Search results for: water soaking properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15726

Search results for: water soaking properties

3186 Photoluminescence and Spectroscopic Studies of Tm3+ Ions Doped Lead Tungsten Tellurite Glasses for Visible Red and Near-Ir Laser Applications

Authors: M. Venkateswarlu, Srinivasa Rao Allam, S. K. Mahamuda, K. Swapna, G. Vijaya Prakash

Abstract:

Lead Tungsten Tellurite (LTT) glasses doped with different concentrations of Tm3+ ions were prepared by using melt quenching technique and characterized through optical absorption, photoluminescence and decay spectral studies to know the feasibility of using these glasses as luminescent devices in visible Red and NIR regions. By using optical absorption spectral data, the energy band gaps for all the glasses were evaluated and were found to be in the range of 2.34-2.59 eV; which is very useful for the construction of optical devices. Judd-Ofelt (J-O)theory has been applied to the optical absorption spectral profiles to calculate the J-O intensity parameters Ωλ (λ=2, 4 and 6) and consecutively used to evaluate various radiative properties such as radiative transition probability (AR), radiative lifetimes (τ_R) and branching ratios (β_R) for the prominent luminescent levels. The luminescence spectra for all the LTT glass samples have shown two intense peaks in bright red and Near Infrared regions at 650 nm (1G4→3F4) and 800 nm (3H4→3H6) respectively for which effective bandwidths (〖Δλ〗_P), experimental branching ratios (β_exp) and stimulated emission cross-sections (σ_se) are evaluated. The decay profiles for all the glasses were also recorded to measure the quantum efficiency of the prepared LTT glasses by coupling the radiative and experimental lifetimes. From the measured emission cross-sections, quantum efficiency and CIE chromaticity coordinates, it was found that 0.5 mol% of Tm3+ ions doped LTT glass is most suitable for generating bright visible red and NIR lasers to operate at 650 and 800 nm respectively.

Keywords: glasses, JO parameters, optical materials, thullium

Procedia PDF Downloads 239
3185 Investigation of Compressive Strength of Slag-Based Geopolymer Concrete Incorporated with Rice Husk Ash Using 12M Alkaline Activator

Authors: Festus A. Olutoge, Ahmed A. Akintunde, Anuoluwapo S. Kolade, Aaron A. Chadee, Jovanca Smith

Abstract:

Geopolymer concrete's (GPC) compressive strength was investigated. The GPC was incorporated with rice husk ash (RHA) and ground granulated blast furnace slag (GGBFS), which may have potential in the construction industry to replace Portland limestone cement (PLC) concrete. The sustainable construction binders used were GGBFS and RHA, and a solution of sodium hydroxide (NaOH) and sodium silicate gel (Na₂SiO₃) was used as the 12-molar alkaline activator. Five GPC mixes comprising fine aggregates, coarse aggregates, GGBS, and RHA, and the alkaline solution in the ratio 2: 2.5: 1: 0.5, respectively, were prepared to achieve grade 40 concrete, and PLC was wholly substituted with GGBFS and RHA in the ratios of 0:100, 25:75, 50:50, 75:25, and 100:0. A control mix was also prepared which comprised of 100% water and 100% PLC as the cementitious material. The GPC mixes were thermally cured at 60-80ºC in an oven for approximately 24hrs. After curing for 7 and 28 days, the compressive strength test results of the hardened GPC samples showed that GPC-Mix #3, comprising 50% GGBFS and 50% RHA, was the most efficient geopolymer mix. The mix had compressive strengths of 35.71MPa and 47.26MPa, 19.87% and 8.69% higher than the PLC concrete samples, which had 29.79MPa and 43.48MPa after 7 and 28 days, respectively. Therefore, geopolymer concrete containing GGBFS incorporated with RHA is an efficient method of decreasing the use of PLC in conventional concrete production and reducing the high amounts of CO₂ emitted into the atmosphere in the construction industry.

Keywords: alkaline solution, cementitious material, geopolymer concrete, ground granulated blast furnace slag, rice husk ash

Procedia PDF Downloads 88
3184 Determination of Metalaxyl Efficacy in Controlling Phytophthora palmivora Infection of Durian Using Bioassay

Authors: Supawadee Phetkhajone, Wisuwat Songnuan

Abstract:

Metalaxyl is one of the most common and effective fungicides used to control Phytophthora palmivora infection in durian (Durio zibethinus L.). The efficacy of metalaxyl residue in durian under greenhouse condition was evaluated using bioassay. Durian seedlings were treated with 2 methods of application, spraying, and soil drenching of metalaxyl, at recommended concentration (1000 mg/L). Mock treated samples were treated with 0.1% Tween20 and water for spraying and soil drenching methods, respectively. The experiment was performed in triplicates. Leaves were detached from treated plants at 0, 1, 7, 15, 20, 30, and 60 days after application, inoculated with metalaxyl-resistant and metalaxyl-sensitive isolates of P. palmivora, and incubated in a high humidity chamber for 5 days at room temperature. Metalaxyl efficacy was determined by measuring the lesion size on metalaxyl treated and mock treated samples. The results showed that metalaxyl can control metalaxyl-sensitive isolate of P. palmivora for at least 30 days after application in both methods of application. The metalaxyl-resistant isolate was not inhibited in all treatments. Leaf samples from spraying method showed larger lesions compared to soil drench method. These results demonstrated that metalaxyl applications, especially soil drenching methods showed high efficacy to control metalaxyl-sensitive isolates of P. palmivora, although it cannot control metalaxyl-resistant isolates of P. palmivora in all treatments. These qualitative data indicate that metalaxyl may suitable to control metalaxyl-sensitive isolates of P. palmivora infection.

