Search results for: molecular biomarker
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2283

Search results for: molecular biomarker

1083 Effect of Polymer Concentration on the Rheological Properties of Polyelectrolyte Solutions

Authors: Khaled Benyounes, Abderrahmane Mellak

Abstract:

The rheology of aqueous solutions of polyelectrolyte (polyanionic cellulose, PAC) at high molecular weight was investigated using a controlled stress rheometer. Several rheological measurements; viscosity measurements, creep compliance tests at a constant low shear stress and oscillation experiments have been performed. The concentrations ranged by weight from 0.01 to 2.5% of PAC. It was found that the aqueous solutions of PAC do not exhibit a yield stress, the flow curves of PAC over a wide range of shear rate (0 to 1000 s-1) could be described by the cross model and the Williamson models. The critical concentrations of polymer c* and c** have been estimated. The dynamic moduli, i.e., storage modulus (G’) and loss modulus (G’’) of the polymer have been determined at frequency sweep from 0.01 to 10 Hz. At polymer concentration above 1%, the modulus G’ is superior to G’’. The relationships between the dynamic modulus and concentration of polymer have been established. The creep-recovery experiments demonstrated that polymer solutions show important viscoelastic properties of system water-PAC when the concentration of the polymer increases.

Keywords: polyanionic cellulose, viscosity, creep, oscillation, cross model

Procedia PDF Downloads 319
1082 DNA Barcoding of Tree Endemic Campanula Species From Artvi̇n, Türki̇ye

Authors: Hayal Akyildirim Beğen, Özgür Emi̇nağaoğlu

Abstract:

DNA barcoding is the method of description of species based on gene diversity. In current studies, registration, genetic identification and protection of especially endemic plants pecies are carried out by DNA barcoding techniques. Molecular studies are based on the amplification and sequencing of the barcode gene region by the PCR method. Endemic Campanula choruhensis Kit Tan & Sorger, Campanula troegera Damboldt and Campanula betulifolia K.Koch is widespread in Artvin, Erzurum and around Çoruh valley passing through it. Intense road and dam constructions are carried out in and around the distribution area of this species. This situation harms the habitat of the species and puts its extinction. In this study, the plastid matK barcode gene regions (650 bp) of three Campanula species were created. To make the identification of this species quickly and accurately, gene sequence compared with sequences of other Campanula L. species. As a result of phylogenetic analysis, C. choruhensis is close relative to C. betulifolia. Morphologically, these species were determined to be more similar to each other with flower and leaf characters. C. troegera formed a separate branch.

Keywords: campanula, DNA barcoding, endemic, türkiye, artvin

Procedia PDF Downloads 60
1081 qPCR Method for Detection of Halal Food Adulteration

Authors: Gabriela Borilova, Monika Petrakova, Petr Kralik

Abstract:

Nowadays, European producers are increasingly interested in the production of halal meat products. Halal meat has been increasingly appearing in the EU's market network and meat products from European producers are being exported to Islamic countries. Halal criteria are mainly related to the origin of muscle used in production, and also to the way products are obtained and processed. Although the EU has legislatively addressed the question of food authenticity, the circumstances of previous years when products with undeclared horse or poultry meat content appeared on EU markets raised the question of the effectiveness of control mechanisms. Replacement of expensive or not-available types of meat for low-priced meat has been on a global scale for a long time. Likewise, halal products may be contaminated (falsified) by pork or food components obtained from pigs. These components include collagen, offal, pork fat, mechanically separated pork, emulsifier, blood, dried blood, dried blood plasma, gelatin, and others. These substances can influence sensory properties of the meat products - color, aroma, flavor, consistency and texture or they are added for preservation and stabilization. Food manufacturers sometimes access these substances mainly due to their dense availability and low prices. However, the use of these substances is not always declared on the product packaging. Verification of the presence of declared ingredients, including the detection of undeclared ingredients, are among the basic control procedures for determining the authenticity of food. Molecular biology methods, based on DNA analysis, offer rapid and sensitive testing. The PCR method and its modification can be successfully used to identify animal species in single- and multi-ingredient raw and processed foods and qPCR is the first choice for food analysis. Like all PCR-based methods, it is simple to implement and its greatest advantage is the absence of post-PCR visualization by electrophoresis. qPCR allows detection of trace amounts of nucleic acids, and by comparing an unknown sample with a calibration curve, it can also provide information on the absolute quantity of individual components in the sample. Our study addresses a problem that is related to the fact that the molecular biological approach of most of the work associated with the identification and quantification of animal species is based on the construction of specific primers amplifying the selected section of the mitochondrial genome. In addition, the sections amplified in conventional PCR are relatively long (hundreds of bp) and unsuitable for use in qPCR, because in DNA fragmentation, amplification of long target sequences is quite limited. Our study focuses on finding a suitable genomic DNA target and optimizing qPCR to reduce variability and distortion of results, which is necessary for the correct interpretation of quantification results. In halal products, the impact of falsification of meat products by the addition of components derived from pigs is all the greater that it is not just about the economic aspect but above all about the religious and social aspect. This work was supported by the Ministry of Agriculture of the Czech Republic (QJ1530107).

