Search results for: optical vortices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1760

Search results for: optical vortices

530 Direct Visualization of Shear Induced Structures in Wormlike Micellar Solutions by Microfluidics and Advanced Microscopy

Authors: Carla Caiazza, Valentina Preziosi, Giovanna Tomaiuolo, Denis O'Sullivan, Vincenzo Guida, Stefano Guido

Abstract:

In the last decades, wormlike micellar solutions have been extensively used to tune the rheological behavior of home care and personal care products. This and other successful applications underlie the growing attention that both basic and applied research are devoting to these systems, and to their unique rheological and flow properties. One of the key research topics is the occurrence of flow instabilities at high shear rates (such as shear banding), with the possibility of appearance of flow induced structures. In this scenario, microfluidics is a powerful tool to get a deeper insight into the flow behavior of a wormlike micellar solution, as the high confinement of a microfluidic device facilitates the onset of the flow instabilities; furthermore, thanks to its small dimensions, it can be coupled with optical microscopy, allowing a direct visualization of flow structuring phenomena. Here, the flow of a widely used wormlike micellar solution through a glass capillary has been studied, by coupling the microfluidic device with μPIV techniques. The direct visualization of flow-induced structures and the flow visualization analysis highlight a relationship between solution structuring and the onset of discontinuities in the velocity profile.

Keywords: flow instabilities, flow-induced structures, μPIV, wormlike micelles

Procedia PDF Downloads 323
529 Metallic Coating for Carbon Fiber Reinforced Polymer Matrix Composite Substrate

Authors: Amine Rezzoug, Said Abdi, Nadjet Bouhelal, Ismail Daoud

Abstract:

This paper investigates the application of metallic coatings on high fiber volume fraction carbon/epoxy polymer matrix composites. For the grip of the metallic layer, a method of modifying the surface of the composite by introducing a mixture of copper and steel powder (filler powders) which can reduce the impact of thermal spray particles. The powder was introduced to the surface at the time of the forming. Arc spray was used to project the zinc coating layer. The substrate was grit blasted to avoid poor adherence. The porosity, microstructure, and morphology of layers are characterized by optical microscopy, SEM and image analysis. The samples were studied also in terms of hardness and erosion resistance. This investigation did not reveal any visible evidence damage to the substrates. The hardness of zinc layer was about 25.94 MPa and the porosity was around (∼6.70%). The erosion test showed that the zinc coating improves the resistance to erosion. Based on the results obtained, we can conclude that thermal spraying allows the production of protective coating on PMC. Zinc coating has been identified as a compatible material with the substrate. The filler powders layer protects the substrate from the impact of hot particles and allows avoiding the rupture of brittle carbon fibers.

Keywords: arc spray, coating, composite, erosion

Procedia PDF Downloads 422
528 Microstructure Analysis and Multiple Photoluminescence in High Temperature Electronic Conducting InZrZnO Thin Films

Authors: P. Jayaram, Prasoon Prasannan, N. K. Deepak, P. P. Pradyumnan

Abstract:

Indium and Zirconium co doped zinc oxide (InZrZnO) thin films are prepared by chemical spray pyrolysis method on pre-heated quartz substrates. The films are subjected to vacuum annealing at 400ᵒC for three hours in an appropriate air (10-5mbar) ambience after deposition. X-ray diffraction, Scanning electron microscopy, energy dispersive spectra and photoluminescence are used to characterize the films. Temperature dependent electrical measurements are conducted on the films and the films exhibit exceptional conductivity at higher temperatures. XRD analysis shows that all the films prepared in this work have hexagonal wurtzite structure. The average crystallite sizes of the films were calculated using Scherrer’s formula, and uniform deformation model (UDM) of Williamson-Hall method is used to establish the micro-strain values. The dislocation density is determined from the Williamson and Smallman’s formula. Intense, broad and strongly coupled multiple photoluminescence were observed from photoluminescence spectra. PL indicated relatively high concentration defective oxygen and Zn vacancies in the film composition. Strongly coupled ultraviolet near blue emissions authenticate that the dopants are capable of inducing modulated free excitonic (FX), donor accepter pair (DAP) and longitudinal optical phonon emissions in thin films.

Keywords: PL, SEM, TCOs, thin films, XRD

Procedia PDF Downloads 214
527 Analysis and Study of Growth Rates of Indigenous Phytoplankton in Enriched Spent Oil Impacted Ecosystems in South Western Nigeria Coastal Waters

Authors: Lauretta Ighedo, Bukola Okunade, Monisade Okunade

Abstract:

In order to determine the effect of spent oil on the growth rates of indigenous phytoplankton in an aquaculture pond, a study was carried out on varying concentrations of samples using the bioassay procedure for a period of 14 days. Four divisions Cyanophyta, Chlorophyta, Euglenophyta and Bacillariophyta were observed in the water samples collected from the Aquaculture pond. The growth response was measured using a microprocessor photocolorimeter at optical density of 680nm. A general assessment of spent oil contaminated samples showed either a sharp rise or fall in growth rate from day 0 to day 2 followed by increased growth response for most higher concentration of pollutants up to Day 8, then fluctuations in the growth response pattern for the other days. There was no marked significant difference in the growth response of phytoplankton in the spent oil impacted water samples. The lowest and highest phytoplankton abundance was recorded in 10/90ml and 2.5/97.5ml spent oil impacted water sample respectively. Oscillatoria limosa, Chlorella sp., Microcystis aeruginosa, Nitzschia sp. and Navicula sp. showed high tolerance to oil pollution and these species used as bioindicators of an organic polluted environment increased abundantly and can therefore be employed in the cleanup and bioremediation process of an oil polluted freshwater body.