Keywords: bioassay, degradation, durian, metalaxyl

Procedia PDF Downloads 116
3183 Identification and Characterization of Enterobacter cloacae, New Soft Rot Causing Pathogen of Radish in India

Authors: B. S. Chandrashekar, M. K. Prasannakumar, P. Buela Parivallal, Sahana N. Banakar, Swathi S. Patil, H. B. Mahesh, D. Pramesh

Abstract:

Bacterial soft rot is one of the most often seen diseases in many plant species globally, resulting in considerable yield loss. Radish roots with dark water-soaked lesions, maceration of tissue, and a foul odour were collected in the Kolar region, India. Two isolates were obtained from rotted samples that demonstrated morphologically unpigmented, white mucoid convex colonies on nutrient agar medium. The isolated bacteria (RDH1 and RDH3) were gram-negative, rod-shaped bacteria with biochemically distinct characteristics similar to the type culture of Enterobacter cloacae ATCC13047 and Bergy's handbook of determinative bacteriology. The 16s rRNA gene was used to identify Enterobacter species. On carrot, potato, tomato, chilli, bell pepper, knolkhol, cauliflower, cabbage, and cucumber slices, the Koch′s postulates were fulfilled, and the pathogen was also pathogenic on radish, cauliflower, and cabbage seedlings were grown in a glasshouse. After 36 hours, both isolates exhibited a hypersensitive sensitivity to Nicotianatabacum. Semi-quantitative analysis revealed that cell wall degrading enzymes (CWDEs) such as pectin lyase, polygalacturonase, and cellulase (p=1.4e09) contributed to pathogenicity, whereas isolates produced biofilms (p=4.3e-11) that help in host adhesion. This is the first report in India of radish soft rot caused by E. cloacae.

Keywords: soft rot, enterobacter cloacae, 16S rRNA, nicotiana tabacum, and pathogenicity

Procedia PDF Downloads 113
3182 Factors Controlling Durability of Some Egyptian Non-Stylolitic Marbleized Limestone to Salt Weathering

Authors: H. El Shayab, G. M. Kamh, N. G. Abdel Ghafour, M. L. Abdel Latif

Abstract:

Nowadays, marbleized limestone becomes one of the most important sources of the mineral wealth in Egypt as they have beautiful colors (white, grey, rose, yellow and creamy, etc.) make it very suitable for decoration purposes. Non-styolitic marbleized limestone which not contains styolitic surfaces. The current study aims to study different factors controlling durability of non-styolitic marbleized limestone against salt crystallization weathering. The achievement aim of the research was required nine representative samples were collected from the studied areas. Three samples from each of the studied areas. The studied samples was characterized by various instrumental methods before salt weathering, to determine its mineralogical composition, chemical composition and pore physical properties respectively. The obtained results revealed that both of Duwi and Delga studied samples nearly have the same average ∆M% 1.63 and 1.51 respectively and consequently A.I. stage of deformation. On the other hand, average ∆M% of Wata studied samples is 0.29 i.e. lower than two other studied areas. Wata studied samples are more durable against salt crystallization test than Duwi and Delga. The difference in salt crystallization durability may be resulted from one of the following factors: Microscopic textural effect as both of micrite and skeletal percent are in directly proportional to durability of stones to salt weathering. Dolomite mineral present as a secondary are in indirectly proportional to durability of stones to salt weathering. Increase in MgO% also associated with decrease the durability of studied samples against salt crystallization test. Finally, all factors affecting positively against salt crystallization test presents in Wadi Wata studied samples rather than others two areas.

Keywords: marbleized limestone, salt weathering, Wata, salt weathering

Procedia PDF Downloads 308
3181 Total and Leachable Concentration of Trace Elements in Soil towards Human Health Risk, Related with Coal Mine in Jorong, South Kalimantan, Indonesia

Authors: Arie Pujiwati, Kengo Nakamura, Noriaki Watanabe, Takeshi Komai

Abstract:

Coal mining is well known to cause considerable environmental impacts, including trace element contamination of soil. This study aimed to assess the trace element (As, Cd, Co, Cu, Ni, Pb, Sb, and Zn) contamination of soil in the vicinity of coal mining activities, using the case study of Asam-asam River basin, South Kalimantan, Indonesia, and to assess the human health risk, incorporating total and bioavailable (water-leachable and acid-leachable) concentrations. The results show the enrichment of As and Co in soil, surpassing the background soil value. Contamination was evaluated based on the index of geo-accumulation, Igeo and the pollution index, PI. Igeo values showed that the soil was generally uncontaminated (Igeo ≤ 0), except for elevated As and Co. Mean PI for Ni and Cu indicated slight contamination. Regarding the assessment of health risks, the Hazard Index, HI showed adverse risks (HI > 1) for Ni, Co, and As. Further, Ni and As were found to pose unacceptable carcinogenic risk (risk > 1.10-5). Farming, settlement, and plantation were found to present greater risk than coal mines. These results show that coal mining activity in the study area contaminates the soils by particular elements and may pose potential human health risk in its surrounding area. This study is important for setting appropriate countermeasure actions and improving basic coal mining management in Indonesia.

Keywords: coal mine, risk, trace elements, soil

Procedia PDF Downloads 248
3180 Phenolic Compounds and Antioxidant Capacity of Tuckeroo (Cupaniopsis anacardioides) Fruits

Authors: Ngoc Minh Quynh Pham, Quan V. Vuong, Michael C. Bowyer, Christopher J. Scarlett

Abstract:

Tuckeroo (Cupaniopsis anacardioides) is an Australian native plant and is grown in the coastal regions in New South Wales, Queensland and Northern Australia. Its fruits have been eaten by birds; however there is no information on phytochemical and antioxidant capacity of these fruits. This study aimed to determine the phenolic compounds (TPC), flavonoids (TFC), proanthocyanidins (TPro) and antioxidant capacity in the whole or different parts of tuckeroo fruit including skin, flesh and seed. Whole and partly tuckeroo fruits were collected and immediately freeze dried to constant weight and then ground to small particle sizes (<1mm mesh). Samples were extracted in 50% methanol using an ultrasonic bath set at temperature 40 °C for 30 minutes. TPC, TFC, TPro and antioxidant capacity were measured by spectrophotometric analysis. The results showed that the whole fruits contained 106.23 mg GAE/g of TPC, 67.67 mg CAE/g of TFC and 56.74 mg CAE/g of TPro. These fruits also possessed high antioxidant capacity (DPPH: 263.78 mg TroE/g, ABTS: 346.98 mg TroE/g, CUPRAC: 370.12 mg TroE/g and FRAP: 176.30 mg TroE/g), revealing that these fruits are rich source of antioxidants. The results also showed that distribution of the antioxidants was varied in different parts of the fruits. Skin had the highest levels of TPC, TFC, and TPro as well as antioxidant properties, followed by the seed and flesh had the lowest levels of phenolic compounds and antioxidant capacity. Of note, levels of phenolic compounds and antioxidant capacity of the skin were significantly higher than those of the whole fruits. Therefore, the skin of tuckeroo fruits is recommended as a starting material for extraction and purification of phenolic compounds as potential antioxidants for further utilisation in the food and pharmaceutical industries.