Keywords: food fraud, halal food, pork, qPCR

Procedia PDF Downloads 238
1080 Mechanical Environment of the Aortic Valve and Mechanobiology

Authors: Rania Abdulkareem Aboubakr Mahdaly Ammar

Abstract:

The aortic valve (AV) is a complex mechanical environment that includes flexure, tension, pressure and shear stress forces to blood flow during cardiac cycle. This mechanical environment regulates AV tissue structure by constantly renewing and remodeling the phenotype. In vitro, ex vivo and in vivo studies have explained that pathological states such as hypertension and congenital defects like bicuspid AV ( BAV ) can potentially alter the AV’s mechanical environment, triggering a cascade of remodeling, inflammation and calcification activities in AV tissue. Changes in mechanical environments are first sent by the endothelium that induces changes in the extracellular matrix, and triggers cell differentiation and activation. However, the molecular mechanism of this process is not very well understood. Understanding these mechanisms is critical for the development of effective medical based therapies. Recently, there have been some interesting studies on characterizing the hemodynamics associated with AV, especially in pathologies like BAV, using different experimental and numerical methods. Here, we review the current knowledge of the local AV mechanical environment and its effect on valve biology, focusing on in vitro and ex vivo approaches.

Keywords: aortic valve mechanobiology, bicuspid calcification, pressure stretch, shear stress

Procedia PDF Downloads 355
1079 Cytotoxic Effect of Purified and Crude Hyaluronidase Enzyme on Hep G2 Cell Line

Authors: Furqan M. Kadhum, Asmaa A. Hussein, Maysaa Ch. Hatem

Abstract:

Hyaluronidase enzyme was purified from the clinical isolate Staphyloccus aureus in three purification steps, first by precipitation with 90% saturated ammonium sulfate, ion exchange chromatography on DEAE-Cellulose, and gel filtration chromatography throughout Sephacryl S-300. Specific activity of the purified enzyme was reached 930 U/mg protein with 7.4 folds of purification and 46.5% recovery. The enzyme has an average molecular weight of about 69 kDa, with an optimum pH of enzyme activity and stability at pH 7, also the optimum temperature for activity was 37oC. The enzyme was stable with full activity at a temperature ranged between 30-40 oC. Metal ions showed variable inhibitory degree with the strongest effect for Fe+3, however, the chelating and reducing agents had no or little effects. Cytotoxic studies for purified and crude hyaluronidase against cancer cell Hep G2 type at different enzyme concentrations and exposure times showed that the inhibition effect of both crude and purified enzyme increased by increasing the enzyme concentration with no change was observed at 24hr, while at 48 and 72 hrs the same inhibition rate were observed for purified enzyme and differ for the crude filtrate.

Keywords: hyaluronidase, S. aureus, metal ions, cytotoxicity

Procedia PDF Downloads 437
1078 Polyhedral Oligomeric Silsesquioxane in Poly Lactic Acid and Poly Butylene Adipate-Co-Terephthalate Blend

Authors: Elahe Moradi, Hoseinali A. Khonakdar

Abstract:

The escalating interest in renewable polymers is undeniable, albeit accompanied by inherent challenges. In our study, we endeavored to make a significant contribution to environmental conservation by introducing an eco-friendly structure, developed through an innovative approach. Specifically, we enhanced the compatibility between two immiscible polymers, namely poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT). Our strategy involved the use of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles, equipped with an epoxy functional group (Epoxy-POSS), to accomplish this objective with solution casting method. The incorporation of 1% nanoparticles into the PLA blend resulted in a decrease in its cold crystallization temperature. Furthermore, these nanoparticles possess the requisite capability to enhance molecular mobility, facilitated by the induction of a lubrication effect. The emergence of a PLA-CO-POSS-CO-PBAT structure at the interface between PLA and PBAT led to a significant amplification of the interactions at the interface of the matrix and the dispersed phase.

Keywords: compatibilization, thermal behavior, structure-properties, nanocomposite, PLA, PBAT

Procedia PDF Downloads 45
1077 GaAs Based Solar Cells: Growth, Fabrication, and Characterization

Authors: Hülya Kuru Mutlu, Mustafa Kulakcı, Uğur Serincan

Abstract:

The sun is one of the latest developments in renewable energy sources, which has a variety of application. Solar energy is the most preferred renewable energy sources because it can be used directly, it protects the environment and it is economic. In this work, we investigated that important parameter of GaAs-based solar cells with respect to the growth temperature. The samples were grown on (100) oriented p-GaAs substrates by solid source Veeco GEN20MC MBE system equipped with Ga, In, Al, Si, Be effusion cells and an Arsenic cracker cell. The structures of the grown samples are presented. After initial oxide desorption, Sample 1 and Sample 2 were grown at about 585°C and 535°C, respectively. From the grown structures, devices were fabricated by using the standard photolithography procedure. Current-voltage measurements were performed at room temperature (RT). It is observed that Sample 1 which was grown at 585°C has higher efficiency and fill factor compared to Sample 2. Hence, it is concluded that the growth temperature of 585°C is more suitable to grow GaAs-based solar cells considering our samples used in this study.