Keywords: phytoplankton, pollution, species abundance, environmental characteristics

Procedia PDF Downloads 344
526 Comparative Study of Wear and Friction Behavior of Tricalcium Phosphate-Fluorapatite Bioceramic

Authors: Rym Taktak, Achwek Elghazel, Jamel Bouaziz

Abstract:

In the present work, we explored the potential of tribological behavior of tricalcium phosphate-Fluorapatite (β Tcp-Fap) bioceramic which has attracted considerable attention for orthopedics and dental applications. The approximate representatives Fap-βTcp were respectively [{13.26 wt%, 86.74 wt%} {19.9 wt%, 80.1 wt%},{ 26.52 wt%, 73.48 wt%}, {33.16 wt%, 66.84 wt%} and {40 wt%, 60 wt%}. The effects of Fluorapatite additives on friction and wear behavior were studied and discussed. The wear test was conducted using pion-disk tribometer at room temperature under dry condition using a constant sliding speed of 0,063 m/s, and three loads 3, 5 and 8 N. The wear rate and friction coefficient of β Tcp with different additive amounts were compared. An Alumina ball specimens were used as the pin and flat surface β Tcp-Fap specimens as the antagonist counterface. The results show a huge difference between the wear rate of β TCP samples and the other β TCP-Fap composites for all normal forces applied. This result shows the beneficial effect of fluorapatite on the tribological behavior of the β TCP. Moreover, we note that β Tcp-26% Fap specimens exhibit, under dry condition, the lower friction coefficient and the smaller wear rate than other biocomposites. Thereby, the friction and wear behavior is influenced by the addition of fluorapatite, the applied normal force, and the sliding velocity. To extend the understanding of the wear process, the surface topography of β Tcp-26% Fap specimens and the wear track obtained during the wear tests were studied using a surface profilometer, optical microscopy, and scanning electron microscopy.

Keywords: alumina, bioceramic, friction and wear test, tricalcium phosphate

Procedia PDF Downloads 215
525 Synthesis of Pyrimidine-Based Polymers Consist of 2-{3-[4,6-Bis-(4-Hexyl-Thiophen-2-yl)-Pyrimidin-2-yl]Phenyl}-Thiazolo[5,4-B]Pyridine as Electron-Deficient Unit for Photovoltaics

Authors: Hyehyeon Lee, Juwon Yu, Juwon Kim, Raquel Kristina Leoni Tumiar, Taewon Kim, Juae Kim, Hongsuk Suh

Abstract:

Recently, the development of photovoltaics is rapidly accelerating as one of green energy sources. So we designed pyrimidine-based polymers with 2-{3-[4,6-bis-(4-hexyl-thiophen-2-yl)-pyrimidin-2-yl]-phenyl}-thiazolo[5,4-b]pyridine (mPTP), as active layer substances for polymer solar cells. Polymers with push-pull types, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI, are comprised of electron pushing unit using benzo[1,2-b;3,4-b’]dithiophene (BDT) or 4,8-bis(5-thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene (BDTT) or 6-(2-thienyl)-4H-thieno[3,2-b]indole(TTI) and electron pulling unit using mPTP. The device including mPTPTTI-12 indicated a VOC of 0.67 V, a JSC of 2.16 mA/cm², and a fill factor (FF) of 0.30, giving a power conversion efficiency (PCE) of 0.43%. The device including mPTPBDT-EH indicated a VOC of 0.56 V, a JSC of 2.64 mA/cm², and an FF of 0.30, giving a PCE of 0.44%. The device including mPTPBDTT-EH indicated a VOC of 0.44 V, a JSC of 2.45 mA/cm², and an FF of 0.29, giving a PCE of 0.31%. The device including mPTPTTI indicated a VOC of 0.72 V, a JSC of 4.95 mA/cm², and an FF of 0.32, giving a PCE of 1.15%. Therefore, mPTPBDT-12, mPTPBDT-EH, mPTPBDTT-EH and mPTPTTI were fabricated by Stille polymerization. Their optical properties were measured and the results show that pyrimidine-based polymers have a great promise to act as donor of active layer.

Keywords: polymer solar cells, photovoltaics, thiazolopyridine, conjugated polymer

Procedia PDF Downloads 249
524 Controlled Conductivity of Poly (3,4-Ethylenedioxythiophene): Poly (4-Styrene Sulfonate) Composites with Polyester

Authors: Kazui Sasakii, Seira Mormune-Moriya, Hiroaki Tanahashi, Shigeji Kongaya

Abstract:

Poly (3.4-ethylenedioxythiophene) doped with poly (4-styrene sulfonate) (PEDOT: PSS) attracted a great deal of attention because of its unique characteristics of flexibility, optical properties, heat resistance and colloidal dispersion in water. It is well known that when high boiling solvents such as ethylene glycol or dimethyl sulfoxide are added as a secondary dopant to the micellar structure, PEDOT microcrystallizes and becomes highly conductive. In previous study bis(4-hydroxyphenyl) sulfone (BPS) was used as a secondary dopant for PEDOT:PSS and the enhancement of the conductivity was revealed. However, ductility is one of the serious issues which limited the application of PEDOT:PSS/BPS. So far, the composition with polymer binders has been conducted, however, polymer binders decrease the conductivity of the materials. In this study, PEDOT: PSS composites with polyester (PEs) were prepared by a simple aqueous process using PEs emulsion. The structural studies revealed that PEDOT:PSS and PEs were homogeneously distributed in the composites. It was found that the properties of PEDOT:PSS were remarkably enhanced by the incorporation of PEs. According to the tensile test, the ductility of PEDOT:PSS was remarkably improved. Interestingly, the conductivity of PEDOT:PSS/PEs composites was higher than that of neat PEDOT:PSS. For example, the conductivity increased by 8% at PEs content of 25 wt%. Since PEDOT:PSS were homogeneously dispersed on the surface of PEs particles, it was assumed that the conductive pathway was constructed by PEs particles in the nanocomposites. Therefore, a significant increase in conductivity was achieved.

