Search results for: polylactic acid (PLA).
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3340

Search results for: polylactic acid (PLA).

2140 Biomass and Biogas Yield of Maize as Affected by Nitrogen Rates with Varying Harvesting under Semi-Arid Condition of Pakistan

Authors: Athar Mahmood, Asad Ali

Abstract:

Management considerations including harvesting time and nitrogen application considerably influence the biomass yield, quality and biogas production. Therefore, a field study was conducted to determine the effect of various harvesting times and nitrogen rates on the biomass yield, quality and biogas yield of maize crop. This experiment was consisted of various harvesting times i.e., harvesting after 45, 55 and 65 days of sowing (DAS) and nitrogen rates i.e., 0, 100, 150 and 200 kg ha-1 respectively. The data indicated that maximum plant height, leaf area, dry matter (DM) yield, protein, acid detergent fiber, neutral detergent fiber, crude fiber contents and biogas yield were recorded 65 days after sowing while lowest was recorded 45 days after sowing. In contrary to that significantly higher chlorophyll contents were observed at 45 DAS. In case of nitrogen rates maximum plant height, leaf area, and DM yield, protein contents, ash contents, acid detergent fiber, neutral detergent fiber, crude fiber contents and chlorophyll contents were determined with nitrogen at the rate of 200 kg ha-1, while minimum was observed when no N was applied. Therefore, harvesting 65 DAS and N application @ 200 kg ha-1 can be suitable for getting the higher biomass and biogas production.

Keywords: chemical composition, fiber contents, biogas, nitrogen, harvesting time

Procedia PDF Downloads 160
2139 An in Situ Dna Content Detection Enabled by Organic Long-persistent Luminescence Materials with Tunable Afterglow-time in Water and Air

Authors: Desissa Yadeta Muleta

Abstract:

Purely organic long-persistent luminescence materials (OLPLMs) have been developed as emerging organic materials due to their simple production process, low preparation cost and better biocompatibilities. Notably, OLPLMs with afterglow-time-tunable long-persistent luminescence (LPL) characteristics enable higher-level protection applications and have great prospects in biological applications. The realization of these advanced performances depends on our ability to gradually tune LPL duration under ambient conditions, however, the strategies to achieve this are few due to the lack of unambiguous mechanisms. Here, we propose a two-step strategy to gradually tune LPL duration of OLPLMs over a wide range of seconds in water and air, by using derivatives as the guest and introducing a third-party material into the host-immobilized host–guest doping system. Based on this strategy, we develop an analysis method for deoxyribonucleic acid (DNA) content detection without DNA separation in aqueous samples, which circumvents the influence of the chromophore, fluorophore and other interferents in vivo, enabling a certain degree of in situ detection that is difficult to achieve using today’s methods. This work will expedite the development of afterglow-time-tunable OLPLMs and expand new horizons for their applications in data protection, bio-detection, and bio-sensing

Keywords: deoxyribonucliec acid, long persistent luminescent materials, water, air

Procedia PDF Downloads 76
2138 Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition

Authors: V. Viliene, V. Sasyte, A. Raceviciute-Stupeliene, R. Gruzauskas

Abstract:

In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties.

Keywords: barley, digestive energy, horses, nutritional value, oats

Procedia PDF Downloads 205
2137 Rearrangement and Depletion of Human Skin Folate after UVA Exposure

Authors: Luai Z. Hasoun, Steven W. Bailey, Kitti K. Outlaw, June E. Ayling

Abstract:

Human skin color is thought to have evolved to balance sufficient photochemical synthesis of vitamin D versus the need to protect not only DNA but also folate from degradation by ultraviolet light (UV). Although the risk of DNA damage and subsequent skin cancer is related to light skin color, the effect of UV on skin folate of any species is unknown. Here we show that UVA irradiation at 13 mW/cm2 for a total exposure of 187 J/cm2 (similar to a maximal daily equatorial dose) induced a significant loss of total folate in epidermis of ex vivo white skin. No loss was observed in black skin samples, or in the dermis of either color. Interestingly, while the concentration of 5 methyltetrahydrofolate (5-MTHF) fell in white epidermis, a concomitant increase of tetrahydrofolic acid was found, though not enough to maintain the total pool. These results demonstrate that UVA indeed not only decreases folate in skin, but also rearranges the pool components. This could be due in part to the reported increase of NADPH oxidase activity upon UV irradiation, which in turn depletes the NADPH needed for 5-MTHF biosynthesis by 5,10-methylenetetrahydrofolate reductase. The increased tetrahydrofolic acid might further support production of the nucleotide bases needed for DNA repair. However, total folate was lost at a rate that could, with strong or continuous enough exposure to ultraviolet radiation, substantially deplete light colored skin locally, and also put pressure on total body stores for individuals with low intake of folate.

Keywords: depletion, folate, human skin, ultraviolet

Procedia PDF Downloads 386
2136 Fiber Optic Asparagine Biosensor for Fruit Juices by Co-Immobilization of L-Asparaginase and Phenol Red

Authors: Mandeep Kataria, Ritu Narula, Navneet Kaur

Abstract:

Asparagine is vital amino acid which is required for the development of brain and it regulates the equilibrium of central nervous system. Asparagine is the chief amino acid that forms acrylamide in baked food by reacting with reducing sugars at high temperature ( Millard Reaction i.e. amino acids and sugars give new flavors at high temperature). It can also be a parameter of freshness in fruit juices because on storage of juices at 37°C caused an 87% loss in the total free amino acids and major decrease was recorded in asparagine contents. With this significance of monitoring asparagine, in the present work a biosensor for determining asparagine in fruit juices is developed. For the construction of biosensor L-asparaginase enzyme (0.5 IU) was co-immobilized with phenol red on TEOS chitosan sol-gel plastic disc and fixed on the fiber optic tip. Tip was immersed in a cell having 5ml of substrate and absorption was noted at response time of 5 min with 10-1 - 10-10 M concentrations of asparagine at 538 nm. L-asparaginase was extracted and from Solanum nigrum Asparagine biosensor was applied fruit juices on the monitoring asparagine contents. L-asparagine concentration found to be present in fruit juices like Guava Juice, Apple Juice, Mango Juice, Litchi juice, Strawberry juice, Pineapple juice Lemon juice, and Orange juice. Hence the developed biosensor has commercial aspects in quality insurance of fruit juices.