Keywords: molecular beam epitaxy, solar cell, current-voltage measurement, Sun

Procedia PDF Downloads 465
1076 A Diagnostic Challenge of Drug Resistant Childhood Tuberculosis in Developing World

Authors: Warda Fatima, Hasnain Javed

Abstract:

The emerging trend of Drug resistance in childhood Tuberculosis is increasing worldwide and now becoming a priority challenge for National TB Control Programs of the world. Childhood TB accounts for 10-15% of total TB burden across the globe and same proportion is quantified in case of drug resistant TB. One third population suffering from MDR TB dies annually because of non-diagnosis and unavailability of appropriate treatment. However, true Childhood MDR TB cannot be estimated due to non-confirmation. Diagnosis of Pediatric TB by sputum Smear Microscopy and Culture inoculation are limited due to paucibacillary nature and difficulties in obtaining adequate sputum specimens. Diagnosis becomes more difficult when it comes to HIV infected child. New molecular advancements for early case detection of TB and MDR TB in adults have not been endorsed in children. Multi centered trials are needed to design better diagnostic approaches and efficient and safer treatments for DR TB in high burden countries. The aim of the present study is to sketch out the current situation of the childhood Drug resistant TB especially in the developing world and to highlight the classic and novel methods that are to be implemented in high-burden resource-limited locations.

Keywords: drug resistant TB, childhood, diagnosis, novel methods

Procedia PDF Downloads 386
1075 Alternative Splicing of an Arabidopsis Gene, At2g24600, Encoding Ankyrin-Repeat Protein

Authors: H. Sakamoto, S. Kurosawa, M. Suzuki, S. Oguri

Abstract:

In Arabidopsis, several genes encoding proteins with ankyrin repeats and trans-membrane domains (AtANKTM) have been identified as mediators of biotic and abiotic stress responses. It has been known that the expression of an AtANKTM gene, At2g24600, is induced in response to abiotic stress and that there are four splicing variants derived from this locus. In this study, by RT-PCR and sequencing analysis, an unknown splicing variant of the At2g24600 transcript was identified. Based on differences in the predicted amino acid sequences, the five splicing variants are divided into three groups. The three predicted proteins are highly homologous, yet have different numbers of ankyrin repeats and trans-membrane domains. It is generally considered that ankyrin repeats mediate protein-protein interaction and that the number of trans-membrane domains affects membrane topology of proteins. The protein variants derived from the At2g24600 locus may have different molecular functions each other.

Keywords: alternative splicing, ankyrin repeats, trans-membrane domains, arabidopsis

Procedia PDF Downloads 362
1074 Absolute Quantification of the Bexsero Vaccine Component Factor H Binding Protein (fHbp) by Selected Reaction Monitoring: The Contribution of Mass Spectrometry in Vaccinology

Authors: Massimiliano Biagini, Marco Spinsanti, Gabriella De Angelis, Sara Tomei, Ilaria Ferlenghi, Maria Scarselli, Alessia Biolchi, Alessandro Muzzi, Brunella Brunelli, Silvana Savino, Marzia M. Giuliani, Isabel Delany, Paolo Costantino, Rino Rappuoli, Vega Masignani, Nathalie Norais

Abstract:

The gram-negative bacterium Neisseria meningitidis serogroup B (MenB) is an exclusively human pathogen representing the major cause of meningitides and severe sepsis in infants and children but also in young adults. This pathogen is usually present in the 30% of healthy population that act as a reservoir, spreading it through saliva and respiratory fluids during coughing, sneezing, kissing. Among surface-exposed protein components of this diplococcus, factor H binding protein is a lipoprotein proved to be a protective antigen used as a component of the recently licensed Bexsero vaccine. fHbp is a highly variable meningococcal protein: to reflect its remarkable sequence variability, it has been classified in three variants (or two subfamilies), and with poor cross-protection among the different variants. Furthermore, the level of fHbp expression varies significantly among strains, and this has also been considered an important factor for predicting MenB strain susceptibility to anti-fHbp antisera. Different methods have been used to assess fHbp expression on meningococcal strains, however, all these methods use anti-fHbp antibodies, and for this reason, the results are affected by the different affinity that antibodies can have to different antigenic variants. To overcome the limitations of an antibody-based quantification, we developed a quantitative Mass Spectrometry (MS) approach. Selected Reaction Monitoring (SRM) recently emerged as a powerful MS tool for detecting and quantifying proteins in complex mixtures. SRM is based on the targeted detection of ProteoTypicPeptides (PTPs), which are unique signatures of a protein that can be easily detected and quantified by MS. This approach, proven to be highly sensitive, quantitatively accurate and highly reproducible, was used to quantify the absolute amount of fHbp antigen in total extracts derived from 105 clinical isolates, evenly distributed among the three main variant groups and selected to be representative of the fHbp circulating subvariants around the world. We extended the study at the genetic level investigating the correlation between the differential level of expression and polymorphisms present within the genes and their promoter sequences. The implications of fHbp expression on the susceptibility of the strain to killing by anti-fHbp antisera are also presented. To date this is the first comprehensive fHbp expression profiling in a large panel of Neisseria meningitidis clinical isolates driven by an antibody-independent MS-based methodology, opening the door to new applications in vaccine coverage prediction and reinforcing the molecular understanding of released vaccines.