Keywords: polymer composites, conductivity, PEDOT:PSS, polyester

Procedia PDF Downloads 89
523 Microstructural and Mechanical Property Investigation on SS316L-Cu Graded Deposition Prepared using Wire Arc Additive Manufacturing

Authors: Bunty Tomar, Shiva S.

Abstract:

Fabrication of steel and copper-based functionally graded material (FGM) through cold metal transfer-based wire arc additive manufacturing is a novel exploration. Components combining Cu and steel show significant usage in many industrial applications as they combine high corrosion resistance, ductility, thermal conductivity, and wear resistance to excellent mechanical properties. Joining steel and copper is challenging due to the mismatch in their thermo-mechanical properties. In this experiment, a functionally graded material (FGM) structure of pure copper (Cu) and 316L stainless steel (SS) was successfully developed using cold metal transfer-based wire arc additive manufacturing (CMT-WAAM). The interface of the fabricated samples was characterized under optical microscopy, field emission scanning electron microscopy, and X-ray diffraction techniques. Detailed EBSD and TEM analysis was performed to analyze the grain orientation, strain distribution, grain boundary misorientations, and formation of metastable and intermetallic phases. Mechanical characteristics of deposits was also analyzed using tensile and wear testing. This works paves the way to use CMT-WAAM to fabricate steel/copper FGMs.

Keywords: wire arc additive manufacturing (waam), cold metal transfer (cmt), metals and alloys, mechanical properties, characterization

Procedia PDF Downloads 50
522 Investigation on Corrosion Behavior of Copper Brazed Joints

Authors: A. M. Aminazad, A. M. Hadian, F. Ghasimakbari

Abstract:

DHP (Deoxidized High Phosphorus )copper is widely used in various heat transfer units such as, air conditioners refrigerators, evaporators and condensers. Copper sheets and tubes (ISODHP) were brazed with four different brazing alloys. Corrosion resistances of the joints were examined by polarization and salt spray tests. The selected fillers consisted of three silver-based brazing alloys (hard solder); AWS-BCu5 BAg8, DINLAg30, and a copper-based filler AWS BCuP2. All the joints were brazed utilizing four different brazing processes including furnace brazing under argon, vacuum, air atmosphere and torch brazing. All of the fillers were used with and without flux. The microstructure of the brazed sheets was examined using both optical and scanning electron microscope (SEM). Hardness and leak tests were carried out on all the brazed tubes. In all three silver brazing alloys selective and galvanic corrosion were observed in filler metals, but in copper phosphor alloys the copper adjacent to the joints were noticeably corroded by pitting method. Microstructure of damaged area showed selective attack of copper lamellae as well. Interfacial attack was observed along boundaries as well as copper attack within the filler metal itself. It was found that the samples brazed with BAg5 filler metal using vacuum furnace show a higher resistance to corrosion. They also have a good ductility in the brazed zone.

Keywords: copper, brazing, corrosion, filler metal

Procedia PDF Downloads 439
521 Synthesis and Characterization of Some New Diamines and Their Thermally Stable Polyimides

Authors: Zill-E-Huma, Humaira Siddiqi

Abstract:

This paper comprises of synthesis of thermally stable, mechanically strong polyimides. The polyimides were considered as most diverse class of polymers having unlimited applications. They were widely used as optical wave guides, in aerospace, for gas separation, as biomaterials and in electronics. Here the focus was to increase thermal stability and mechanical strength of polyimides. For this purpose two monomers were synthesized and were further polymerized via anhydrides to polyimides. The monomer diamines were synthesized by nucleophilic attack of aniline/2-fluoro aniline on hydroxy benzaldehydes. The two diamines synthesized were 3-(bis(4-aminophenyl) methyl) phenol (3OHDA) and 4-(bis(4-amino-3-fluorophenyl) methyl) phenol (2F4OHDA). These diamines were then reacted with dianhydrides to get polyimides. Two neat polyimides of both diamines with pyromellitic dianhydride (PMDA) and one neat polyimide of 4'-(Hexafluoroisopropylidene) diphthalic dianhydride (6FDA) with 3OHDA were synthesized. To compare the properties of synthesized polyimides like thermal stability, rigidity, flexibility, toughness etc. a commercial diamine oxydianiline (ODA) was used. Polyimides from oxydianiline were basically rigid. Nine different polyimide blends were synthesized from 3OHDA and commercial diamines ODA to have a better comparison of properties. TGA and mechanical testing results showed that with the increase in the percentage of 3OHDA in comparison to ODA the flexibility, toughness, strength of polyimide, thermal stability goes on increasing. So, synthesized diamines were responsible for improvement of properties of polyimides.

Keywords: diamines, dianhydrides, oxydianiline, polyimides

Procedia PDF Downloads 275
520 Design and Development of 5-DOF Color Sorting Manipulator for Industrial Applications

Authors: Atef A. Ata, Sohair F. Rezeka, Ahmed El-Shenawy, Mohammed Diab

Abstract:

Image processing in today’s world grabs massive attentions as it leads to possibilities of broaden application in many fields of high technology. The real challenge is how to improve existing sorting system applications which consists of two integrated stations of processing and handling with a new image processing feature. Existing color sorting techniques use a set of inductive, capacitive, and optical sensors to differentiate object color. This research presents a mechatronics color sorting system solution with the application of image processing. A 5-DOF robot arm is designed and developed with pick and place operation to be main part of the color sorting system. Image processing procedure senses the circular objects in an image captured in real time by a webcam attached at the end-effector then extracts color and position information out of it. This information is passed as a sequence of sorting commands to the manipulator that has pick-and-place mechanism. Performance analysis proves that this color based object sorting system works very accurate under ideal condition in term of adequate illumination, circular objects shape and color. The circular objects tested for sorting are red, green and blue. For non-ideal condition, such as unspecified color the accuracy reduces to 80%.