Keywords: fiber optic biosensor, chitosan, teos, l-asparaginase

Procedia PDF Downloads 289
2135 Brief Inquisition of Photocatalytic Degradation of Azo Dyes by Magnetically Enhanced Zinc Oxide Nanoparticles

Authors: Thian Khoon Tan, Poi Sim Khiew, Wee Siong Chiu, Chin Hua Chia

Abstract:

This study investigates the efficacy of magnetically enhanced zinc oxide (MZnO) nanoparticles as a photocatalyst in the photodegradation of synthetic dyes, especially azo dyes. This magnetised zinc oxide has been simply fabricated by mechanical mixing through low-temperature calcination. This MZnO has been analysed through several analytical measurements, including FESEM, XRD, BET, EDX, and TEM, as well as VSM analysis which reflects successful fabrication. A high volume of azo dyes was found in industries effluent wastewater. They contribute to serious environmental stability and are very harmful to human health due to their high stability and carcinogenic properties. Therefore, five azo dyes, Reactive Red 120 (RR120), Disperse Blue 15 (DB15), Acid Brown 14 (AB14), Orange G (OG), and Acid Orange 7 (AO7), have been randomly selected to study their photodegradation property with reference to few characteristics, such as number of azo functional groups, benzene groups, molecular mass, and absorbance. The photocatalytic degradation efficiency was analysed by using a UV-vis spectrophotometer, where the reaction rate constant was obtained. It was found that azo dyes were significantly degraded through the first-order rate constant, which shows a higher kinetic constant as the number of azo functional groups and benzene group increases. However, the kinetic constant is inversely proportional to the molecular weight of these azo dyes.

Keywords: nanoparticles, photocatalyst, magnetically enhanced, wastewater, synthetic dyes, azo dyes

Procedia PDF Downloads 11
2134 Surface Modified Nano-Diamond/Polyimide Hybrid Composites

Authors: Hati̇ce Bi̇rtane, Asli Beyler Çi̇ği̇l, Memet Vezi̇r Kahraman

Abstract:

Polyimide (PI) is one of the most important super-engineering materials because of its mechanical properties and its thermal stability. Electronic industry is the typical extensive applications of polyimides including interlayer insulation films, buffer coating, films, alpha-ray shielding films, and alignment films for liquid crystal displays. The mechanical and thermal properties of polymers are generally improved by the addition of inorganic additives. The challenges in this area of high-performance organic/inorganic hybrid materials are to obtain significant improvements in the interfacial adhesion between the polymer matrix and the reinforcing material since the organic matrix is relatively incompatible with the inorganic phase. In this study, modified nanodiamond was prepared from the reaction of nanodiamond and (3-Mercaptopropyl)trimethoxysilane. Poly(amic acid) was prepared from the reaction of 3,3',4,4'-Benzophenonetetracarboxylic dianhydride (BTDA) and 4,4'-Oxydianiline (ODA). Polyimide/modified nanodiamond hybrids were prepared by blending of poly(amic acid) and organically modified nanodiamond. The morphology of the Polyimide/ modified nanodiamond hybrids was characterized by scanning electron microscopy (SEM). Chemical structure of polyimide and Polyimide/modified nanodiamond hybrids was characterized by FTIR. FTIR results showed that the Polyimide/modified nanodiamond hybrids were successfully prepared. A thermal property of the Polyimide/modified nanodiamond hybrids was characterized by thermogravimetric analysis (TGA).

Keywords: hybrid materials, nanodiamond, polyimide, polymer

Procedia PDF Downloads 242
2133 Micro-Arc Oxidation Titanium and Post Treatment by Cold Plasma and Graft Polymerization of Acrylic Acid for Biomedical Application

Authors: Shu-Chuan Liao, Chia-Ti Chang, Ko-Shao Chen

Abstract:

Titanium and its alloy are widely used in many fields such as dentistry or orthopaedics. Due to their high strength low elastic modulus that chemical inertness and bio inert. The micro-arc oxidation used to formation a micro porous ceramic oxide layer film on Titanium surface and also to improve the resistance corrosion. For improving the biocompatibility, micro-arc oxidation surfaces bio-inert need to introduce reactive group. We introduced boundary layer by used plasma enhanced chemical vapor deposition of hexamethyldisilazane (HMDS) and organic active layer by UV light graft reactive monomer acrylic acid (AAc) therefore we can immobilize Chondroitin sulphate on surface easily by crosslinking EDC/NHS. The surface properties and composition of the modified layer were measured by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) and water contact angle. Water contact angle of the plasma-treated Ti surface decreases from 60° to 38°, which is an indication of hydrophilicity. The results of electrochemical polarization analysis showed that the sample plasma treated at micro-arc oxidation after plasma treatment has the best corrosion resistance. The result showed that we can immobilize chondroitin sulfate successful by a series of modification and MTT assay indicated the biocompatibility has been improved in this study.

Keywords: MAO, plasma, graft polymerization, biomedical application

Procedia PDF Downloads 258
2132 Effect of Different Concentrations of Polluted Water on Growth and Physiological Parameters of Two Green Algae Scenedesmus obliquus and Cosmarium leave

Authors: Yahia Mosleh

Abstract:

Both Scenedesmus obliquus and Cosmarium leave were subjected to different concentrations (5, 10, 20, 50, and 80 %) of highly polluted water collected from Haddows drainage, which receives high amount of domestic sewage, and also the increasing agriculture run off and industrial effluent, then disbursed it in El-Salam fresh water canal. The water in that canal dramatically used as drinking water alongside using in irrigation. A total of 25 physicochemical parameters were determined within the drainage polluted water and also up-stream of El-Salam fresh water canal's water. The effect of five concentrations of the tested polluted water were determined on growth density, dry algal biomass, net photosynthetic oxygen production, catalase activity and ascorbic acid content on the two algae "Scenedesmus obliquus and Cosmarium leave". The result reveal that, low concentration support the growth and the physiological activities of both algae. However, the situation is different in the case of high concentrations, where it encourage the growth of Scenedesmus obliquus , meanwhile the same concentration were inhibited the growth and physiological activities of Cosmarium leave. Which indicated that, Scenedesmus obliquus tolerated high pollution better than Cosmarium leave. Finally it can be concluded that, different organisms, however, have different sensitivities to the same pollutants and the same organisms may be more or less damaged by different pollutant. Also, the inhibitory and stimulatory effects of different species varied with concentrations.