Keywords: quantitative mass spectrometry, Neisseria meningitidis, vaccines, bexsero, molecular epidemiology

Procedia PDF Downloads 299
1073 Molecular Basis of Anti-Biofilm and Anti-Adherence Activity of Syzygium aromaticum on Streptococcus mutans: In Vitro and in Vivo Study

Authors: Mohd Adil, Rosina Khan, Asad U. Khan, Vasantha Rupasinghe HP

Abstract:

The study examined the effects of Syzygium aromaticum extracts on the virulence properties of Streptococcus mutans. The activity of glucosyltransferases in the presence of crude and diethylether fraction was reduced to 80% at concentration 78.12μg/ml and 39.06μg/ml respectively. The glycolytic pH drop by S. mutans cells was also disrupted by these extracts without affecting the bacterial viability. Microscopic analysis revealed morphological changes of the S. mutans biofilms, indicating that these plant extracts at sub-MICs could significantly affect the ability of S. mutans to form biofilm with distorted extracellular matrix. Furthermore, with the help of quantitative RT-PCR, the expression of different genes involved in adherence, quorum sensing, in the presence of these extracts were down regulated. The crude and active fractions were found effective in preventing caries development in rats. The data showed that S. aromaticum holds promise as a naturally occurring source of compounds that may prevent biofilm-related oral diseases.

Keywords: biofilm, quorum sensing, Streptococcus mutans, Syzygium aromaticum extract

Procedia PDF Downloads 295
1072 Deposition of Diamond Like Carbon Thin Film by Pulse Laser Deposition for Surgical Instruments

Authors: M. Khalid Alamgir, Javed Ahsan Bhatti, M. Zafarullah Khan

Abstract:

Thin film of amorphous carbon (DLC) was deposited on 316 steel using Nd: YAG laser having energy 300mJ. Pure graphite was used as a target. The vacuum in the deposition chamber was generated in the range of 10-6 mbar by turbo molecular pump. Ratio of sp3 to sp2 content shows amorphous nature of the film. This was confirmed by Raman spectra having two peaks around 1300 cm-1 i.e. D-band to 1700 cm-1 i.e. G-band. If sp3 bonding ratio is high, the films behave like diamond-like whereas, with high sp2, films are graphite-like. The ratio of sp3 and sp2 contents in the film depends upon the deposition method, hydrogen contents and system parameters. The structural study of the film was carried out by XRD. The hardness of the films as measured by Vickers hardness tester and was found to be 28 GPa. The EDX result shows the presence of carbon contents on the surface in high rate and optical microscopy result shows the smoothness of the film on substrate. The film possesses good adhesion and can be used to coat surgical instruments.

Keywords: DLC, thin film, Raman spectroscopy, XRD, EDX

Procedia PDF Downloads 549
1071 Bioinformatics and Molecular Biological Characterization of a Hypothetical Protein SAV1226 as a Potential Drug Target for Methicillin/Vancomycin-Staphylococcus aureus Infections

Authors: Nichole Haag, Kimberly Velk, Tyler McCune, Chun Wu

Abstract:

Methicillin/multiple-resistant Staphylococcus aureus (MRSA) are infectious bacteria that are resistant to common antibiotics. A previous in silico study in our group has identified a hypothetical protein SAV1226 as one of the potential drug targets. In this study, we reported the bioinformatics characterization, as well as cloning, expression, purification and kinetic assays of hypothetical protein SAV1226 from methicillin/vancomycin-resistant Staphylococcus aureus Mu50 strain. MALDI-TOF/MS analysis revealed a low degree of structural similarity with known proteins. Kinetic assays demonstrated that hypothetical protein SAV1226 is neither a domain of an ATP dependent dihydroxyacetone kinase nor of a phosphotransferase system (PTS) dihydroxyacetone kinase, suggesting that the function of hypothetical protein SAV1226 might be misannotated on public databases such as UniProt and InterProScan 5.

Keywords: Methicillin-resistant Staphylococcus aureus, dihydroxyacetone kinase, essential genes, drug target, phosphoryl group donor

Procedia PDF Downloads 396
1070 Synthesis and Molecular Docking Studies of Hydrazone Derivatives Potent Inhibitors as a Human Carbonic Anhydrase IX

Authors: Sema Şenoğlu, Sevgi Karakuş

Abstract:

Hydrazone scaffold is important to design new drug groups and is found to possess numerous uses in pharmaceutical chemistry. Besides, hydrazone derivatives are also known for biological activities such as anticancer, antimicrobial, antiviral, and antifungal. Hydrazone derivatives are promising anticancer agents because they inhibit cancer proliferation and induce apoptosis. Human carbonic anhydrase IX has a high potential to be an antiproliferative drug target, and targeting this protein is also important for obtaining potential anticancer inhibitors. The protein construct was retrieved as a PDB file from the RCSB protein database. This binding interaction of proteins and ligands was performed using Discovery Studio Visualizer. In vitro inhibitory activity of hydrazone derivatives was tested against enzyme carbonic anhydrase IX on the PyRx programme. Most of these molecules showed remarkable human carbonic anhydrase IX inhibitory activity compared to the acetazolamide. As a result, these compounds appear to be a potential target in drug design against human carbonic anhydrase IX.

