially reducing dimensionality with specific use of Principal Component Analysis for the linguistic data and then, producing axes of groups made from a clustering analysis of the semantic data. This approach allows the user to give meaning to previous clusters and found the real latent structure presented by data. The methodology is applied in a set of real semantic data presenting impressive results for the coherence, speed and precision.Keywords: semantic analysis, factorial analysis, dimension reduction, penalized logistic regression
Procedia PDF Downloads 44312732 The Use of Drones in Measuring Environmental Impacts of the Forest Garden Approach
Authors: Andrew J. Zacharias
Abstract:
The forest garden approach (FGA) was established by Trees for the Future (TREES) over the organization’s 30 years of agroforestry projects in Sub-Saharan Africa. This method transforms traditional agricultural systems into highly managed gardens that produce food and marketable products year-round. The effects of the FGA on food security, dietary diversity, and economic resilience have been measured closely, and TREES has begun to closely monitor the environmental impacts through the use of sensors mounted on unmanned aerial vehicles, commonly known as 'drones'. These drones collect thousands of pictures to create 3-D models in both the visible and the near-infrared wavelengths. Analysis of these models provides TREES with quantitative and qualitative evidence of improvements to the annual above-ground biomass and leaf area indices, as measured in-situ using NDVI calculations.Keywords: agroforestry, biomass, drones, NDVI
Procedia PDF Downloads 15712731 Fair Federated Learning in Wireless Communications
Authors: Shayan Mohajer Hamidi
Abstract:
Federated Learning (FL) has emerged as a promising paradigm for training machine learning models on distributed data without the need for centralized data aggregation. In the realm of wireless communications, FL has the potential to leverage the vast amounts of data generated by wireless devices to improve model performance and enable intelligent applications. However, the fairness aspect of FL in wireless communications remains largely unexplored. This abstract presents an idea for fair federated learning in wireless communications, addressing the challenges of imbalanced data distribution, privacy preservation, and resource allocation. Firstly, the proposed approach aims to tackle the issue of imbalanced data distribution in wireless networks. In typical FL scenarios, the distribution of data across wireless devices can be highly skewed, resulting in unfair model updates. To address this, we propose a weighted aggregation strategy that assigns higher importance to devices with fewer samples during the aggregation process. By incorporating fairness-aware weighting mechanisms, the proposed approach ensures that each participating device's contribution is proportional to its data distribution, thereby mitigating the impact of data imbalance on model performance. Secondly, privacy preservation is a critical concern in federated learning, especially in wireless communications where sensitive user data is involved. The proposed approach incorporates privacy-enhancing techniques, such as differential privacy, to protect user privacy during the model training process. By adding carefully calibrated noise to the gradient updates, the proposed approach ensures that the privacy of individual devices is preserved without compromising the overall model accuracy. Moreover, the approach considers the heterogeneity of devices in terms of computational capabilities and energy constraints, allowing devices to adaptively adjust the level of privacy preservation to strike a balance between privacy and utility. Thirdly, efficient resource allocation is crucial for federated learning in wireless communications, as devices operate under limited bandwidth, energy, and computational resources. The proposed approach leverages optimization techniques to allocate resources effectively among the participating devices, considering factors such as data quality, network conditions, and device capabilities. By intelligently distributing the computational load, communication bandwidth, and energy consumption, the proposed approach minimizes resource wastage and ensures a fair and efficient FL process in wireless networks. To evaluate the performance of the proposed fair federated learning approach, extensive simulations and experiments will be conducted. The experiments will involve a diverse set of wireless devices, ranging from smartphones to Internet of Things (IoT) devices, operating in various scenarios with different data distributions and network conditions. The evaluation metrics will include model accuracy, fairness measures, privacy preservation, and resource utilization. The expected outcomes of this research include improved model performance, fair allocation of resources, enhanced privacy preservation, and a better understanding of the challenges and solutions for fair federated learning in wireless communications. The proposed approach has the potential to revolutionize wireless communication systems by enabling intelligent applications while addressing fairness concerns and preserving user privacy.Keywords: federated learning, wireless communications, fairness, imbalanced data, privacy preservation, resource allocation, differential privacy, optimization
Procedia PDF Downloads 7512730 The Development Learning Module Physics based on Guided Inquiry Approach on Model Cooperative Learning Type STAD (Student Team Achievement Division) in the Main Subject of Temperature and Heat
Authors: Fani Firmahandari
Abstract:
The development learning module physics based on guided inquiry approach on model cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat. The research development aimed to produce physics learning module based on guided cooperative learning type STAD (Student Team Achievement Division) in the main subject of temperature and heat to the student in X class. The research method used Research and Development approach. The development procedure of this module includes potential problems, data collection to meet the need, product design, and feasibility of this module. The impact of learning can be seen or observed clearly when the learning process takes place, the teachers or the students already implemented measures cooperative learning model type STAD, so that the learning process goes well, the interaction of teachers and students, students with student looks good, besides that students can interact and work together in group.Keywords: cooperative learning type STAD (student team achievement division), development, inquiry, interaction students
Procedia PDF Downloads 36012729 A Comparative Study between Displacement and Strain Based Formulated Finite Elements Applied to the Analysis of Thin Shell Structures
Authors: Djamal Hamadi, Oussama Temami, Abdallah Zatar, Sifeddine Abderrahmani
Abstract:
The analysis and design of thin shell structures is a topic of interest in a variety of engineering applications. In structural mechanics problems the analyst seeks to determine the distribution of stresses throughout the structure to be designed. It is also necessary to calculate the displacements of certain points of the structure to ensure that specified allowable values are not exceeded. In this paper a comparative study between displacement and strain based finite elements applied to the analysis of some thin shell structures is presented. The results obtained from some examples show the efficiency and the performance of the strain based approach compared to the well known displacement formulation.Keywords: displacement formulation, finite elements, strain based approach, shell structures
Procedia PDF Downloads 41912728 Adapted Intersection over Union: A Generalized Metric for Evaluating Unsupervised Classification Models
Authors: Prajwal Prakash Vasisht, Sharath Rajamurthy, Nishanth Dara
Abstract:
In a supervised machine learning approach, metrics such as precision, accuracy, and coverage can be calculated using ground truth labels to help in model tuning, evaluation, and selection. In an unsupervised setting, however, where the data has no ground truth, there are few interpretable metrics that can guide us to do the same. Our approach creates a framework to adapt the Intersection over Union metric, referred to as Adapted IoU, usually used to evaluate supervised learning models, into the unsupervised domain, which solves the problem by factoring in subject matter expertise and intuition about the ideal output from the model. This metric essentially provides a scale that allows us to compare the performance across numerous unsupervised models or tune hyper-parameters and compare different versions of the same model.Keywords: general metric, unsupervised learning, classification, intersection over union
Procedia PDF Downloads 47