Keywords: robotics manipulator, 5-DOF manipulator, image processing, color sorting, pick-and-place

Procedia PDF Downloads 343
519 Mechanical Properties of Spark Plasma Sintered 2024 AA Reinforced with TiB₂ and Nano Yttrium

Authors: Suresh Vidyasagar Chevuri, D. B. Karunakar Chevuri

Abstract:

The main advantages of 'Metal Matrix Nano Composites (MMNCs)' include excellent mechanical performance, good wear resistance, low creep rate, etc. The method of fabrication of MMNCs is quite a challenge, which includes processing techniques like Spark Plasma Sintering (SPS), etc. The objective of the present work is to fabricate aluminum based MMNCs with the addition of small amounts of yttrium using Spark Plasma Sintering and to evaluate their mechanical and microstructure properties. Samples of 2024 AA with yttrium ranging from 0.1% to 0.5 wt% keeping 1 wt% TiB2 constant are fabricated by Spark Plasma Sintering (SPS). The mechanical property like hardness is determined using Vickers hardness testing machine. The metallurgical characterization of the samples is evaluated by Optical Microscopy (OM), Field Emission Scanning Electron Microscopy (FE-SEM) and X-Ray Diffraction (XRD). Unreinforced 2024 AA sample is also fabricated as a benchmark to compare its properties with that of the composite developed. It is found that the yttrium addition increases the above-mentioned properties to some extent and then decreases gradually when yttrium wt% increases beyond a point between 0.3 and 0.4 wt%. High density is achieved in the samples fabricated by spark plasma sintering when compared to any other fabrication route, and uniform distribution of yttrium is observed.

Keywords: spark plasma sintering, 2024 AA, yttrium addition, microstructure characterization, mechanical properties

Procedia PDF Downloads 207
518 Application of Electrochemically Prepared PPy/MWCNT:MnO2 Nano-Composite Film in Microbial Fuel Cells for Sustainable Power Generation

Authors: Rajeev jain, D. C. Tiwari, Praveena Mishra

Abstract:

Nano-composite of polypyrrole/multiwalled carbon nanotubes:mangenese oxide (PPy/MWCNT:MnO2) was electrochemically deposited on the surface of carbon cloth (CC). The nano-composite was structurally characterized by FTIR, SEM, TEM and UV-Vis studies. Nano-composite was also characterized by cyclic voltammetry (CV), current voltage measurements (I-V) and the optical band gaps of film were evaluated from UV-Vis absorption studies. The PPy/MWCNT:MnO2 nano-composite was used as anode in microbial fuel cell (MFC) for sewage waste water treatment, power and coulombic efficiency measurement. The prepared electrode showed good electrical conductivity (0.1185 S m-1). This was also supported by band gap measurements (direct 0.8 eV, indirect 1.3 eV). The obtained maximum power density was 1125.4 mW m-2, highest chemical oxygen demand (COD) removal efficiency was 93% and the maximum coulombic efficiency was 59%. For the first time PPy/MWCNT:MnO2 nano-composite for MFC prepared from nano-composite electrode having the potential for the use in MFC with good stability and better adhesion of microbes is being reported. The SEM images confirm the growth and development of microbe’s colony.

Keywords: carbon cloth, electro-polymerization, functionalization, microbial fuel cells, multi walled carbon nanotubes, polypyrrole

Procedia PDF Downloads 238
517 Influence of Deposition Temperature on Supercapacitive Properties of Reduced Graphene Oxide on Carbon Cloth: New Generation of Wearable Energy Storage Electrode Material

Authors: Snehal L. Kadam, Shriniwas B. Kulkarni

Abstract:

Flexible electrode material with high surface area and good electrochemical properties is the current trend captivating the researchers across globe for application in the next generation energy storage field. In the present work, crumpled sheet like reduced graphene oxide grown on carbon cloth by the hydrothermal method with a series of different deposition temperatures at fixed time. The influence of the deposition temperature on the structural, morphological, optical and supercapacitive properties of the electrode material was investigated by XRD, RAMAN, XPS, TEM, FE-SEM, UV-VISIBLE and electrochemical characterization techniques.The results show that the hydrothermally synthesized reduced graphene oxide on carbon cloth has sheet like mesoporous structure. The reduced graphene oxide material at 160°C exhibits the best supercapacitor performance, with a specific capacitance of 443 F/g at scan rate 5mV/sec. Moreover, stability studies show 97% capacitance retention over 1000 CV cycles. This result shows that hydrothermally synthesized RGO on carbon cloth is the potential electrode material and would be used in the next-generation wearable energy storage systems. The detailed analysis and results will be presented at the conference.

Keywords: graphene oxide, reduced graphene oxide, carbon cloth, deposition temperature, supercapacitor

Procedia PDF Downloads 167
516 Keto-Enol Tautomerism of Salicylideneaniline Substituted

Authors: Rihana Hadjeb, Djamel Barkat

Abstract:

Schiff bases derived from o-hydroxybenzaldehyde has attracted a great interest not only for its promising applications towards linear and non-linear optical properties, biological activity and technological applications but also used as model compounds for the theory of hydrogen bonding. Due to its intramolecular hydrogen bonding, depending on the position of proton in the hydrogen bond o-hydroxy salicylidene Schiff bases exhibit two tautomeric forms, enol-imine (E-form) and keto-enamine (K-form) both in solution and in crystalline state. A zwitterionic structure also appears due to a proton transfer in enol – imine and keto – amine tautomer. These classes of compounds also exhibit thermochromic and photochromic behavior. We undertook in this study the synthesis of ten compounds of hydroxy Schiff bases from the condensation of salicylic aldehyde and aniline substituted in the ortho, meta and para by the methyl, chloro and nitro groups. To study the keto-enol equilibrium of the compounds; UV-VIS spectra were studied in different polarity solvents. The compounds were in tautomeric equilibrium (enol imine O–H•••N, keto-amine O•••H–N forms). For some derivatives of salicylideneanilines the keto-amine form was observed in both ethanol and dioxane. IR results showed that all Schiff bases studied favor the enol-imine form over the keto form.