Keywords: cancer, carbonic anhydrase IX enzyme, docking, hydrazone

Procedia PDF Downloads 68
1069 Transfer Learning for Protein Structure Classification at Low Resolution

Authors: Alexander Hudson, Shaogang Gong

Abstract:

Structure determination is key to understanding protein function at a molecular level. Whilst significant advances have been made in predicting structure and function from amino acid sequence, researchers must still rely on expensive, time-consuming analytical methods to visualise detailed protein conformation. In this study, we demonstrate that it is possible to make accurate (≥80%) predictions of protein class and architecture from structures determined at low (>3A) resolution, using a deep convolutional neural network trained on high-resolution (≤3A) structures represented as 2D matrices. Thus, we provide proof of concept for high-speed, low-cost protein structure classification at low resolution, and a basis for extension to prediction of function. We investigate the impact of the input representation on classification performance, showing that side-chain information may not be necessary for fine-grained structure predictions. Finally, we confirm that high resolution, low-resolution and NMR-determined structures inhabit a common feature space, and thus provide a theoretical foundation for boosting with single-image super-resolution.

Keywords: transfer learning, protein distance maps, protein structure classification, neural networks

Procedia PDF Downloads 122
1068 Study of Flow-Induced Noise Control Effects on Flat Plate through Biomimetic Mucus Injection

Authors: Chen Niu, Xuesong Zhang, Dejiang Shang, Yongwei Liu

Abstract:

Fishes can secrete high molecular weight fluid on their body skin to enable their rapid movement in the water. In this work, we employ a hybrid method that combines Computational Fluid Dynamics (CFD) and Finite Element Method (FEM) to investigate the effects of different mucus viscosities and injection velocities on fluctuation pressure in the boundary layer and flow-induced structural vibration noise of a flat plate model. To accurately capture the transient flow distribution on the plate surface, we use Large Eddy Simulation (LES) while the mucus inlet is positioned at a sufficient distance from the model to ensure effective coverage. Mucus injection is modeled using the Volume of Fluid (VOF) method for multiphase flow calculations. The results demonstrate that mucus control of pulsating pressure effectively reduces flow-induced structural vibration noise, providing an approach for controlling flow-induced noise in underwater vehicles.

Keywords: mucus, flow control, noise control, flow-induced noise

Procedia PDF Downloads 120
1067 Hydroxyapatite-Chitosan Composites for Tissue Engineering Applications

Authors: Georgeta Voicu, Cristina Daniela Ghitulica, Andreia Cucuruz, Cristina Busuioc

Abstract:

In the field of tissue engineering, the compositional and microstructural features of the employed materials play an important role, with implications on the mechanical and biological behaviour of the medical devices. In this context, the development of apatite - natural biopolymer composites represents a choice of many scientific groups. Thus, hydroxyapatite powders were synthesized by a wet method, namely co-precipitation, starting from high purity reagents (CaO, MgO, and H3PO4). Moreover, the substitution of calcium with magnesium have been approached, in the 5 - 10 wt.% range. Afterward, the phosphate powders were integrated in two types of composites with chitosan, different from morphological point of view. First, 3D porous scaffolds were obtained by a freeze-drying procedure. Second, uniform, compact films were achieved by film casting. The influence of chitosan molecular weight (low, medium and high), as well as apatite powder to polymer ratio (1:1 and 1:2) on the morphological properties, were analysed in detail. In conclusion, the reported biocomposites, prepared by a straightforward route are suitable for bone substitution or repairing applications.

Keywords: bone reconstruction, chitosan, composite scaffolds, hydroxyapatite

Procedia PDF Downloads 312
1066 Comparison of Antimicrobial Activity of Momordica cochinchinesis and Pinus kesiya Extracts

Authors: Pattaramon Pongjetpong

Abstract:

In recent years, infectious diseases have increased considerably, and they are amongst the most common leading causes of death all over the world. Several medicinal plants are well known to contain active constituents such as flavonoids, carotenoids, and phenolic compounds, which are plausible candidates for therapeutic purposes. This study aimed to examine the antimicrobial activities of M. cochinchinensis and P. kesiya extracts using the agar disk diffusion method and broth microdilution to determine the minimum inhibitory concentration (MIC) value. In this study, Momordica cochinchinensis and Pinus kesiya extracts are investigated for antibacterial activity against Staphylococcus aureus. The results showed that S. aureus was susceptible to P. kesiya extracts with an MIC value of 62.5 µg/ml, while M. cochinchinensis showed MIC against S. aureus was greater than 2000 µg/ml. In summary, P. kesiya extract showed potent antibacterial activity against S. aureus, which could greatly value developing as adjuvant therapy for infectious diseases. However, further investigation regarding purification of the active constituents as well as a determination of the mechanism of antimicrobial action of P. kesiya active compound should be performed to identify the molecular target of the active compounds.