Keywords: catalase activity, ascorbic acid content, Scenedesmus, Cosmarium, pollution, biomass

Procedia PDF Downloads 289
2131 Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted- 1,3,4-Oxadiazole Derivatives

Authors: Sibghat Mansoor Rana, Muhammad Islam, Hamid Saeed, Hummera Rafique, Muhammad Majid, Muhammad Tahir Aqeel, Fariha Imtiaz, Zaman Ashraf

Abstract:

The 1,3,4-oxadiazole derivatives Ox-6a-f have been synthesized by incorporating flur- biprofen moiety with the aim to explore the potential of target molecules to decrease the oxidative stress. The title compounds Ox-6a-f were prepared by simple reactions in which a flurbiprofen –COOH group was esterified with methanol in an acid-catalyzed medium, which was then reacted with hydrazine to afford the corresponding hydrazide. The acid hydrazide was then cyclized into 1,3,4-oxadiazole-2-thiol by reacting with CS2 in the presence of KOH. The title compounds Ox-6a-f were synthesized by the reaction of an –SH group with various alkyl/aryl chlorides, which involves an S-alkylation reaction. The structures of the synthesized Ox-6a-f derivatives were ascer- tained by spectroscopic data. The in silico molecular docking was performed against target proteins cyclooxygenase-2 COX-2 (PDBID 5KIR) and cyclooxygenase-1 COX-1 (PDBID 6Y3C) to determine the binding affinity of the synthesized compounds with these structures. It has been inferred that most of the synthesized compounds bind well with an active binding site of 5KIR compared to 6Y3C, and especially compound Ox-6f showed excellent binding affinity (7.70 kcal/mol) among all synthesized compounds Ox-6a-f. The molecular dynamic (MD) simulation has also been performed to check the stability of docking complexes of ligands with COX-2 by determining their root mean square deviation and root mean square fluctuation. Little fluctuation was observed in case of Ox-6f, which forms the most stable complex with COX-2. The comprehensive antioxidant potential of the synthesized compounds has been evaluated by determining their free radical scavenging activity, including DPPH, OH, nitric oxide (NO), and iron chelation assay. The derivative Ox-6f showed promising results with 80.23% radical scavenging potential at a dose of 100 μg/mL while ascorbic acid exhibited 87.72% inhibition at the same dose. The anti-inflammatory activity of the final products has also been performed, and inflammatory markers were assayed, such as a thiobarbituric acid-reducing substance, nitric oxide, interleukin-6 (IL-6), and COX-2. The derivatives Ox-6d and Ox-6f displayed higher anti-inflammatory activity, exhibiting 70.56% and 74.16% activity, respectively. The results were compared with standard ibuprofen, which showed 84.31% activity at the same dose, 200 μg/mL. The anti-inflammatory potential has been performed by following the carrageen-induced hind paw edema model, and results showed that derivative Ox-6f exhibited 79.83% reduction in edema volume compared to standard ibuprofen, which reduced 84.31% edema volume. As dry lab and wet lab results confirm each other, it has been deduced that derivative Ox-6f may serve as the lead structure to design potent compounds to address oxidative stress.

Keywords: synthetic chemistry, pharmaceutical chemistry, oxadiazole derivatives, anti-inflammatory, anti-cancer compounds

Procedia PDF Downloads 15
2130 Tunable Crystallinity of Zinc Gallogermanate Nanoparticles via Organic Ligand-Assisted Biphasic Hydrothermal Synthesis

Authors: Sarai Guerrero, Lijia Liu

Abstract:

Zinc gallogermanate (ZGGO) is a persistent phosphor that can emit in the near infrared (NIR) range once dopped with Cr³⁺ enabling its use for in-vivo deep-tissue bio-imaging. Such a property also allows for its application in cancer diagnosis and therapy. Given this, work into developing a synthetic procedure that can be done using common laboratory instruments and equipment as well as understanding ZGGO overall, is in demand. However, the ZGGO nanoparticles must have a size compatible for cell intake to occur while still maintaining sufficient photoluminescence. The nanoparticle must also be made biocompatible by functionalizing the surface for hydrophilic solubility and for high particle uniformity in the final product. Additionally, most research is completed on doped ZGGO, leaving a gap in understanding the base form of ZGGO. It also leaves a gap in understanding how doping affects the synthesis of ZGGO. In this work, the first step of optimizing the particle size via the crystalline size of ZGGO was done with undoped ZGGO using the organic acid, oleic acid (OA) for organic ligand-assisted biphasic hydrothermal synthesis. The effects of this synthesis procedure on ZGGO’s crystallinity were evaluated using Powder X-Ray Diffraction (PXRD). OA was selected as the capping ligand as experiments have shown it beneficial in synthesizing sub-10 nm zinc gallate (ZGO) nanoparticles as well as palladium nanocrystals and magnetite (Fe₃O₄) nanoparticles. Later it is possible to substitute OA with a different ligand allowing for hydrophilic solubility. Attenuated Total Reflection Fourier-Transform Infrared (ATR-FTIR) was used to investigate the surface of the nanoparticle to investigate and verify that OA had capped the nanoparticle. PXRD results showed that using this procedure led to improved crystallinity, comparable to the high-purity reagents used on the ZGGO nanoparticles. There was also a change in the crystalline size of the ZGGO nanoparticles. ATR-FTIR showed that once capped ZGGO cannot be annealed as doing so will affect the OA. These results point to this new procedure positively affecting the crystallinity of ZGGO nanoparticles. There are also repeatable implying the procedure is a reliable source of highly crystalline ZGGO nanoparticles. With this completed, the next step will be working on substituting the OA with a hydrophilic ligand. As these ligands effect the solubility of the nanoparticle as well as the pH that the nanoparticles can dissolve in, further research is needed to verify which ligand is best suited for preparing ZGGO for bio-imaging.

Keywords: biphasic hydrothermal synthesis, crystallinity, oleic acid, zinc gallogermanate

Procedia PDF Downloads 133
2129 Relationship between Prolonged Timed up and Go Test and Worse Cardiometabolic Diseases Risk Factors Profile in a Population Aged 60-65 Years

Authors: Bartłomiej K. Sołtysik, Agnieszka Guligowska, Łukasz Kroc, Małgorzata Pigłowska, Elizavetta Fife, Tomasz Kostka

Abstract:

Introduction: Functional capacity is one of the basic determinants of health in older age. Functional capacity may be influenced by multiple disorders, including cardiovascular and metabolic diseases. Nevertheless, there is relatively little evidence regarding the association of functional status and cardiometabolic risk factors. Aim: The aim of this research is to check possible association between functional capacity and cardiovascular risk factor in a group of younger seniors. Materials and Methods: The study group consisted of 300 participants aged 60-65 years (50% were women). Total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-C), low density lipoprotein cholesterol (LDL-C), glucose, uric acid, body mass index (BMI), waist-to-height ratio (WHtR) and blood pressure were measured. Smoking status and physical activity level (by Seven Day Physical Activity Recall Questionnaire ) were analysed. Functional status was assessed with the Timed Up and Go (TUG) Test. The data were compared according to gender, and then separately for both sexes regarding prolonged TUG score (>7 s). The limit of significance was set at p≤0.05 for all analyses. Results: Women presented with higher serum lipids and longer TUG. Men had higher blood pressure, glucose, uric acid, the prevalence of hypertension and history of heart infarct. In women group, those with prolonged TUG displayed significantly higher obesity rate (BMI, WHTR), uric acid, hypertension and ischemic heart disease (IHD), but lower physical activity level, TC or LDL-C. Men with prolonged TUG were heavier smokers, had higher TG, lower HDL and presented with higher prevalence of diabetes and IHD. Discussion: This study shows association between functional status and risk profile of cardiometabolic disorders. In women, the relationship of lower functional status to cardiometabolic diseases may be mediated by overweight/obesity. In men, locomotor problems may be related to smoking. Higher education level may be considered as a protective factor regardless of gender.