Keywords: salicylideneaniline, tautomerism, keto-enol equilibrium, UV-VIS spectroscopy, solvent effect

Procedia PDF Downloads 365
515 An Approach of Node Model TCnNet: Trellis Coded Nanonetworks on Graphene Composite Substrate

Authors: Diogo Ferreira Lima Filho, José Roberto Amazonas

Abstract:

Nanotechnology opens the door to new paradigms that introduces a variety of novel tools enabling a plethora of potential applications in the biomedical, industrial, environmental, and military fields. This work proposes an integrated node model by applying the same concepts of TCNet to networks of nanodevices where the nodes are cooperatively interconnected with a low-complexity Mealy Machine (MM) topology integrating in the same electronic system the modules necessary for independent operation in wireless sensor networks (WSNs), consisting of Rectennas (RF to DC power converters), Code Generators based on Finite State Machine (FSM) & Trellis Decoder and On-chip Transmit/Receive with autonomy in terms of energy sources applying the Energy Harvesting technique. This approach considers the use of a Graphene Composite Substrate (GCS) for the integrated electronic circuits meeting the following characteristics: mechanical flexibility, miniaturization, and optical transparency, besides being ecological. In addition, graphene consists of a layer of carbon atoms with the configuration of a honeycomb crystal lattice, which has attracted the attention of the scientific community due to its unique Electrical Characteristics.

Keywords: composite substrate, energy harvesting, finite state machine, graphene, nanotechnology, rectennas, wireless sensor networks

Procedia PDF Downloads 78
514 Biodegradation Study of a Biocomposite Material Based on Sunflower Oil and Alfa Fibers as Natural Resources

Authors: Sihem Kadem, Ratiba Irinislimane, Naima Belhaneche

Abstract:

The natural resistance to biodegradation of polymeric materials prepared from petroleum-based source and the management of their wastes in the environment are the driving forces to replace them by other biodegradable materials from renewable resources. For that, in this work new biocomposites materials have been synthesis from sunflower oil (Helianthus annuus) and alfa plants (Stipatenacissima) as natural based resources. The sunflower oil (SFO) was chemically modified via epoxidation then acrylation reactions to obtain acrylated epoxidized sunflower oil resin (AESFO). The AESFO resin was then copolymerized with styrene as co-monomer in the presence of boron trifluoride (BF3) as cationic initiator and cobalt octoate (Co) as catalyst. The alfa fibers were treated with alkali treatment (5% NaOH) before been used as bio-reinforcement. Biocomposites were prepared by mixing the resin with untreated and treated alfa fibers at different percentages. A biodegradation study was carried out for the synthesized biocomposites in a solid medium (burial in the soil) by evaluated, first, the loss of mass, the results obtained were reached between 7.8% and 11% during one year. Then an observation under an optical microscope was carried out, after one year of burial in the soil, microcracks, brown and black spots were appeared on the samples surface. This results shows that the synthesized biocomposites have a great aptitude for biodegradation.

Keywords: alfa fiber, biocomposite, biodegradation, soil, sunflower oil

Procedia PDF Downloads 138
513 Machining Responce of Austempered Ductile Iron with Varying Cutting Speed and Depth of Cut

Authors: Prashant Parhad, Vinayak Dakre, Ajay Likhite, Jatin Bhatt

Abstract:

This work mainly focuses on machinability studies of Austempered Ductile Iron (ADI). The Ductile Iron (DI) was austempered at 250 oC for different durations and the process window for austempering was established by studying the microstructure. The microstructural characterization of the material was done using optical microscopy, SEM and XRD. The samples austempered as per the process window were then subjected to turning using a TiAlN-coated tungsten carbide insert to study the effect of cutting parameters, namely the cutting speed and the depth of cut. The effect was investigated in terms of cutting forces required as well as the surface roughness obtained. The turning was conducted on a CNC turning machine and primary (Fx), radial (Fy) and feed (Fz) cutting forces were quantified with a three-component dynamometer. It was observed that the magnitude of radial force was more than that of primary cutting force for all cutting speed and for various depths of cut studied. It has also been seen that increasing the cutting speed improves the surface quality. The observed machinability behaviour was investigated in light of the microstructure of the material obtained under the given austempering conditions and a structure-property- co-relation was established between the two. For all cutting speed and depth of cut, the best machining response in terms of cutting forces and surface quality was obtained towards the centre of process window.

Keywords: process window, cutting speed, depth of cut, surface roughness

Procedia PDF Downloads 348
512 Titanium Nitride Nanoparticles for Biological Applications

Authors: Nicole Nazario Bayon, Prathima Prabhu Tumkur, Nithin Krisshna Gunasekaran, Krishnan Prabhakaran, Joseph C. Hall, Govindarajan T. Ramesh

Abstract:

Titanium nitride (TiN) nanoparticles have sparked interest over the past decade due to their characteristics such as thermal stability, extreme hardness, low production cost, and similar optical properties to gold. In this study, TiN nanoparticles were synthesized via a thermal benzene route to obtain a black powder of nanoparticles. The final product was drop cast onto conductive carbon tape and sputter coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDX) that revealed they were spherical. ImageJ software determined the average size of the TiN nanoparticles was 79 nm in diameter. EDX revealed the elements present in the sample and showed no impurities. Further characterization by X-ray diffraction (XRD) revealed characteristic peaks of cubic phase titanium nitride, and crystallite size was calculated to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size and size distribution of the TiN nanoparticles, with average size being 154 nm. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged. Biocompatibility studies using MTT(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide) assay showed TiN nanoparticles are not cytotoxic at low concentrations (2, 5, 10, 25, 50, 75 mcg/well), and cell viability began to decrease at a concentration of 100 mcg/well.