Keywords: antimicrobial activity, Momordica cochinchinensis, Pinus kesiya, Staphylococcus aureus

Procedia PDF Downloads 188
1065 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: synthetic gene network, network identification, optimization, nonlinear modeling

Procedia PDF Downloads 144
1064 Potential Probiotic Bacteria Isolated from Dairy Products of Saudi Arabia

Authors: Rashad Al-Hindi

Abstract:

The aims of the study were to isolate and identify potential probiotic lactic acid bacteria due to their therapeutic and food preservation importance. Sixty-three suspected lactic acid bacteria (LAB) strains were isolated from thirteen different raw milk and fermented milk product samples of various animal origins manufactured indigenously in the Kingdom of Saudi Arabia using de Man, Rogosa and Sharpe (MRS) agar medium and various incubation conditions. The identification of forty-six selected LAB strains was performed using molecular methods (16S rDNA gene sequencing). The LAB counts in certain samples were higher under microaerobic incubation conditions than under anaerobic conditions. The identified LAB belonged to the following genera: Enterococcus (16 strains), Lactobacillus (9 strains), Weissella (10 strains), Streptococcus (8 strains) and Lactococcus (3 strains), constituting 34.78%, 19.57%, 21.74%, 17.39% and 6.52% of the suspected isolates, respectively. This study noted that the raw milk and traditional fermented milk products of Saudi Arabia, especially stirred yogurt (Laban) made from camel milk, could be rich in LAB. The obtained LAB strains in this study will be tested for their probiotic potentials in another ongoing study.

Keywords: dairy, LAB, probiotic, Saudi Arabia

Procedia PDF Downloads 276
1063 Design, Molecular Modeling, Synthesize, and Biological Evaluation of Some Dual Inhibitors of Soluble Epoxide Hydrolase (sEH) and Cyclooxygenase 2 (COX-2)

Authors: Elham Rezaee, Sayyed Abbas Tabatabai

Abstract:

Dual inhibition of COX-2 and sEH enzymes represents one of the distinct pharmaceutical approaches for the treatment of inflammation, pain, cancers, and other diseases. The discovery of these inhibitors for treatment is a great deal of attention because of some advantages such as increased efficacy, a promising safety profile, ease of formulation, and better target engagement. In this research, based on the structure-activity relationship of COX-2 and sEH inhibitors, some amide derivatives with oxadiazole and dihydropyrimidinone rings against sEH and COX-2 enzymes were developed. The designed compounds showed high affinity to the active site of both enzymes in docking studies and were synthesized in good yield and characterized by IR, Mass, 1HNMR, and 13CNMR. All of the novel compounds exhibited considerable in-vitro sEH and COX-2 inhibitory activities in comparison with 12-(3-Adamantan-1-yl-ureido)- dodecanoic acid and celecoxib (a potent urea-based sEH inhibitor and selective nonsteroidal anti-inflammatory drug, respectively). Ethyl 6-methyl-4-(4-(4-(methylsulfonyl)benzamido)phenyl)-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate was found to be the most selective COX-2 inhibitor (COX-2/COX-1 ratio: 683) with IC50 value of 2.1 nM targeting sEH enzyme.

Keywords: COX-2, dual inhibitors, sEH, synthesis

Procedia PDF Downloads 31
1062 Assessing Genetic Variation of Dog Rose (Rosa Canina L.) in Caspian Climate

Authors: Aptin Rahnavard, Ghavamaldin Asadian, Khalil Pourshamsian, Mariamalsadat Taghavi

Abstract:

Dog rose is one of the important rose species in Iran that the distant past had been considered due to nutritional value and medicinal. Despite its long history of use, due to poor information on the genetic modification of plants has been done resources inheritance. In this study was to assess the genetic diversity. Total of 30 genotypes Dog rose from areas of northern Iran in the Caspian region (provinces of Guilan and Mazandaran) were evaluated using 25 RAPD primers. The number of bands produced total of 202 and for each primer were measured in a bands with an average 8-band .The number of polymorphic bands per primer ranged from 1 to 13 and the bands were in the range of 300 to 3000 bp. Based on the results OPA-04 primer with 13 bands and PRA-1, E-09 and A-04 with 5-band were created maximum and minimum number of amplified fragments. Molecular marker genotypes showed a high degree of polymorphism. Studied genotypes based on RAPD results were divided into 2 groups and 2 subgroups. Most similar in subgroups A2 and B group was the lowest.

Keywords: rosa canina spp., RAPD marker, genetic variation, caspian climate

Procedia PDF Downloads 557
1061 NS5ABP37 Inhibits Liver Cancer by Impeding Lipogenesis and Cholesterogenesis

Authors: Shenghu Feng, Jun Cheng

Abstract:

The molecular mechanism underlying nonalcoholic fatty liver disease (NAFLD) progression to hepatocellular carcinoma (HCC) remains unknown. In this study, immunohistochemistry staining result showed that NS5ABP37 protein expression decreased as with increasing degree of HCC malignancy. In agreement, NS5ABP37 protein overexpression significantly suppressed cell proliferation, caused G1/S cell cycle arrest, and induced apoptosis by increasing caspase-3/7 activity and cleaved caspase-3 levels. In addition, NS5ABP37 overexpression resulted in decreased intracellular TG and TC contents, with level reduction in SREBPs and downstream effectors. Furthermore, NS5ABP37 overexpression decreased SREBP1c and SREBP2 levels by inducing their respective promoters. Finally, ROS levels and ER-stress were both induced by NS5ABP37 overexpression. These findings together demonstrate that NS5ABP37 inhibits cancer cell proliferation and promotes apoptosis, by altering SREBP-dependent lipogenesis and cholesterogenesis in HepG2 cells and inducing oxidative stress and ER stress.