Keywords: antioxidant capacity, Cupaniopsis anacardioides, phenolic compounds, tuckeroo fruit

Procedia PDF Downloads 389
3179 Hybrid Thresholding Lifting Dual Tree Complex Wavelet Transform with Wiener Filter for Quality Assurance of Medical Image

Authors: Hilal Naimi, Amelbahahouda Adamou-Mitiche, Lahcene Mitiche

Abstract:

The main problem in the area of medical imaging has been image denoising. The most defying for image denoising is to secure data carrying structures like surfaces and edges in order to achieve good visual quality. Different algorithms with different denoising performances have been proposed in previous decades. More recently, models focused on deep learning have shown a great promise to outperform all traditional approaches. However, these techniques are limited to the necessity of large sample size training and high computational costs. This research proposes a denoising approach basing on LDTCWT (Lifting Dual Tree Complex Wavelet Transform) using Hybrid Thresholding with Wiener filter to enhance the quality image. This research describes the LDTCWT as a type of lifting wavelets remodeling that produce complex coefficients by employing a dual tree of lifting wavelets filters to get its real part and imaginary part. Permits the remodel to produce approximate shift invariance, directionally selective filters and reduces the computation time (properties lacking within the classical wavelets transform). To develop this approach, a hybrid thresholding function is modeled by integrating the Wiener filter into the thresholding function.

Keywords: lifting wavelet transform, image denoising, dual tree complex wavelet transform, wavelet shrinkage, wiener filter

Procedia PDF Downloads 152
3178 Synthesis of Zeolites from Bauxite and Kaolin: Effect of Synthesis Parameters on Competing Phases

Authors: Bright Kwakye-Awuah, Elizabeth Von-Kiti, Isaac Nkrumah, Baah Sefa-Ntiri, Craig D. Williams

Abstract:

Bauxite and kaolin from Ghana Bauxite Company mine site were used to synthesize zeolites. Bauxite served as the alumina source and kaolin the silica source. Synthesis variations include variation of aging time at constant crystallization time and variation of crystallization times at constant aging time. Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX) and Fourier transform infrared spectroscopy (FTIR) were employed in the characterization of the raw samples as well as the synthesized samples. The results obtained showed that the transformations that occurred and the phase of the resulting products were coordinated by the aging time, crystallization time, alkaline concentration and Si/Al ratio of the system. Zeolites A, X, Y, analcime, Sodalite, and ZK-14 were some of the phases achieved. Zeolite LTA was achieved with short crystallization times of 3, 5, 18 and 24 hours and a maximum aging of 24 hours. Zeolite LSX was synthesized with 24 hr aging followed with 24 hr hydrothermal treatment whilst zeolite Y crystallized after 48 hr of aging and 24 hr crystallization. Prolonged crystallization time produced a mixed phased product. Prolonged aging times, on the other hand, did not yield any zeolite as the sample was amorphous. Increasing the alkaline content of the reaction mixture above 5M introduced sodalite phase in the final product. The properties of the final products were comparable to zeolites synthesized from pure chemical reagents.

Keywords: bauxite, kaolin, aging, crystallization, zeolites

Procedia PDF Downloads 210
3177 An Evaluation of Renewable Energy Sources in Green Building Systems for the Residential Sector in the Metropolis, Kolkata, India

Authors: Tirthankar Chakraborty, Indranil Mukherjee

Abstract:

The environmental aspect had a major effect on industrial decisions after the deteriorating condition of our surroundings dsince the industrial activities became apparent. Green buildings have been seen as a possible solution to reduce the carbon emissions from construction projects and the housing industry in general. Though this has been established in several areas, with many commercial buildings being designed green, the scope for expansion is still significant and further information on the importance and advantages of green buildings is necessary. Several commercial green building projects have come up and the green buildings are mainly implemented in the residential sector when the residential projects are constructed to furnish amenities to a large population. But, residential buildings, even those of medium sizes, can be designed to incorporate elements of sustainable design. In this context, this paper attempts to give a theoretical appraisal of the use of renewable energy systems in residential buildings of different sizes considering the weather conditions (solar insolation and wind speed) of the metropolis, Kolkata, India. Three cases are taken; one with solar power, one with wind power and one with a combination of the two. All the cases are considered in conjunction with conventional energy, and the efficiency of each in fulfilling the total energy demand is verified. The optimum combination for reducing the carbon footprint of the residential building is thus established. In addition, an assessment of the amount of money saved due to green buildings in metered water supply and price of coal is also mentioned.

Keywords: renewable energy, green buildings, solar power, wind power, energy hybridization, residential sector

Procedia PDF Downloads 377
3176 Simultaneous Determination of Six Characterizing/Quality Parameters of Biodiesels via 1H NMR and Multivariate Calibration

Authors: Gustavo G. Shimamoto, Matthieu Tubino

Abstract:

The characterization and the quality of biodiesel samples are checked by determining several parameters. Considering a large number of analysis to be performed, as well as the disadvantages of the use of toxic solvents and waste generation, multivariate calibration is suggested to reduce the number of tests. In this work, hydrogen nuclear magnetic resonance (1H NMR) spectra were used to build multivariate models, from partial least squares (PLS) regression, in order to determine simultaneously six important characterizing and/or quality parameters of biodiesels: density at 20 ºC, kinematic viscosity at 40 ºC, iodine value, acid number, oxidative stability, and water content. Biodiesels from twelve different oils sources were used in this study: babassu, brown flaxseed, canola, corn, cottonseed, macauba almond, microalgae, palm kernel, residual frying, sesame, soybean, and sunflower. 1H NMR reflects the structures of the compounds present in biodiesel samples and showed suitable correlations with the six parameters. The PLS models were constructed with latent variables between 5 and 7, the obtained values of r(cal) and r(val) were greater than 0.994 and 0.989, respectively. In addition, the models were considered suitable to predict all the six parameters for external samples, taking into account the analytical speed to perform it. Thus, the alliance between 1H NMR and PLS showed to be appropriate to characterize and evaluate the quality of biodiesels, reducing significantly analysis time, the consumption of reagents/solvents, and waste generation. Therefore, the proposed methods can be considered to adhere to the principles of green chemistry.