Keywords: biocompatibility, characterization, cytotoxicity, nanoparticles, synthesis, titanium nitride

Procedia PDF Downloads 146
511 Preparation of Silicon-Based Oxide Hollow Nanofibers Using Single-Nozzle Electrospinning

Authors: Juiwen Liang, Choliang Chung

Abstract:

In this study, the silicon-base oxide nanofibers with hollow structure were prepared using single-nozzle electrospinning and heat treatment. Firstly, precursor solution was prepared: the Polyvinylpyrrolidone (PVP) and Tetraethyl orthosilicate (TEOS) dissolved in ethanol and to make sure the concentration of solution in appropriate using single-nozzle electrospinning to produce the nanofibers. Secondly, control morphology of the electrostatic spinning nanofibers was conducted, and design the temperature profile to created hollow nanofibers, exploring the morphology and properties of nanofibers. The characterized of nanofibers, following instruments were used: Atomic force microscopy (AFM), Field Emission Scanning Electron Microscope (FE-SEM), Transmission electron microscopy (TEM), Photoluminescence (PL), X-ray Diffraction (XRD). The AFM was used to scan the nanofibers, and 3D Graphics were applied to explore the surface morphology of fibers. FE-SEM and TEM were used to explore the morphology and diameter of nanofibers and hollow nanofiber. The excitation and emission spectra explored by PL. Finally, XRD was used for identified crystallization of ceramic nanofibers. Using electrospinning technique followed by subsequent heat treatment, we have successfully prepared silicon-base oxide nanofibers with hollow structure. Thus, the microstructure and morphology of electrostatic spinning silicon-base oxide hollow nanofibers were explored. Major characteristics of the nanofiber in terms of crystalline, optical properties and crystal structure were identified.

Keywords: electrospinning, single-nozzle, hollow, nanofibers

Procedia PDF Downloads 329
510 Controlled Shock Response Spectrum Test on Spacecraft Subsystem Using Electrodynamic Shaker

Authors: M. Madheswaran, A. R. Prashant, S. Ramakrishna, V. Ramesh Naidu, P. Govindan, P. Aravindakshan

Abstract:

Shock Response spectrum (SRS) tests are one of the tests that are conducted on some critical systems of spacecraft as part of environmental testing. The SRS tests are conducted to simulate the pyro shocks that occur during launch phases as well as during deployment of spacecraft appendages. Some of the methods to carryout SRS tests are pyro technique method, impact hammer method, drop shock method and using electro dynamic shakers. The pyro technique, impact hammer and drop shock methods are open loop tests, whereas SRS testing using electrodynamic shaker is a controlled closed loop test. SRS testing using electrodynamic shaker offers various advantages such as simple test set up, better controllability and repeatability. However, it is important to devise a a proper test methodology so that safety of the electro dynamic shaker and that of test specimen are not compromised. This paper discusses the challenges that are involved in conducting SRS tests, shaker validation and the necessary precautions to be considered. Approach involved in choosing various test parameters like synthesis waveform, spectrum convergence level, etc., are discussed. A case study of SRS test conducted on an optical payload of Indian Geo stationary spacecraft is presented.

Keywords: maxi-max spectrum, SRS (shock response spectrum), SDOf (single degree of freedom), wavelet synthesis

Procedia PDF Downloads 330
509 Railway Crane Accident: A Comparative Metallographic Test on Pins Fractured during Operation

Authors: Thiago Viana

Abstract:

Eventually train accidents occur on railways and for some specific cases it is necessary to use a train rescue with a crane positioned under a platform wagon. These tumbled machines are collected and sent to the machine shop or scrap yard. In one of these cranes that were being used to rescue a wagon, occurred a fall of hoist due to fracture of two large pins. The two pins were collected and sent for failure analysis. This work investigates the main cause and the secondary causes for the initiation of the fatigue crack. All standard failure analysis procedures were applied, with careful evaluation of the characteristics of the material, fractured surfaces and, mainly, metallographic tests using an optical microscope to compare the geometry of the peaks and valleys of the thread of the pins and their respective seats. By metallographic analysis, it was concluded that the fatigue cracks were started from a notch (stress concentration) in the valley of the threads of the pin applied to the right side of the crane (pin 1). In this, it was verified that the peaks of the threads of the pin seat did not have proper geometry, with sharp edges being present that caused such notches. The visual analysis showed that fracture of the pin on the left side of the crane (pin 2) was brittle type, being a consequence of the fracture of the first one. Recommendations for this and other railway cranes have been made, such as nondestructive testing, stress calculation, design review, quality control and suitability of the mechanical forming process of the seat threads and pin threads.

Keywords: crane, fracture, pin, railway

Procedia PDF Downloads 83
508 Application of Remote Sensing Technique on the Monitoring of Mine Eco-Environment

Authors: Haidong Li, Weishou Shen, Guoping Lv, Tao Wang

Abstract:

Aiming to overcome the limitation of the application of traditional remote sensing (RS) technique in the mine eco-environmental monitoring, in this paper, we first classified the eco-environmental damages caused by mining activities and then introduced the principle, classification and characteristics of the Light Detection and Ranging (LiDAR) technique. The potentiality of LiDAR technique in the mine eco-environmental monitoring was analyzed, particularly in extracting vertical structure parameters of vegetation, through comparing the feasibility and applicability of traditional RS method and LiDAR technique in monitoring different types of indicators. The application situation of LiDAR technique in extracting typical mine indicators, such as land destruction in mining areas, damage of ecological integrity and natural soil erosion. The result showed that the LiDAR technique has the ability to monitor most of the mine eco-environmental indicators, and exhibited higher accuracy comparing with traditional RS technique, specifically speaking, the applicability of LiDAR technique on each indicator depends on the accuracy requirement of mine eco-environmental monitoring. In the item of large mine, LiDAR three-dimensional point cloud data not only could be used as the complementary data source of optical RS, Airborne/Satellite LiDAR could also fulfill the demand of extracting vertical structure parameters of vegetation in large areas.