Keywords: NS5ABP37, liver cancer, lipid metabolism, oxidative stress, ER stress

Procedia PDF Downloads 144
1060 Determining the Electrospinning Parameters of Poly(ε-Caprolactone)

Authors: M. Kagan Keler, Sibel Daglilar, Isil Kerti, Oguzhan Gunduz

Abstract:

Electrospinning is a versatile way to occur fibers at nano-scale and polycaprolactone is a biomedical material which has a wide usage in cartilage defects and tissue regeneration. PCL is biocompatible and durable material which can be used in bio-implants. Therefore, electrospinning process was chosen as a fabrication method to get PCL fibers in an effective way because of its significant adjustments. In this research study, electrospinning parameters was evaluated during the producing of polymer tissue scaffolds. Polycaprolactone’s molecular weight was 80.000 Da and was employed as a tissue material in the electrospinning process. PCL was decomposed in dimethylformamid(DMF) and chloroform(CF) with the weight ratio of 1:1. Different compositions (1%, 3%, 5%, 10% and 20 %) of PCL was prepared in the laboratory conditions. All solvents with different percentages of PCL have been taken into the syringe and loaded into the electrospinning system. In electrospinning dozens of trial were applied to get homogeneously uniform scaffold samples. Taylor cone which is crucial point for electrospinning characteristic was occurred and changed in different voltages up to the material compositions’ conductivity. While the PCL percentages were increasing in the electrospinning, structure started to arise with droplets, which was an expressive problem for tissue scaffold. The vertical and horizontal layouts were applied to produce non-woven structures at all.

Keywords: tissue engineering, artificial scaffold, electrospinning, biocomposites

Procedia PDF Downloads 342
1059 Annona muricata Leaves Induced Mitochondrial-Mediated Apoptosis in A549 Cells

Authors: Soheil Zorofchian Moghadamtousi, Habsah Abdul Kadir, Mohammadjavad Paydar, Elham Rouhollahi, Hamed Karimian

Abstract:

The present study was designed to evaluate the molecular mechanisms of Annona muricata leaves ethyl acetate extract (AMEAE) against lung cancer A549 cells. Cell viability analysis revealed the selective cytotoxic effect of AMEAE towards A549 cells. Treatment of A549 cells with AMEAE significantly elevated the reactive oxygen species formation, followed by attenuation of mitochondrial membrane potential via upregulation of Bax and downregulation of Bcl-2, accompanied by cytochrome c release to the cytosol. The released cytochrome c triggered the activation of caspase-9 followed by caspase-3. In addition, AMEAE-induced apoptosis was accompanied by cell cycle arrest at G1 phase. Our data showed for the first time that AMEAE inhibited the proliferation of A549 cells, leading to cell cycle arrest and programmed cell death through activation of the mitochondrial-mediated signaling pathway.

Keywords: Annona muricata, lung cancer, apoptosis, mitochondria

Procedia PDF Downloads 310
1058 Phase Transition in Iron Storage Protein Ferritin

Authors: Navneet Kaur, S. D. Tiwari

Abstract:

Ferritin is a protein which present in the blood of mammals. It maintains the need of iron inside the body. It has an antiferromagnetic iron core, 7-8 nm in size, which is encapsulated inside a protein cage. The thickness of this protein shell is about 2-3 nm. This protein shell reduces the interaction among particles and make ferritin a model superparamagnet. The major composition of ferritin core is mineral ferrihydrite. The molecular formula of ferritin core is (FeOOH)8[FeOOPO3H2]. In this study, we discuss the phase transition of ferritin. We characterized ferritin using x-ray diffractometer, transmission electron micrograph, thermogravimetric analyzer and vibrating sample magnetometer. It is found that ferritin core is amorphous in nature with average particle size of 8 nm. The thermogravimetric and differential thermogravimetric analysis curves shows mass loss at different temperatures. We heated ferritin at these temperatures. It is found that ferritin core starts decomposing after 390^o C. At 1020^o C, the ferritin core is finally converted to alpha phase of iron oxide. Magnetization behavior of final sample clearly shows the iron oxyhydroxide core is completely converted to alpha iron oxide.