Keywords: biodiesel, multivariate calibration, nuclear magnetic resonance, quality parameters

Procedia PDF Downloads 529
3175 A Comparative Study on Behavior Among Different Types of Shear Connectors using Finite Element Analysis

Authors: Mohd Tahseen Islam Talukder, Sheikh Adnan Enam, Latifa Akter Lithi, Soebur Rahman

Abstract:

Composite structures have made significant advances in construction applications during the last few decades. Composite structures are composed of structural steel shapes and reinforced concrete combined with shear connectors, which benefit each material's unique properties. Significant research has been conducted on different types of connectors’ behavior and shear capacity. Moreover, the AISC 360-16 “Specification for Steel Structural Buildings” consists of a formula for channel shear connectors' shear capacity. This research compares the behavior of C type and L type shear connectors using Finite Element Analysis. Experimental results from published literature are used to validate the finite element models. The 3-D Finite Element Model (FEM) was built using ABAQUS 2017 to investigate non-linear capabilities and the ultimate load-carrying potential of the connectors using push-out tests. The changes in connector dimensions were analyzed using this non-linear model in parametric investigations. The parametric study shows that by increasing the length of the shear connector by 10 mm, its shear strength increases by 21%. Shear capacity increased by 13% as the height was increased by 10 mm. The thickness of the specimen was raised by 1 mm, resulting in a 2% increase in shear capacity. However, the shear capacity of channel connectors was reduced by 21% due to an increase of thickness by 2 mm.

Keywords: finite element method, channel shear connector, angle shear connector, ABAQUS, composite structure, shear connector, parametric study, ultimate shear capacity, push-out test

Procedia PDF Downloads 107
3174 Multi-Dimension Threat Situation Assessment Based on Network Security Attributes

Authors: Yang Yu, Jian Wang, Jiqiang Liu, Lei Han, Xudong He, Shaohua Lv

Abstract:

As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing.

Keywords: DDoS evaluation, improved CVSS, network security attribute, threat situation assessment

Procedia PDF Downloads 201
3173 The Big Bang Was Not the Beginning, but a Repeating Pattern of Expansion and Contraction of the Spacetime

Authors: Amrit Ladhani

Abstract:

The cyclic universe theory is a model of cosmic evolution according to which the universe undergoes endless cycles of expansion and cooling, each beginning with a “big bang” and ending in a “big crunch”. In this paper, we propose a unique property of Space-time. This particular and marvelous nature of space shows us that space can stretch, expand, and shrink. This property of space is caused by the size of the universe change over time: growing or shrinking. The observed accelerated expansion, which relates to the stretching of Shrunk space for the new theory, is derived. This theory is based on three underlying notions: First, the Big Bang is not the beginning of Space-time, but rather, at the very beginning fraction of a second, there was an infinite force of infinite Shrunk space in the cosmic singularity that force gave rise to the big bang and caused the rapidly growing of space, and all other forms of energy are transformed into new matter and radiation and a new period of expansion and cooling begins. Second, there was a previous phase leading up to it, with multiple cycles of contraction and expansion that repeat indefinitely. Third, the two principal long-range forces are the gravitational force and the repulsive force generated by shrink space. They are the two most fundamental quantities in the universe that govern cosmic evolution. They may provide the clockwork mechanism that operates our eternal cyclic universe. The universe will not continue to expand forever; no need, however, for dark energy and dark matter. This new model of Space-time and its unique properties enables us to describe a sequence of events from the Big Bang to the Big Crunch.

Keywords: dark matter, dark energy, cosmology, big bang and big crunch

Procedia PDF Downloads 66
3172 Diversification of Sweet Potato Blends and Utilization for Malnutrition and Poverty Alleviation

Authors: Ladele Ademola A., Nkiru T. Meludu, Olufunke Ezekiel, Olaoye Taye F., Okanlowan Oluwatoyin M.

Abstract:

Value addition to agricultural produce is of possible potential in reducing poverty, improving food security and malnutrition, therefore the need to develop small and micro-enterprises of sweet potato production. The study was carried out in Nigeria to determine the acceptability of blends sweet potato (Ipomea batatas) and commodities yellow maize (Zea mays), millet (Pennisetum glaucum), soybean (Glycine max), bambara groundnut (Vigna subterranean), guinea corn (Sorghum vulgare), wheat (Triticum aestivum), and roselle (Hibiscus sabdariffa) through sensory evaluation. Sweet potato (Ipomea batatas) roots were processed using two methods. The first method involved the use of a fabricated gas powered cabinet dryer to dry sulphited chips and the second method was the use of traditional sun drying method without the addition of the chemical. The blends were also assessed in terms of functional, chemical and color properties. Most acceptable blends include BAW (80:20 of sweet potato/wheat), BBC (80:20 of sweet potato/guinea corn), AAB (60:40 of sweet potato/guinea corn), YTE (100% soybean), TYG (100% sweet potato), KTN (100% wheat flour), XGP (80:20 of sweet potato/soybean), XAX (60:40 of sweet potato/wheat), LSS (100% Roselle), CHK (100% Guinea corn), and ABC (60:40% of sweet potato/ yellow maize). In addition, chemical analysis carried out revealed that sweet potato has high percentage of vitamins A and C, potassium (K), manganese (Mn), calcium (Ca), magnesium (Mg) and iron (Fe) and fibre content. There is also an increase of vitamin A and Iron in the blended products.