Keywords: LiDAR, mine, ecological damage, monitoring, traditional remote sensing technique

Procedia PDF Downloads 372
507 Effect of TERGITOL NP-9 and PEG-10 Oleyl Phosphate as Surfactant and Corrosion Inhibitor on Tribo-Corrosion Performance of Carbon Steel in Emulsion-Based Drilling Fluids

Authors: Mohammadjavad Palimi, D. Y. Li, E. Kuru

Abstract:

Emulsion-based drilling fluids containing mineral oil are commonly used for drilling operations, which generate a lubricating film to prevent direct contact between moving metal parts, thus reducing friction, wear, and corrosion. For long-lasting lubrication, the thin lubricating film formed on the metal surface should possess good anti-wear and anti-corrosion capabilities. This study aims to investigate the effects of two additives, TERGITOL NP-9 and PEG-10 oleyl phosphate, acting as surfactant and corrosion inhibitor, respectively, on the tribo-corrosion behavior of 1018 carbon steel immersed in 5% KCl solution at room temperature. A pin-on-disc tribometer attached to an electrochemical system was used to investigate the corrosive wear of the steel immersed in emulsion-based fluids containing the surfactant and corrosion inhibitor. The wear track, surface chemistry and composition of the protective film formed on the steel surface were analyzed with an optical profilometer, SEM, and SEM-EDX. Results of the study demonstrate that the performance of the emulsion-based drilling fluids was significantly improved by the corrosion inhibitor by a remarkable reduction in corrosion, coefficient of friction (COF) and wear.

Keywords: corrosion inhibitor, emulsion-based drilling fluid, tribo-corrosion, friction, wear

Procedia PDF Downloads 47
506 Effect of Hollow and Solid Recycled-Poly Fibers on the Mechanical and Morphological Properties of Short-Fiber-Reinforced Polypropylene Composites

Authors: S. Kerakra, S. Bouhelal, M. Poncot

Abstract:

The aim of this study is to give a comprehensive overview of the effect of short hollow and solid recycled polyethylene terephthalate (PET) fibers in different breaking tenacities reinforced isotactic polypropylene (iPP) composites on the mechanical and morphological properties. Composites of iPP/3, 7and 10 wt% of solid and hollow recycled PET fibers were prepared by batched melt mixing in a Brabender. The incorporation of solid recycled-PET fibers in isotactic polypropylene increase Young’s modulus of iPP relatively, meanwhile it increased proportionally with hollow fibers content. An improvement of the storage modulus, and a shift up in glass transition temperatures of hollow fibers/iPP composites was determined by DMA results. The morphology of composites was determined by scanning electron microscope (SEM) and optical polarized microscopy (OM) showing a good dispersion of the hollow fibers. Also, their flexible aspect (folding, bending) was observed. But, one weak interaction between the polymer/fibers phases was shown. Polymers can be effectively reinforced with short hollow recycled PET fibers due to their characteristics like recyclability, lightweight and the flexible aspect, which allows the absorbance of the energy of a striker with a minimum damage of the matrix. Aiming to improve the affinity matrix–recycled hollow PET fibers, it is suggested the addition of compatibilizers, as maleic anhydride.

Keywords: isotactic polypropylene, hollow recycled PET fibers, solid recycled-PET fibers, composites, short fiber, scanning electron microscope

Procedia PDF Downloads 251
505 The Role of Graphene Oxide on Titanium Dioxide Performance for Photovoltaic Applications

Authors: Abdelmajid Timoumi, Salah Alamri, Hatem Alamri

Abstract:

TiO₂ Graphene Oxide (TiO₂-GO) nanocomposite was prepared using the spin coating technique of suspension of Graphene Oxide (GO) nanosheets and Titanium Tetra Isopropoxide (TIP). The prepared nanocomposites samples were characterized by X-ray diffractometer, Scanning Electron Microscope and Atomic Force Microscope to examine their structures and morphologies. UV-vis transmittance and reflectance spectroscopy was employed to estimate band gap energies. From the TiO₂-GO samples, a 0.25 μm thin layer on a piece of glass 2x2 cm was created. The X-ray diffraction analysis revealed that the as-deposited layers are amorphous in nature. The surface morphology images demonstrate that the layers grew in distributed with some spherical/rod-like and partially agglomerated TiGO on the surface of the composite. The Atomic Force Microscopy indicated that the films are smooth with slightly larger surface roughness. The analysis of optical absorption data of the layers showed that the values of band gap energy decreased from 3.46 eV to 1.40 eV, depending on the grams of GO doping. This reduction might be attributed to electron and/or hole trapping at the donor and acceptor levels in the TiO₂ band structure. Observed results have shown that the inclusion of GO in the TiO₂ matrix have exhibited significant and excellent properties, which would be promising for application in the photovoltaic application.