Keywords: cardiovascular risk factors, functional capacity, TUG test, seniors

Procedia PDF Downloads 287
2128 Propagation of Simmondsia chinensis (Link) Schneider by Stem Cuttings

Authors: Ahmed M. Eed, Adam H. Burgoyne

Abstract:

Jojoba (Simmondsia chinensis (Link) Schneider), is a desert shrub which tolerates saline, alkyle soils and drought. The seeds contain a characteristic liquid wax of economic importance in industry as a machine lubricant and cosmetics. A major problem in seed propagation is that jojoba is a dioecious plant whose sex is not easily determined prior to flowering (3-4 years from germination). To overcome this phenomenon, asexual propagation using vegetative methods such as cutting can be used. This research was conducted to find out the effect of different Plant Growth Regulators (PGRs) and rooting media on Jojoba rhizogenesis. An experiment was carried out in a Factorial Completely Randomized Design (FCRD) with three replications, each with sixty cuttings per replication in fiberglass house of Natural Jojoba Corporation at Yemen. The different rooting media used were peat moss + perlite + vermiculite (1:1:1), peat moss + perlite (1:1) and peat moss + sand (1:1). Plant materials used were semi-hard wood cuttings of jojoba plants with length of 15 cm. The cuttings were collected in the month of June during 2012 and 2013 from the sub-terminal growth of the mother plants of Amman farm and introduced to Yemen. They were wounded, treated with Indole butyric acid (IBA), α-naphthalene acetic acid (NAA) or Indole-3-acetic acid (IAA) all @ 4000 ppm (part per million) and cultured on different rooting media under intermittent mist propagation conditions. IBA gave significantly higher percentage of rooting (66.23%) compared to NAA and IAA in all media used. However, the lowest percentage of rooting (5.33%) was recorded with IAA in the medium consisting of peat moss and sand (1:1). No significant difference was observed at all types of PGRs used with rooting media in respect of root length. Maximum number of roots was noticed in medium consisting of peat moss, perlite and vermiculite (1:1:1); peat moss and perlite (1:1) and peat moss and sand (1:1) using IBA, NAA and IBA, respectively. The interaction among rooting media was statistically significant with respect to rooting percentage character. Similarly, the interactions among PGRs were significant in terms of rooting percentage and also root length characters. The results demonstrated suitability of propagation of jojoba plants by semi-hard wood cuttings.

Keywords: cutting, IBA, Jojoba, propagation, rhizogenesis

Procedia PDF Downloads 341
2127 Comparative Study for Biodiesel Production Using a Batch and a Semi-Continuous Flow Reactor

Authors: S. S. L. Andrade, E. A. Souza, L. C. L. Santos, C. Moraes, A. K. C. L. Lobato

Abstract:

Biodiesel may be produced through transesterification reaction (or alcoholysis), that is the transformation of a long chain fatty acid in an alkyl ester. This reaction can occur in the presence of acid catalysts, alkali, or enzyme. Currently, for industrial processes, biodiesel is produced by alkaline route. The alkali most commonly used in these processes is hydroxides and methoxides of sodium and potassium. In this work, biodiesel production was conducted in two different systems. The first consisted of a batch reactor operating with a traditional washing system and the second consisted of a semi-continuous flow reactor operating with a membrane separation system. Potassium hydroxides was used as catalyst at a concentration of 1% by weight, the molar ratio oil/alcohol was 1/9 and temperature of 55 °C. Tests were performed using soybeans and palm oil and the ester conversion results were compared for both systems. It can be seen that the results for both oils are similar when using the batch reator or the semi-continuous flow reactor. The use of the semi-continuous flow reactor allows the removal of the formed products. Thus, in the case of a reversible reaction, with the removal of reaction products, the concentration of the reagents becomes higher and the equilibrium reaction is shifted towards the formation of more products. The higher conversion to ester with soybean and palm oil using the batch reactor was approximately 98%. In contrast, it was observed a conversion of 99% when using the same operating condition on a semi-continuous flow reactor.

Keywords: biodiesel, batch reactor, semi-continuous flow reactor, transesterification

Procedia PDF Downloads 384
2126 Sequence Analysis and Structural Implications of Rotavirus Capsid Proteins

Authors: Nishal Parbhoo, John B. Dewar, Samantha Gildenhuys

Abstract:

Rotavirus is the major cause of severe gastroenteritis worldwide in children aged 5 and younger. Death rates are high particularly in developing countries. The mature rotavirus is a non-enveloped triple-layered nucleocapsid containing 11 double-stranded RNA segments. Here a global view on the sequence and structure of the three main capsid proteins, VP7, VP6, and VP2 is taken by generating a consensus sequence for each of these rotavirus proteins, for each species obtained from published data of representative rotavirus genotypes from across the world and across species. The degree of conservation between species was represented on homology models for each of the proteins. VP7 shows the highest level of variation with 14 - 45 amino acids showing conservation of less than 60%. These changes are localized to the outer surface which is exposed to antibodies alluding to a possible mechanism in evading the immune system. The middle layer, VP6 shows lower variability with only 14-32 sites having lower than 70% conservation. The inner structural layer made up of VP2 showed the lowest variability with only 1-16 sites having less than 70% conservation across species. The results correlate with proteins’ multiple structural roles. Although the nucleotide sequences vary due to an error-prone replication and lack of proofreading, the corresponding amino acid sequence of VP2, 6 and 7 remains conserved. Sequence conservation maintained for the virus results in stable protein structures, fit for function. This can be exploited in drug design, molecular studies and biotechnological applications.