Keywords: blends, diversification, sensory evaluation, sweet potato, utilization

Procedia PDF Downloads 488
3171 Productive Performance of Lactating Sows Feed with Cull Chickpea

Authors: J. M. Uriarte, H. R. Guemez, J. A. Romo, R. Barajas, J. M. Romo

Abstract:

This research was carried out with the objective of knowing the productive performance of sows in lactation when fed with diets containing cull chickpea instead of corn and soybean meal. Thirty-six (Landrace x Yorkshire) lactating sows were divided into three treatments with 12 sows per treatment. On day 107 of gestation, sows were moved into farrowing crates in an environmentally regulated (2.2 × 0.6 m) contained an area (2.2 × 0.5 m) for newborn pigs on each side, all diets were provided as a dry powder, and the sows received free access to water throughout the experimental period. After farrowing, daily feed allowance increased gradually, and sows had ad libitum access to feed by day four. They were fed diets containing 0 (CONT), cull chickpeas 15 % (CHP15), or cull chickpeas 30% (CHP30) for 28 days. The diets contained the same calculated levels of crude protein and metabolizable energy, and contained vitamins and minerals that exceeded the National Research Council (1998) recommendations; sows were fed three times daily. On day 28, piglets were weaned and performances of lactating sows and nursery piglets were recorded. All data in this experiment were analyzed in accordance with a completely randomized design. Results indicated that average daily feed intake (5.61, 5.59 and 5.46 kg for CONT, CHP15, and CHP30 respectively) of sows were not affected (P > 0.05) by different dietary. There was no difference (P > 0.05) in average body weight of piglets on the day of birth (1.35 vs. 1.30, and 1.32 kg) and day 28 (7.10, 6.80 and 6.92 kg) between treatments. The numbers of weaned piglets (10.65 on average) were not affected by treatments. It is concluded that the use of cull chickpea at 30% of the diet does not affect the productive performance of lactating sows.

Keywords: cull chickpea, lactating sow, performance, pigs

Procedia PDF Downloads 128
3170 Mass Customization of Chemical Protective Clothing

Authors: Eugenija Strazdiene, Violeta Bytautaite, Daivute Krisciuniene

Abstract:

The object of the investigation is the suit for chemical protection, which totally covers human body together with breathing apparatus, breathing mask and helmet (JSC Ansell Protective Solutions Lithuania). The end users of such clothing are the members of rescue team – firefighters. During the presentation, the results of 3D scanning with stationary Human Solutions scanner and portable Artec Eva scanner will be compared on the basis of the efficiency of scanning procedure and scanning accuracy. Also, the possibilities to exporting scanned bodies into specialized CAD systems for suit design development and material consumption calculation will be analyzed. The necessity to understand and to implement corresponding clothing material properties during 3D visualization of garment on CAD systems will be presented. During the presentation, the outcomes of the project ‘Smart and Safe Work Wear Clothing SWW’ will be discussed. The project is carried out under the Interreg Baltic Sea Region Program as 2014-2020 European territorial cooperation objective. Thematic priority is Capacity for Innovation. The main goal of the project is to improve competitiveness and to increase business possibilities for work wear enterprises in the Baltic Sea Region. The project focuses on mass customization of products for various end users. It engages textile and clothing manufacturing technology researchers, work wear producers, end users, as well as national textile and clothing branch organizations in Finland, Lithuania, Latvia, Estonia and Poland.

Keywords: CAD systems, mass customization, 3D scanning, safe work wear

Procedia PDF Downloads 189
3169 Variability of the Snowline Altitude at Different Region in the Eastern Tibetan Plateau in Recent 20 Years

Authors: Zhen Li, Chang Liu, Ping Zhang

Abstract:

These Glaciers are thought of as natural water reservoirs and are of vital importance to hydrological models and industrial production, and glacial changes act as significant indicators of climate change. The glacier snowline can be used as an indicator of the equilibrium line, which may be a key parameter to study the effect of climate change on glaciers. Using Google Earth Engine, we select optical satellite imageries and implement the Otsu thresholding method on a near-infrared band to detect snowline altitudes (SLAs) of 26 glaciers in three regions of the eastern Tibetan Plateau. Three different study regions in the eastern Tibetan Plateau have different climate regimes, which are Sepu Kangri (SK, maritime glacier), Bu’Gyai Kangri (BK, continental glacier) and west of Qiajajima (WQ, continental glacier), along a latitudinal transect from south to north. We analyzed the effects of climatic factors on the SLA changes from 1995 to 2016. SLAs are fluctuating upward, and the rising values are 100 m, 60 m, and 34 m from south to north during the 22 years. We also observed that the climatic factor that affects the variability of SLA gradually changes from precipitation to temperature from south to north. The northern continental glaciers are mainly affected by temperature, and the southern maritime glaciers affected by precipitation. Owing to the influence of primary climatic factors, continental glaciers are found to have higher SLAs on the south slope, while maritime glaciers have higher SLAs on the north slope.

Keywords: climate change, glacier, snowline altitude, tibetan plateau

Procedia PDF Downloads 147
3168 Effects of Monofin Training on Left Ventricular Performance in Elite Egyptian Children Athletes

Authors: Magdy Abouzeid

Abstract:

Objectives: The aim of this study was to examine the influence of Monofin training, 36 weeks, 6 times per week, 90 min/unit on left ventricular performance in elite Egyptian Monofin athletes. Background: The elite athletes are one who has superior athletic talent. Monofin swimming already provide the most efficient way of swimming for human being, it is an aquatics sport practice on the surface or under water. Methods :To study these effects,14 elite Monofin children(3 girls and 11boys) aged(11.95± 1.09yr) HT (153.07± 4.2 cm) , WT(52.4 ± 3.7 kg ) , body surface area (BSA.m2 1.48 ± 5.6 m2 ) took part in long-term Monofin Training(LTMT).All subjects underwent two-dimension and M-mode Echordiography at rest before and after(LTMT). Results: There was significant difference (P < 0.01) and percentage improvement for all echocardiography parameter after (LTMT). Inter ventricular septal thickness in diastole and in systole increased by 27.9 % and 42.75 %. Left ventricular end systolic dimension and diastole increased by 16.81 % and 42.7 % respectively. Posterior wall thickness in systole was very highly increased by 283.3 % and in diastole increased by 51.78 %. Left ventricular mass in diastole and in systole increased by 44.8 % and 40.1 % respectively. Stroke volume and resting heart rate (HR) significant changed (sv) 25 %, (HR) 14.7 %. Conclusion: Monofin training is an effective sport to enhance ‘Heart athlete's’ for children, because the unique swim fin tool and create propulsion and overcome resistance. Further researches are needed to determine the effects of Monofin training on right ventricular in child athletes.