Keywords: titanium dioxide, graphene oxide, thin films, solar cells

Procedia PDF Downloads 133
504 Analysis of Impact of Air Pollution over Megacity Delhi Due to Agricultural Biomass Burning in the Neighbouring States

Authors: Ankur P. Sati, Manju Mohan

Abstract:

The hazardous combination of smoke and pollutant gases, smog, is harmful for health. There are strong evidences that the Agricultural waste burning (AWB) in the Northern India leads to adverse air quality in Delhi and its surrounding regions. A severe smog episode was observed over Delhi, India during November 2012 which resulted in very low visibility and various respiratory problems. Very high values of pollutants (PM10 as high as 989 µg m-3, PM2.5 as high as 585 µg m-3 an NO2 as high as 540 µg m-3) were measured all over Delhi during the smog episode. Ultra Violet Aerosol Index (UVAI) from Aura satellite and Aerosol Optical Depth (AOD) are used in the present study along with the output trajectories from HYSPLIT model and the in-situ data. Satellite data also reveal that AOD, UVAI are always at its highest during the farmfires duration in Punjab region of India and the extent of these farmfires may be increasing. It is observed that during the smog episode all the AOD, UVAI, PM2.5 and PM10 values surpassed those of the Diwali period (one of the most polluted events in the city) by a considerable amount at all stations across Delhi. The parameters used from the remote sensing data and the ground based observations at various stations across Delhi are very well in agreement about the intensity of Smog episode. The analysis clearly shows that regional pollution can have greater contributions in deteriorating the air quality than the local under adverse meteorological conditions.

Keywords: smog, farmfires, AOD, remote sensing

Procedia PDF Downloads 220
503 Highly Sensitive Nanostructured Chromium Oxide Sensor for Analysis of Diabetic Patient’s Breath

Authors: Nipin Kohli, Ravi Chand Singh

Abstract:

Diabetes mellitus is a serious illness and can be life-threatening if left untreated. Acetone present in the exhaled breath of a diabetic person is a biomarker of patients suffering from diabetes mellitus and is higher than its usual concentration present in the breath of healthy people. In the present work, a portable gas sensor system based on chromium oxide (Cr₂O₃) nanoparticles has been developed that can analyze diabetic patient’s breath. Undoped and indium (In) doped Cr₂O₃ nanoparticles were synthesized by a chemical route and characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, UV-visible spectroscopy, and photoluminescence spectroscopy for their structural, morphological and optical properties. Thick film gas sensors were fabricated out of synthesized samples. To diagnose diabetes, the sensors’ response to low concentrations of acetone was measured, and it was found that the addition of indium dramatically enhances the acetone gas sensing response. Moreover, the fabricated sensors were highly stable, reproducible and resistant to humidity. Enhancement of sensor response of doped sensors towards acetone can be ascribed to increase in defects due to addition of a dopant, and it was found that in-doped Cr₂O₃ sensors are more useful for analysis of breath of diabetic patients.

Keywords: Diabetes mellitus, nanoparticles, raman spectroscopy, sensor

Procedia PDF Downloads 116
502 Potential of Lactic Acid Bacteria for Cadmium Removal from Aqueous Solution

Authors: Ana M. Guzman, Claudia M. Rodriguez, Pedro F. B. Brandao, Elianna Castillo

Abstract:

Cadmium (Cd) is a carcinogenic metal to which humans are exposed mainly due to its presence in the food chain. Lactic acid bacteria have the capability to bind cadmium and thus the potential to be used as probiotics to treat this metal toxicity in the human body. The main objective of this study is to evaluate the potential of native lactic acid bacteria, isolated from Colombian fermented cocoa, to remove cadmium from aqueous solutions. An initial screening was made with the Lactobacillus plantarum JCM 1055 type strain, and Cd was quantified by atomic absorption spectroscopy (AAS). Lb. plantarum JCM 1055 was grown in ½ MRS medium to follow growth kinetics during 32 h at 37 °C, by measuring optical density at 600 nm. Washed cells, grown for 18 h, were adjusted to obtain dry biomass concentrations of 1.5 g/L and 0.5 g/L for removal assays in 10 mL of Cd(NO₃)₂ solution with final concentrations of 10 mg/Kg or 1.0 mg/Kg. The assays were performed at two different pH values (2.0 and 5.0), and results showed better adsorption abilities at higher pH. After incubation for 1 h at 37 °C and 150 rpm, the removal percentages for 10 mg/Kg Cd with 1.5 g/L and 0.5 g/L biomass concentration at pH 5.0 were, respectively, 71% and 50%, while the efficiency was 9.15 and 4.52 mg Cd/g dry biomass, respectively. For the assay with 1.0 mg/Kg Cd at pH 5.0, the removal was 100% and 98%, respectively for the same biomass concentrations, and the efficiency was 1.63 and 0.56 mg Cd/g dry biomass, respectively. These results suggest the efficiency of Lactobacillus strains to remove cadmium and their potential to be used as probiotics to treat cadmium toxicity and reduce its accumulation in the human body.

Keywords: cadmium removal, fermented cocoa, lactic acid bacteria, probiotics

Procedia PDF Downloads 149
501 Luminescence and Local Environment: Identification of Thermal History

Authors: Veronique Jubera, Guillaume Salek, Manuel Gaudon, Alain Garcia, Alain Demourgues

Abstract:

Luminescence of transition metal and rare earth elements cover ultraviolet to far infrared wavelengths. Applications of phosphors are numerous. One can cite lighting, sensing, laser, energy, medical or military applications. But regarding each domain, specific criteria are required and they can be achieved with a strong control of the chemical composition. Emission of doped materials can be tailored with modifications of the local environment of the cations. For instance, the increase of the crystal field effect shifts the divalent manganese radiative transitions from the green to the red color. External factor as heat-treatment can induce changes of the doping element location or modify the unit cell crystalline symmetry. By controlling carefully the synthesis route, it is possible to initiate emission shift and to establish the thermal history of a compound. We propose to demonstrate through the luminescence of divalent manganese and trivalent rare earth doped oxide, that it is possible to follow the thermal history of a material. After optimization of the synthesis route, structural and optical properties are discussed. Finally, thermal calibration graphs are successfully established on these doped compounds. This makes these materials promising probe for thermal sensing.

Keywords: emission, thermal sensing, transition metal, rare eath element

Procedia PDF Downloads 354