Keywords: amino acid sequence conservation, capsid protein, protein structure, vaccine candidate

Procedia PDF Downloads 290
2125 Arsenic Speciation in Cicer arietinum: A Terrestrial Legume That Contains Organoarsenic Species

Authors: Anjana Sagar

Abstract:

Arsenic poisoned ground water is a major concern in South Asia. The arsenic enters the food chain not only through drinking but also by using arsenic polluted water for irrigation. Arsenic is highly toxic in its inorganic forms; however, organic forms of arsenic are comparatively less toxic. In terrestrial plants, inorganic form of arsenic is predominantly found; however, we found that significant proportion of organic arsenic was present in root and shoot of a staple legume, chickpea (Cicer arientinum L) plants. Chickpea plants were raised in pot culture on soils spiked with arsenic ranging from 0-70 mg arsenate per Kg soil. Total arsenic concentrations of chickpea shoots and roots were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) ranging from 0.76 to 20.26, and 2.09 to 16.43 µg g⁻¹ dry weight, respectively. Information on arsenic species was acquired by methanol/water extraction method, with arsenic species being analyzed by high-performance liquid chromatography (HPLC) coupled with ICP-MS. Dimethylarsinic acid (DMA) was the only organic arsenic species found in amount from 0.02 to 3.16 % of total arsenic shoot concentration and 0 to 6.93 % of total arsenic root concentration, respectively. To investigate the source of the organic arsenic in chickpea plants, arsenic species in the rhizosphere of soils of plants were also examined. The absence of organic arsenic in soils would suggest the possibility of formation of DMA in plants. The present investigation provides useful information for better understanding of distribution of arsenic species in terrestrial legume plants.

Keywords: arsenic, arsenic speciation, dimethylarsinic acid, organoarsenic

Procedia PDF Downloads 138
2124 Anticancer Activity of Milk Fat Rich in Conjugated Linoleic Acid Against Ehrlich Ascites Carcinoma Cells in Female Swiss Albino Mice

Authors: Diea Gamal Abo El-Hassan, Salwa Ahmed Aly, Abdelrahman Mahmoud Abdelgwad

Abstract:

The major conjugated linoleic acid (CLA) isomers have anticancer effect, especially breast cancer cells, inhibits cell growth and induces cell death. Also, CLA has several health benefits in vivo, including antiatherogenesis, antiobesity, and modulation of immune function. The present study aimed to assess the safety and anticancer effects of milk fat CLA against in vivo Ehrlich ascites carcinoma (EAC) in female Swiss albino mice. This was based on acute toxicity study, detection of the tumor growth, life span of EAC bearing hosts, and simultaneous alterations in the hematological, biochemical, and histopathological profiles. Materials and Methods: One hundred and fifty adult female mice were equally divided into five groups. Groups (1-2) were normal controls, and Groups (3-5) were tumor transplanted mice (TTM) inoculated intraperitoneally with EAC cells (2×106 /0.2 mL). Group (3) was (TTM positive control). Group (4) TTM fed orally on balanced diet supplemented with milk fat CLA (40 mg CLA/kg body weight). Group (5) TTM fed orally on balanced diet supplemented with the same level of CLA 28 days before tumor cells inoculation. Blood samples and specimens from liver and kidney were collected from each group. The effect of milk fat CLA on the growth of tumor, life span of TTM, and simultaneous alterations in the hematological, biochemical, and histopathological profiles were examined. Results: For CLA treated TTM, significant decrease in tumor weight, ascetic volume, viable Ehrlich cells accompanied with increase in life span were observed. Hematological and biochemical profiles reverted to more or less normal levels and histopathology showed minimal effects. Conclusion: The present study proved the safety and anticancer efficiency of milk fat CLA and provides a scientific basis for its medicinal use as anticancer attributable to the additive or synergistic effects of its isomers.

Keywords: anticancer activity, conjugated linoleic acid, Ehrlich ascites carcinoma, % increase in life span, mean survival time, tumor transplanted mice.

Procedia PDF Downloads 90
2123 Evaluation of Real Time PCR Methods for Food Safety

Authors: Ergun Sakalar, Kubra Bilgic

Abstract:

In the last decades, real-time PCR has become a reliable tool preferred to use in many laboratories for pathogen detection. This technique allows for monitoring target amplification via fluorescent molecules besides admit of quantitative analysis by enabling of convert outcomes of thermal cycling to digital data. Sensitivity and traceability of real-time PCR are based on measuring of fluorescence that appears only when fluorescent reporter dye bound to specific target DNA.The fluorescent reporter systems developed for this purpose are divided into two groups. The first group consists of intercalator fluorescence dyes such as SYBR Green, EvaGreen which binds to double-stranded DNA. On the other hand, the second group includes fluorophore-labeled oligonucleotide probes that are separated into three subgroups due to differences in mechanism of action; initial primer-probes such as Cyclicons, Angler®, Amplifluor®, LUX™, Scorpions, and the second one hydrolysis probes like TaqMan, Snake assay, finally hybridization probes, for instance, Molecular Beacons, Hybprobe/FRET, HyBeacon™, MGB-Eclipse, ResonSense®, Yin-Yang, MGB-Pleiades. In addition nucleic acid analogues, an increase of probe affinity to target site is also employed with fluorescence-labeled probes. Consequently, abundant real-time PCR detection chemistries are chosen by researcher according to the field of application, mechanism of action, advantages, and proper structures of primer/probes.

Keywords: fluorescent dye, food safety, molecular probes, nucleic acid analogues

Procedia PDF Downloads 256
2122 Isolation, Identification and Measurement of Cottonseed Oil Gossypol in the Treatment of Drug-Resistant Cutaneous Leishmaniasis

Authors: Sara Taghdisi, Mehrosadat Mirmohammadi, Mostafa Mokhtarian, Mohammad Hossein Pazandeh

Abstract:

Leishmaniasis is one of the 10 most important diseases of the World Health Organization with health problems in more than 90 countries. Over one billion people are at risk of these diseases on almost every continent. The present human study was performed to evaluate the therapeutic effect of cotton plant on cutaneous leishmaniasis leision. firstly, the cotton seeds were cleaned and grinded to smaller particles. In the second step, the seeds were oiled by cold press method. In order to separate bioactive compound, after saponification of the oil, its gossypol was hydrolyzed and crystalized. finally, the therapeutic effect of Cottonseed Oil on cutaneous leishmaniasis was investigated. In the current project, Gossypol was extracted with a liquid-liquid extraction method in 120 minutes in the presence of Phosphoric acid from the cotton seed oil of Golestan beach varieties, then got crystallized in darkness using Acetic acid and isolated as Gossypol Acetic acid. The efficiency of the extracted crystal was obtained at 1.28±0.12. the cotton plant could be efficient in the treatment of Cutaneous leishmaniasis. This double-blind randomized controlled clinical trial was performed on 88 cases of leishmaniasis wounds. Patients were randomly divided into two groups of 44 cases. two groups received conventional treatment. In addition to the usual treatment (glucantime), the first group received cottonseed oil and the control group received placebo. The results of the present study showed that the surface of lesion before the intervention and in the first to fourth weeks after the intervention was not significantly different between the two groups (P-value> 0.05). But the surface of lesion in the Intervention group in the eighth and twelfth weeks was lower than the control group (P-value <0.05). This study showed that the improvement of leishmaniasis lesion using topical cotton plant mark in the eighth and twelfth weeks after the intervention was significantly more than the control group. Considering the most common chemical drugs for Cutaneous leishmaniasis treatment are sodium stibogluconate, and meglumine antimonate, which not only have relatively many side effects, but also some species of the Leishmania genus have become resistant to them. Therefore, a plant base bioactive compound such as cottonseed oil can be useful whit fewer side effects.