Keywords: prepubertal, monofin training, heart athlete's, elite child athlete, echocardiography

Procedia PDF Downloads 306
3167 Blood Lipid Profile and Liver Lipid Peroxidation in Normal Rat Fed with Different Concentrations of Acacia senegal and Acacia seyal

Authors: Eqbal M. A. Dauqan, A. Aminah

Abstract:

The aim of the present study was to evaluate the blood lipid profile and liver lipid peroxidation in normal rat fed with different concentrations of Acacia senegal and Acacia seyal. Thirty six Sprague Dawley male rats each weighing between 180-200g were randomly divided into two groups. Each group contains eighteen rats and were divided into three groups of 6 rats per group. The rats were fed ad libitum with commercial rat’s feed and tap water containing different concentrations of Acacia senegal and Acacia seyal (3% and 6%) for 4 weeks. The results at 4 weeks showed that there was no significant difference (p≤0.05) in the total cholesterol (TC) and triglycerides (TG) between the control group and treated groups while the results for the high density lipoprotein (HDL-C) showed a significant decrease (P≥0.05) at the 3% and 6% of gum arabic treated groups compared to control group. There was a significant increase (P≥0.05) in low density lipoprotein (LDL-C) with 3% and 6% of gum Arabic (GA) groups compared to the control group. The study indicated that there was no significant (p≤0.05) effect on TC and TG but there was significant effect (P≥0.05) on HDL-C and LDL-C in blood lipid profile of normal rat. The results showed that after 4 weeks of treatment the malondialdehyde (MDA) value in rat fed with 6% of A. seyal group was significantly higher (P≥0.05) than control or other treated groups of A. seyal and A. senegal studied. Thus, the two species of gum arabic did not have beneficial effect on blood lipid profile and lipid peroxidation.

Keywords: Acacia senegal, acacia seyal, lipid profile, lipid peroxidation, malondialdehyde (MDA)

Procedia PDF Downloads 244
3166 The Influence of Strengthening on the Fundamental Frequency and Stiffness of a Confined Masonry Wall with an Opening for а Window

Authors: Emin Z. Mahmud

Abstract:

Shaking table tests are planned in order to deepen the understanding of the behavior of confined masonry structures with or without openings. The tests are realized in the laboratory of the Institute of Earthquake Engineering and Engineering Seismology (IZIIS) – Skopje. The specimens were examined separately on the shaking table, with uniaxial, in-plane excitation. After testing, samples were strengthened with GFRP (Glass Fiber Reinforced Plastic) and re-tested. This paper presents the observations from a series of shaking-table tests done on a 1:1 scaled confined masonry wall model, with opening for a window – specimens CMWuS (before strengthening) and CMWS (after strengthening). Frequency and stiffness changes before and after GFRP wall strengthening are analyzed. Definition of dynamic properties of the models was the first step of the experimental testing, which enabled acquiring important information about the achieved stiffness (natural frequencies) of the model. The natural frequency was defined in the Y direction of the model by applying resonant frequency search tests. It is important to mention that both specimens CMWuS and CMWS are subjected to the same effects. The initial frequency of the undamaged model CMWuS is 18.79 Hz, while at the end of the testing, the frequency decreased to 12.96 Hz. This emphasizes the reduction of the initial stiffness of the model due to damage, especially in the masonry and tie-beam to tie-column connection. After strengthening the damaged wall, the natural frequency increases to 14.67 Hz. This highlights the beneficial effect of strengthening. After completion of dynamic testing at CMWS, the natural frequency is reduced to 10.75 Hz.

Keywords: behaviour of masonry structures, Eurocode, frequency, masonry, shaking table test, strengthening

Procedia PDF Downloads 111
3165 Steam Reforming of Acetic Acid over Microwave-Synthesized Ce0.75Zr0.25O2 Supported Ni Catalysts

Authors: Panumard Kaewmora, Thirasak Rirksomboon, Vissanu Meeyoo

Abstract:

Due to the globally growing demands of petroleum fuel and fossil fuels, the scarcity or even depletion of fossil fuel sources could be inevitable. Alternatively, the utilization of renewable sources, such as biomass, has become attractive to the community. Biomass can be converted into bio-oil by fast pyrolysis. In water phase of bio-oil, acetic acid which is one of its main components can be converted to hydrogen with high selectivity over effective catalysts in steam reforming process. Steam reforming of acetic acid as model compound has been intensively investigated for hydrogen production using various metal oxide supported nickel catalysts and yet they seem to be rapidly deactivated depending on the support utilized. A catalyst support such as Ce1-xZrxO2 mixed oxide was proposed for alleviating this problem with the anticipation of enhancing hydrogen yield. However, catalyst preparation methods play a significant role in catalytic activity and performance of the catalysts. In this work, Ce0.75Zr0.25O2 mixed oxide solid solution support was prepared by urea hydrolysis using microwave as heat source. After that nickel metal was incorporated at 15 wt% by incipient wetness impregnation method. The catalysts were characterized by several techniques including BET, XRD, H2-TPR, XRF, SEM, and TEM as well as tested for the steam reforming of acetic acid at various operating conditions. Preliminary results showed that a hydrogen yield of ca. 32% with a relatively high acetic conversion was attained at 650°C.

Keywords: acetic acid, steam reforming, microwave, nickel, ceria, zirconia

Procedia PDF Downloads 166
3164 Adsorption and Transformation of Lead in Coimbatore Urban Soils

Authors: K. Sivasubramanin, S. Mahimairaja, S. Pavithrapriya

Abstract:

Heavy metal pollution originating from industrial wastes is becoming a serious problem in many urban environments. These heavy metals, if not properly managed, could enter into the food chain and cause a serious health hazards in animals and humans. Industrial wastes, sewage sludge, and automobile emissions also contribute to heavy metal like Pb pollution in the urban environment. However, information is scarce on the heavy metal pollution in Coimbatore urban environment. Therefore, the current study was carried out to examine the extent of lead pollution in Coimbatore urban environment the maximum Pb concentration in Coimbatore urban environment was found in ukkadam, whose concentration in soils 352 mg kg-1. In many places, the Pb concentration was found exceeded the permissible limit of 100 mg kg-1. In laboratory, closed incubation experiment showed that the concentration of different species of Pb viz., water soluble Pb(H2O-Pb), exchangeable Pb(KNO3-Pb), organic-Pb(NaOH-Pb), and organic plus metal (Fe & Al) oxides bound-Pb(Na2 EDTA-Pb) was found significantly increased during the 15 days incubation, mainly due to biotransformation processes. Both the moisture content of soil and ambient temperature exerted a profound influence on the transformation of Pb. The results of a batch experiment has shown that the sorption data was adequately described by the Freundlich equation as indicated by the high correlation coefficients (R2= 0.64) than the Langmuir equation (R2 = 0.33). A maximum of 86 mg of Pb was found adsorbed per kilogram of soil. Consistently, a soil column experiment result had shown that only a small amount of Pb( < 1.0 µg g-1 soil) alone was found leached from the soil. This might be due to greater potential of the soil towards Pb adsorption.