Keywords: cottonseed oil, crystallization, gossypol, leishmaniasis

Procedia PDF Downloads 60
2121 Demetallization of Crude Oil: Comparative Analysis of Deasphalting and Electrochemical Removal Methods of Ni and V

Authors: Nurlan Akhmetov, Abilmansur Yeshmuratov, Aliya Kurbanova, Gulnar Sugurbekova, Murat Baisariyev

Abstract:

Extraction of the vanadium and nickel compounds is complex due to the high stability of porphyrin, nickel is catalytic poison which deactivates catalysis during the catalytic cracking of the oil, while vanadyl is abrasive and valuable metal. Thus, high concentration of the Ni and V in the crude oil makes their removal relevant. Two methods of the demetallization of crude oil were tested, therefore, the present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits in to the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for Ni and 51.2% for V. Thus, applying the voltammetry, ICP MS (Inductively coupled plasma mass spectrometry) and AAS (atomic absorption spectroscopy), these mentioned types of metal extraction methods were compared in this paper.

Keywords: electrochemistry, deasphalting of crude oil, demetallization of crude oil, petrolium engineering

Procedia PDF Downloads 234
2120 Seasonal Variation of the Impact of Mining Activities on Ga-Selati River in Limpopo Province, South Africa

Authors: Joshua N. Edokpayi, John O. Odiyo, Patience P. Shikwambana

Abstract:

Water is a very rare natural resource in South Africa. Ga-Selati River is used for both domestic and industrial purposes. This study was carried out in order to assess the quality of Ga-Selati River in a mining area of Limpopo Province-Phalaborwa. The pH, Electrical Conductivity (EC) and Total Dissolved Solids (TDS) were determined using a Crinson multimeter while turbidity was measured using a Labcon Turbidimeter. The concentrations of Al, Ca, Cd, Cr, Fe, K, Mg, Mn, Na and Pb were analysed in triplicate using a Varian 520 flame atomic absorption spectrometer (AAS) supplied by PerkinElmer, after acid digestion with nitric acid in a fume cupboard. The average pH of the river from eight different sampling sites was 8.00 and 9.38 in wet and dry season respectively. Higher EC values were determined in the dry season (138.7 mS/m) than in the wet season (96.93 mS/m). Similarly, TDS values were higher in dry (929.29 mg/L) than in the wet season (640.72 mg/L) season. These values exceeded the recommended guideline of South Africa Department of Water Affairs and Forestry (DWAF) for domestic water use (70 mS/m) and that of the World Health Organization (WHO) (600 mS/m), respectively. Turbidity varied between 1.78-5.20 and 0.95-2.37 NTU in both wet and dry seasons. Total hardness of 312.50 mg/L and 297.75 mg/L as the concentration of CaCO3 was computed for the river in both the wet and the dry seasons and the river water was categorised as very hard. Mean concentration of the metals studied in both the wet and the dry seasons are: Na (94.06 mg/L and 196.3 mg/L), K (11.79 mg/L and 13.62 mg/L), Ca (45.60 mg/L and 41.30 mg/L), Mg (48.41 mg/L and 44.71 mg/L), Al (0.31 mg/L and 0.38 mg/L), Cd (0.01 mg/L and 0.01 mg/L), Cr (0.02 mg/L and 0.09 mg/L), Pb (0.05 mg/L and 0.06 mg/L), Mn (0.31 mg/L and 0.11 mg/L) and Fe (0.76 mg/L and 0.69 mg/L). Results from this study reveal that most of the metals were present in concentrations higher than the recommended guidelines of DWAF and WHO for domestic use and the protection of aquatic life.

Keywords: contamination, mining activities, surface water, trace metals

Procedia PDF Downloads 317
2119 Effects of Process Parameters on the Yield of Oil from Coconut Fruit

Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude

Abstract:

Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash, and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35, and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P˂0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05 Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26 mgKOH-1 g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2 hrs, leaching temperature of 50 oC and solute/solvent ratio of 0.05 g/ml.

Keywords: coconut, oil-extraction, optimization, physicochemical, proximate

Procedia PDF Downloads 351
2118 Refinement of Thermal and Mechanical Properties of Poly (Lactic Acid)/Poly (Ethylene-Co-Glycidyle Methacrylate)/ Hexagonal Boron Nitride Blend-Composites through Electron-Beam Irradiation

Authors: Ashish Kumar, T. Venkatappa Rao, Subhendu Ray Chowdhury, S. V. S. Ramana Reddy

Abstract:

The main objective of this work is to determine the influence of electron beam irradiation on thermal and mechanical properties of Poly (lactic acid) (PLA)/Poly (ethylene-co-glycidyle methacrylate) (PEGM)/Hexagonal boron nitride (HBN) blend-composites. To reduce the brittleness and improve the toughness of PLA, the PLA/PEGM blend is prepared by using twin-screw Micro compounder. However, the heat deflection temperature (HDT) and other tensile properties were reduced. The HBN has been incorporated into the PLA/PEGM blend as part per hundred i.e. 5 phr and 10phr to improve the HDT. The prepared specimens of blend and blend-composites were irradiated to high energy (4.5 MeV) electron beam (E-beam) at different radiation doses to introduce the cross linking among the polymer chains and uniform dispersion of HBN particles in the PLA/PEGM/HBN blend-composites. The further improvement in the notched impact strength and HDT have been achieved in the case of PLA/PEGM/HBN blend-composites. The irradiated PLA/PEGM/HBN 5phr blend composite shows high notched impact strength and HDT as compared to other unirradiated and E-beam irradiated blend and blend-composites. The improvements in the yield strength and tensile modulus have also been noticed in the case of E-beam irradiated PLA/PEGM/HBN blend-composites as compared to unirradiated blend-composites.

Keywords: blend-composite, e-beam, HDT, PEGM, PLA

Procedia PDF Downloads 187
2117 Storage of Organic Carbon in Chemical Fractions in Acid Soil as Influenced by Different Liming

Authors: Ieva Jokubauskaite, Alvyra Slepetiene, Danute Karcauskiene, Inga Liaudanskiene, Kristina Amaleviciute

Abstract:

Soil organic carbon (SOC) is the key soil quality and ecological stability indicator, therefore, carbon accumulation in stable forms not only supports and increases the organic matter content in the soil, but also has a positive effect on the quality of soil and the whole ecosystem. Soil liming is one of the most common ways to improve the carbon sequestration in the soil. Determination of the optimum intensity and combinations of liming in order to ensure the optimal carbon quantitative and qualitative parameters is one of the most important tasks of this work. The field experiments were carried out at the Vezaiciai Branch of Lithuanian Research Centre for Agriculture and Forestry (LRCAF) during the 2011–2013 period. The effect of liming with different intensity (at a rate 0.5 every 7 years and 2.0 every 3-4 years) was investigated in the topsoil of acid moraine loam Bathygleyic Dystric Glossic Retisol. Chemical analyses were carried out at the Chemical Research Laboratory of Institute of Agriculture, LRCAF. Soil samples for chemical analyses were taken from the topsoil after harvesting. SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) at 590 nm wavelength using glucose standards. SOC fractional composition was determined by Ponomareva and Plotnikova version of classical Tyurin method. Dissolved organic carbon (DOC) was analyzed using an ion chromatograph SKALAR in water extract at soil-water ratio 1:5. Spectral properties (E4/E6 ratio) of humic acids were determined by measuring the absorbance of humic and fulvic acids solutions at 465 and 665 nm. Our study showed a negative statistically significant effect of periodical liming (at 0.5 and 2.0 liming rates) on SOC content in the soil. The content of SOC was 1.45% in the unlimed treatment, while in periodically limed at 2.0 liming rate every 3–4 years it was approximately by 0.18 percentage points lower. It was revealed that liming significantly decreased the DOC concentration in the soil. The lowest concentration of DOC (0.156 g kg-1) was established in the most intensively limed (2.0 liming rate every 3–4 years) treatment. Soil liming exerted an increase of all humic acids and fulvic acid bounded with calcium fractions content in the topsoil. Soil liming resulted in the accumulation of valuable humic acids. Due to the applied liming, the HR/FR ratio, indicating the quality of humus increased to 1.08 compared with that in unlimed soil (0.81). Intensive soil liming promoted the formation of humic acids in which groups of carboxylic and phenolic compounds predominated. These humic acids are characterized by a higher degree of condensation of aromatic compounds and in this way determine the intensive organic matter humification processes in the soil. The results of this research provide us with the clear information on the characteristics of SOC change, which could be very useful to guide the climate policy and sustainable soil management.

Keywords: acid soil, carbon sequestration, long–term liming, soil organic carbon

Procedia PDF Downloads 229
2116 Supplementation of Jackfruit By-Product Concentrate in Combination with Two Types of Protein Sources for Growing Kids

Authors: Emely J. Escala, Lolito C. Bestil

Abstract:

An experiment was conducted to assess the potential of jackfruit by-product concentrate (JBC) in combination with two types of protein sources, soybean meal (SBM) and liquid acid whey (LAW), given at two different ratios as supplement for growing kids fed a basal diet of 70:30 napier grass (Pennisetum purpureum) and kakawate (Gliricidia sepium) soilage ratio. The experiment was set-up in randomized complete block design (RCBD) with sex-age combination as basis for blocking, with the following dietary treatments: T1 = 0.50:0.50% BW, DM basis, JBC:SBM, T2 = 0.75:0.25% BW JBC:SBM, T3 = 0.50:0.50% BW, DM basis, JBC:LAW, and T4 = 0.75:0.25% BW JBC:LAW. Analysis of JBC showed high contents of crude fiber with medium levels of crude protein and nitrogen-free extract, appearing to be fitting for ruminants and a potential energy source. Results showed significantly higher voluntary dry matter intake (VDMI), cumulative weight gain (CWG), and average daily gain (ADG) of growing goats supplemented with JBC in combination with SBM than with LAW. The amount of JBC can range from 0.50% to 0.75% BW with SBM making up the difference, but a JBC:SBM ratio of 0.75:0.25% BW, DM basis, is best in promoting highest voluntary dry matter intake and is, therefore, highly recommended in the light of savings in feed cost. A long-term study on the effects of JBC supplementation on meat qualities of growing kids (aroma, marbling characteristics and taste) is also recommended.

Keywords: jackfruit by-product concentrate, liquid acid whey, soybean meal, grower kids

Procedia PDF Downloads 197
2115 Determination of Acid Volatile Sulfides–Simultaneously Extracted Metal Relationship and Toxicity in Contaminated Sediment Layer in Mid-Black Sea Coasts

Authors: Arife Simsek, Gulfem Bakan

Abstract:

Sediment refers to the accumulation of varying amounts of sediment material in natural waters and the formation of bottom sludge. Sediments are the most important sources of pollutants as well as important future sources and carriers of pollutants. The accumulation of pollutants in sediments can cause serious environmental problems for the surrounding areas. Heavy metals (such as Cr, Cd, Al, Pb, Cu, Al, Zn) disrupt the water quality, affect the useful use of sediment, affect the ecosystem and have a toxic effect on the life of the sediment layer. This effect, which accumulates in the aquatic organisms, can enter the human body with the food chain and affect health seriously. Potential metal toxicity can be determined by comparing acid volatile sulfides (AVS) – simultaneously extracted metal (SEM) ratio in anoxic sediments to determine the effect of metals. Determination of the concentration of SEM and AVS is useful in screening sediments for potential toxicity due to the high metal concentration. In the case of SEM/AVS < 0 (anoxic sediment); in terms of AVS biomass production, its toxicity can be controlled. No toxic effects may be observed when SEM / AVS < 0. SEM / AVS > 0 (in the case of oxic sediment); metals with sensitive fraction such as Cu, As, Ag, Zn are stored. In this study, AVS and SEM measurements of sediment samples collected from five different points in the district of Tekkeköy in Samsun province were performed. The SEM - AVS ratio was greater than 0 in all samples. Therefore, it is necessary to test the toxicity against the risks that may occur in the ecosystem.