Keywords: lead pollution, adsorption, transformation, heavy metal pollution

Procedia PDF Downloads 318
3163 Effect of Temperature and CuO Nanoparticle Concentration on Thermal Conductivity and Viscosity of a Phase Change Material

Authors: V. Bastian Aguila, C. Diego Vasco, P. Paula Galvez, R. Paula Zapata

Abstract:

The main results of an experimental study of the effect of temperature and nanoparticle concentration on thermal conductivity and viscosity of a nanofluid are shown. The nanofluid was made by using octadecane as a base fluid and CuO spherical nanoparticles of 75 nm (MkNano). Since the base fluid is a phase change material (PCM) to be used in thermal storage applications, the engineered nanofluid is referred as nanoPCM. Three nanoPCM were prepared through the two-step method (2.5, 5.0 and 10.0%wv). In order to increase the stability of the nanoPCM, the surface of the CuO nanoparticles was modified with sodium oleate, and it was verified by IR analysis. The modified CuO nanoparticles were dispersed by using an ultrasonic horn (Hielscher UP50H) during one hour (amplitude of 180 μm at 50 W). The thermal conductivity was measured by using a thermal properties analyzer (KD2-Pro) in the temperature range of 30ºC to 40ºC. The viscosity was measured by using a Brookfield DV2T-LV viscosimeter to 30 RPM in the temperature range of 30ºC to 55ºC. The obtained results for the nanoPCM showed that thermal conductivity is almost constant in the analyzed temperature range, and the viscosity decreases non-linearly with temperature. Respect to the effect of the nanoparticle concentration, both thermal conductivity and viscosity increased with nanoparticle concentration. The thermal conductivity raised up to 9% respect to the base fluid, and the viscosity increases up to 60%, in both cases for the higher concentration. Finally, the viscosity measurements for different rotation speeds (30 RPM - 80 RPM) exhibited that the addition of nanoparticles modifies the rheological behavior of the base fluid, from a Newtonian to a viscoplastic (Bingham) or shear thinning (power-law) non-Newtonian behavior.

Keywords: NanoPCM, thermal conductivity, viscosity, non-Newtonian fluid

Procedia PDF Downloads 409
3162 Projections of Climate Change in the Rain Regime of the Ibicui River Basin

Authors: Claudineia Brazil, Elison Eduardo Bierhals, Francisco Pereira, José Leandro Néris, Matheus Rippel, Luciane Salvi

Abstract:

The global concern about climate change has been increasing, since the emission of gases from human activities contributes to the greenhouse effect in the atmosphere, indicating significant impacts to the planet in the coming years. The study of precipitation regime is fundamental for the development of research in several areas. Among them are hydrology, agriculture, and electric sector. Using the climatic projections of the models belonging to the CMIP5, the main objective of the paper was to present an analysis of the impacts of climate change without rainfall in the Uruguay River basin. After an analysis of the results, it can be observed that for the future climate, there is a tendency, in relation to the present climate, for larger numbers of dry events, mainly in the winter months, changing the pluviometric regime for wet summers and drier winters. Given this projected framework, it is important to note the importance of adequate management of the existing water sources in the river basin, since the value of rainfall is reduced for the next years, it may compromise the dynamics of the ecosystems in the region. Facing climate change is fundamental issue for regions and cities all around the world. Society must improve its resilience to phenomenon impacts, and spreading the knowledge among decision makers and citizens is also essential. So, these research results can be subsidies for the decision-making in planning and management of mitigation measures and/or adaptation in south Brazil.

Keywords: climate change, hydrological potential, precipitation, mitigation

Procedia PDF Downloads 333
3161 Effects of Amino Bisphosphonic Acid on the Growth and Phytoextraction Efficiency of Salix schwerinii Grown in Ni-Contaminated Soil

Authors: Muhammad Mohsin, Mir Md Abdus Salam, Pertti Pulkkinen, Ari Pappinen

Abstract:

Soil polluted with elevated level of nickel (Ni) concentration may cause severe hazards to humans and forest ecosystems, for example, by polluting underground water reserves, affecting food quality and by reducing agricultural productivity. The present study investigated the phytoextraction ability of Salix schwerinii, enhanced with an application of the N100 (11-amino-1-hydroxyundecylidene) chelate. N100 has proved to be a non-toxic, low risk of leaching, environmentally friendly and easily biodegradable chelate that has a potential for metal chelation. The Salix were grown in garden soil that was also amended with nickel (Ni; 150 mg kg⁻¹). Multiple doses of N100 were applied to the treatments as follows: Ni + N100 1.2 g and Ni+ N100 2.4 g. Furthermore, N100 doses were also repeated with the control soil. The effect of N100 on height growth, biomass, and the accumulation of Ni in Salix in polluted soils was studied. In this study, N100 application was found to be effective in enhancing height and biomass growth under polluted treatments. Total reflection X-ray fluorescence (TXRF) spectrometry was used to determine the concentration of Ni in the Salix tissues. The total Ni concentrations in the soils amended with N100 increased substantially by up to 324% as compared to the control. The Ni translocation factor (TF) and bioconcentration factor (BF) values for S. schwerinii increased with the application of N100 as varied from 0.45–1.25 and 0.80‒1.50, respectively. This study revealed that S. schwerinii is suitable for the phytoextraction of Ni-contaminated soils.

Keywords: bisphosphonic acid, nickel, phytoextraction, Salix

Procedia PDF Downloads 142
3160 Paradigm Shift in Classical Drug Research: Challenges to Mordern Pharmaceutical Sciences

Authors: Riddhi Shukla, Rajeshri Patel, Prakruti Buch, Tejas Sharma, Mihir Raval, Navin Sheth

Abstract:

Many classical drugs are claimed to have blood sugar lowering properties that make them valuable for people with or at high risk of type 2 diabetes. Vijaysar (Pterocarpus marsupium) and Gaumutra (Indian cow urine) both have been shown antidiabetic property since primordial time and both shows synergistic effect in combination for hypoglycaemic activity. The study was undertaken to investigate the hypoglycaemic and anti-diabetic effects of the combination of Vijaysar and Gaumutra which is a classical preparation mentioned in Ayurveda named as Pramehari ark. Rats with Type 2 diabetes which is induced by streptozotocin (STZ, 35mg/kg) given a high-fat diet for one month and compared with normal rats. Diabetic rats showed raised level of body weight, triglyceride (TG), total cholesterol, HDL, LDL, and D-glucose concentration and other serum, cardiac and hypertrophic parameters in comparison of normal rats. After treatment of different doses of drug the level of parameters like TG, total cholesterol, HDL, LDL, and D-glucose concentration found to be decreased in standard as well as in treatment groups. In addition treatment groups also found to be decreased in the level of serum markers, cardiac markers, and hypertrophic parameters. The findings demonstrated that Pramehari ark prevented the pathological progression of type 2 diabetes in rats.

Keywords: cow urine, hypoglycemic effect, synergic effect, type 2 diabetes, vijaysar

Procedia PDF Downloads 267
3159 Perforation Analysis of the Aluminum Alloy Sheets Subjected to High Rate of Loading and Heated Using Thermal Chamber: Experimental and Numerical Approach

Authors: A. Bendarma, T. Jankowiak, A. Rusinek, T. Lodygowski, M. Klósak, S. Bouslikhane

Abstract:

The analysis of the mechanical characteristics and dynamic behavior of aluminum alloy sheet due to perforation tests based on the experimental tests coupled with the numerical simulation is presented. The impact problems (penetration and perforation) of the metallic plates have been of interest for a long time. Experimental, analytical as well as numerical studies have been carried out to analyze in details the perforation process. Based on these approaches, the ballistic properties of the material have been studied. The initial and residual velocities laser sensor is used during experiments to obtain the ballistic curve and the ballistic limit. The energy balance is also reported together with the energy absorbed by the aluminum including the ballistic curve and ballistic limit. The high speed camera helps to estimate the failure time and to calculate the impact force. A wide range of initial impact velocities from 40 up to 180 m/s has been covered during the tests. The mass of the conical nose shaped projectile is 28 g, its diameter is 12 mm, and the thickness of the aluminum sheet is equal to 1.0 mm. The ABAQUS/Explicit finite element code has been used to simulate the perforation processes. The comparison of the ballistic curve was obtained numerically and was verified experimentally, and the failure patterns are presented using the optimal mesh densities which provide the stability of the results. A good agreement of the numerical and experimental results is observed.

Keywords: aluminum alloy, ballistic behavior, failure criterion, numerical simulation

Procedia PDF Downloads 303
3158 Characterization of Kopff Crater Using Remote Sensing Data

Authors: Shreekumari Patel, Prabhjot Kaur, Paras Solanki

Abstract:

Moon Mineralogy Mapper (M3), Miniature Radio Frequency (Mini-RF), Kaguya Terrain Camera images, Lunar Orbiter Laser Altimeter (LOLA) digital elevation model (DEM) and Lunar Reconnaissance Orbiter Camera (LROC)- Narrow angle camera (NAC) and Wide angle camera (WAC) images were used to study mineralogy, surface physical properties, and age of the 42 km diameter Kopff crater. M3 indicates the low albedo crater floor to be high-Ca pyroxene dominated associated with floor fracture suggesting the igneous activity of the gabbroic material. Signature of anorthositic material is sampled on the eastern edge as target material is excavated from ~3 km diameter impact crater providing access to the crustal composition. Several occurrences of spinel were detected in northwestern rugged terrain. Our observation can be explained by exposure of spinel by this crater that impacted onto the inner rings of Orientale basin. Spinel was part of the pre-impact target, an intrinsic unit of basin ring. Crater floor was dated by crater counts performed on Kaguya TC images. Nature of surface was studied in detail with LROC NAC and Mini-RF. Freshly exposed surface and boulder or debris seen in LROC NAC images have enhanced radar signal in comparison to mature terrain of Kopff crater. This multidisciplinary analysis of remote sensing data helps to assess lunar surface in detail.

Keywords: crater, mineralogy, moon, radar observations

Procedia PDF Downloads 151
3157 Investigating the Environmental Impact of Additive Manufacturing Compared to Conventional Manufacturing through Life Cycle Assessment

Authors: Gustavo Menezes De Souza Melo, Arnaud Heitz, Johannes Henrich Schleifenbaum

Abstract:

Additive manufacturing is a growing market that is taking over in many industries as it offers numerous advantages like new design possibilities, weight-saving solutions, ease of manufacture, and simplification of assemblies. These are all unquestionable technical or financial assets. As to the environmental aspect, additive manufacturing is often discussed whether it is the best solution to decarbonize our industries or if conventional manufacturing remains cleaner. This work presents a life cycle assessment (LCA) comparison based on the technological case of a motorbike swing-arm. We compare the original equipment manufacturer part made with conventional manufacturing (CM) methods to an additive manufacturing (AM) version printed using the laser powder bed fusion process. The AM version has been modified and optimized to achieve better dynamic performance without any regard to weight saving. Lightweight not being a priority in the creation of the 3D printed part brings us a unique perspective in this study. To achieve the LCA, we are using the open-source life cycle, and sustainability software OpenLCA combined with the ReCiPe 2016 at midpoint and endpoint level method. This allows the calculation and the presentation of the results through indicators such as global warming, water use, resource scarcity, etc. The results are then showing the relative impact of the AM version compared to the CM one and give us a key to understand and answer questions about the environmental sustainability of additive manufacturing.

Keywords: additive manufacturing, environmental impact, life cycle assessment, laser powder bed fusion

Procedia PDF Downloads 247