Keywords: AVS-SEM, Black Sea, heavy metal, sediment, toxicity

Procedia PDF Downloads 138
2114 Synergistic Effect of Platelet-Rich Plasma with Hyaluronic Acid Injection Following Arthrocentesis to Reduce Pain and Improve Function in Temporomandibular joint (TMJ) Osteoarthritis

Authors: Ayman Hegab

Abstract:

Increasing evidence supports the use of platelet-rich plasma (PRP) combined with hyaluronic acid (HA) for the treatment of knee osteoarthritis, which effectively promotes cartilage repair. This study aimed to determine whether injection of PRP+HA following arthrocentesis reduces pain and improves maximum incisal opening. This was a single-blind, prospective, randomized control study. The patients were selected based on the Hegab classification: Group I: patients treated with arthrocentesis followed by a single PRP injection; Group II (Control): patients treated with arthrocentesis followed by a single HA injection; and Group III: patients treated with arthrocentesis followed by a single PRP+HA combination injection. The primary predictor variable was the medication used for injection. The primary outcome variables were the maximum voluntary mouth opening and pain index scores. The secondary outcome variable was joint sounds. All outcome variables were assessed and compared among the three groups at baseline and at 1-, 3-, 6-, and 12-month intervals. Other variables, including patients’ age and sex, were evaluated in relation to the patient outcomes. Injecting PRP+HA showed statistically significant improvement in the primary and secondary treatment outcomes over PRP or HA injection throughout the study period (P<0.005). Injection of PRP+HA following arthrocentesis had significant long-term clinical efficacy regarding pain relief that was considered the main concern of both the patient and clinician.

Keywords: TMJ, HA, PRP, osteoarthritis

Procedia PDF Downloads 7
2113 Geochemistry Identification of Volcanic Rocks Product of Krakatau Volcano Eruption for Katastropis Mitigation Planning

Authors: Agil Gemilang Ramadhan, Novian Triandanu

Abstract:

Since 1929, the first appearance in sea level, Anak Krakatau volcano growth relatively quickly. During the 80 years up to 2010 has reached the height of 320 meter above sea level. The possibility of catastrophic explosive eruption could happen again if the chemical composition of rocks from the eruption changed from alkaline magma into acid magma. Until now Anak Krakatau volcanic activity is still quite active as evidenced by the frequency of eruptions that produced ash sized pyroclastic deposits - bomb. Purpose of this study was to identify changes in the percentage of rock geochemistry any results eruption of Anak Krakatau volcano to see consistency change the percentage content of silica in the magma that affect the type of volcanic eruptions. Results from this study will be produced in the form of a diagram the data changes the chemical composition of rocks of Anak Krakatau volcano. Changes in the composition of any silica eruption are illustrated in a graph. If the increase in the percentage of silica is happening consistently and it is assumed to increase in the time scale of a few percent, then to achieve silica content of 68 % (acid composition) that will produce an explosive eruption will know the approximate time. All aspects of the factors driving the increased threat of danger to the public should be taken into account. Catastrophic eruption katatropis mitigation can be planned early so that when these disasters happen later, casualties can be minimized.

Keywords: Krakatau volcano, rock geochemistry, catastrophic eruption, mitigation

Procedia PDF Downloads 281
2112 Proteomic Analysis of 2,4-Epibrassinolide Alleviating Low Temperature Stress in Rice Seedling Leaves

Authors: Jiang Xu, Daoping Wang, Qun Li, Yinghong Pan

Abstract:

2,4-Epibrassinolide (EBR), which is a kind of plant hormone Brassinosteroids (BRs), is widely studied and applied in the global scale but the proteomic characteristics of EBR alleviating low temperature stress in rice seedling leaves are still not clear. In this study, seeding rice of Nipponbare were treated with EBR and distilled water, then stressed at 4℃ or 26 ℃, and analyzed by mass spectrometry analysis, verified by parallel reaction monitoring technique (PRM). The results showed that 5778 proteins were identified in total and 4834 proteins were identified with quantitative information. Among them, 401 up-regulated and 220 down-regulated proteins may be related to EBR alleviating low temperature stress in rice seedling leaves. The molecular functions of most of up-regulated proteins are RNA binding and hydrolase activity and are mainly enriched in the pathways of carbon metabolism, folic acid synthesis, and amino acid biosynthesis. The down-regulated proteins are mainly related to catalytic activity and oxidoreductase activity and are mainly enriched in the pathways of limonene and pinene degradation, riboflavin metabolism, porphyrin and chlorophyll metabolism, and other metabolic pathways. PRM validation and literature analysis showed that NADP-malic acidase, peroxidase, 3-phosphoglycerate dehydrogenase, enolase, glyceraldehyde-3- phosphate dehydrogenase and pyruvate kinase are closely related to the effect of EBR on low temperature stress. These results also suggested that BRs could relieve the effect of low temperature stress on rice seed germination in many ways.

Keywords: 2, 4-Epibrassinolid, low temperature stress, proteomic analysis, rice

Procedia PDF Downloads 161
2111 Anti-Osteoporotic Effect of Deer Antler in Ovariectomized Rats

Authors: Hye Kyung Kim, Myung-Gyou Kim, Kang-Hyun Leem

Abstract:

The deer velvet antler is well known for its traditional medicinal value and is widely used in the clinic. It has been considered to possess bone-strengthening activity. The goal of this study was to investigate the anti-osteoporotic effect of deer antler velvet on ovariectomized rats (OVX), and their possible mechanism of the action. In the first step, the in vitro effects of DAE on bone loss were determined. The proliferation, collagen content and alkaline phosphatase (ALP) activity of human osteoblastic MG-63 cells and osteoclastogenesis from bone marrow-derived precursor cells were measured. The in vivo experiment confirmed the positive effect of DAE on bone tissue. 3-month old female Sparague-Dawley rats were either sham operated or OVX, and administered DAE (20 and 100 mg/kg) for 4 weeks. DAE increased MG-63 cell proliferation and ALP activity in a dose-dependent manner. Collagen content was also increased by DAE treatment. However, the effect of DAE on bone resorption was not observed. OVX rats supplemented with DAE showed osteoprotective effects as the bone ALP level was increased and c-terminal telopeptide level was decreased by 100 mg/kg DAE treatment compared with OVX controls. Moreover, the tartrate-resistant acid phosphatase-5b level was also decreased by DAE treatment. The present study suggests that DAE is effective in preventing bone loss in OVX rats, and may be potential therapeutic agents for the treatment of postmenopausal osteoporosis.

Keywords: bone ALP, c-terminal telopeptide, deer antler, osteoporosis, ovariectomy, tartrate-resistant acid phosphatase-5b

Procedia PDF Downloads 245