Keywords: Antiferromagnetic, Ferritin, Phase, Superparamagnetic

Procedia PDF Downloads 107
1057 Tackling the Decontamination Challenge: Nanorecycling of Plastic Waste

Authors: Jocelyn Doucet, Jean-Philippe Laviolette, Ali Eslami

Abstract:

The end-of-life management and recycling of polymer wastes remains a key environment issue in on-going efforts to increase resource efficiency and attaining GHG emission reduction targets. Half of all the plastics ever produced were made in the last 13 years, and only about 16% of that plastic waste is collected for recycling, while 25% is incinerated, 40% is landfilled, and 19% is unmanaged and leaks in the environment and waterways. In addition to the plastic collection issue, the UN recently published a report on chemicals in plastics, which adds another layer of challenge when integrating recycled content containing toxic products into new products. To tackle these important issues, innovative solutions are required. Chemical recycling of plastics provides new complementary alternatives to the current recycled plastic market by converting waste material into a high value chemical commodity that can be reintegrated in a variety of applications, making the total market size of the output – virgin-like, high value products - larger than the market size of the input – plastic waste. Access to high-quality feedstock also remains a major obstacle, primarily due to material contamination issues. Pyrowave approaches this challenge with its innovative nano-recycling technology, which purifies polymers at the molecular level, removing undesirable contaminants and restoring the resin to its virgin state without having to depolymerise it. This breakthrough approach expands the range of plastics that can be effectively recycled, including mixed plastics with various contaminants such as lead, inorganic pigments, and flame retardants. The technology allows yields below 100ppm, and purity can be adjusted to an infinitesimal level depending on the customer's specifications. The separation of the polymer and contaminants in Pyrowave's nano-recycling process offers the unique ability to customize the solution on targeted additives and contaminants to be removed based on the difference in molecular size. This precise control enables the attainment of a final polymer purity equivalent to virgin resin. The patented process involves dissolving the contaminated material using a specially formulated solvent, purifying the mixture at the molecular level, and subsequently extracting the solvent to yield a purified polymer resin that can directly be reintegrated in new products without further treatment. Notably, this technology offers simplicity, effectiveness, and flexibility while minimizing environmental impact and preserving valuable resources in the manufacturing circuit. Pyrowave has successfully applied this nano-recycling technology to decontaminate polymers and supply purified, high-quality recycled plastics to critical industries, including food-contact compliance. The technology is low-carbon, electrified, and provides 100% traceable resins with properties identical to those of virgin resins. Additionally, the issue of low recycling rates and the limited market for traditionally hard-to-recycle plastic waste has fueled the need for new complementary alternatives. Chemical recycling, such as Pyrowave's microwave depolymerization, presents a sustainable and efficient solution by converting plastic waste into high-value commodities. By employing microwave catalytic depolymerization, Pyrowave enables a truly circular economy of plastics, particularly in treating polystyrene waste to produce virgin-like styrene monomers. This revolutionary approach boasts low energy consumption, high yields, and a reduced carbon footprint. Pyrowave offers a portfolio of sustainable, low-carbon, electric solutions to give plastic waste a second life and paves the way to the new circular economy of plastics. Here, particularly for polystyrene, we show that styrene monomer yields from Pyrowave’s polystyrene microwave depolymerization reactor is 2,2 to 1,5 times higher than that of the thermal conventional pyrolysis. In addition, we provide a detailed understanding of the microwave assisted depolymerization via analyzing the effects of microwave power, pyrolysis time, microwave receptor and temperature on the styrene product yields. Furthermore, we investigate life cycle environmental impact assessment of microwave assisted pyrolysis of polystyrene in commercial-scale production. Finally, it is worth pointing out that Pyrowave is able to treat several tons of polystyrene to produce virgin styrene monomers and manage waste/contaminated polymeric materials as well in a truly circular economy.

Keywords: nanorecycling, nanomaterials, plastic recycling, depolymerization

Procedia PDF Downloads 59
1056 Molecular Characterization and Arsenic Mobilization Properties of a Novel Strain IIIJ3-1 Isolated from Arsenic Contaminated Aquifers of Brahmaputra River Basin, India

Authors: Soma Ghosh, Balaram Mohapatra, Pinaki Sar, Abhijeet Mukherjee

Abstract:

Microbial role in arsenic (As) mobilization in the groundwater aquifers of Brahmaputra river basin (BRB) in India, severely threatened by high concentrations of As, remains largely unknown. The present study, therefore, is a molecular and ecophysiological characterization of an indigenous bacterium strain IIIJ3-1 isolated from As contaminated groundwater of BRB and application of this strain in several microcosm set ups differing in their organic carbon (OC) source and terminal electron acceptors (TEA), to understand its role in As dissolution under aerobic and anaerobic conditions. Strain IIIJ3-1 was found to be a new facultative anaerobic, gram-positive, endospore-forming strain capable of arsenite (As3+) oxidation and dissimilatory arsenate (As5+) reduction. The bacterium exhibited low genomic (G+C)% content (45 mol%). Although, its 16S rRNA gene sequence revealed a maximum similarity of 99% with Bacillus cereus ATCC 14579(T) but the DNA-DNA relatedness of their genomic DNAs was only 49.9%, which remains well below the value recommended to delimit different species. Abundance of fatty acids iC17:0, iC15:0 and menaquinone (MK) 7 though corroborates its taxonomic affiliation with B. cereus sensu-lato group, presence of hydroxy fatty acids (HFAs), C18:2, MK5 and MK6 marked its uniqueness. Besides being highly As resistant (MTC=10mM As3+, 350mM As5+), metabolically diverse, efficient aerobic As3+ oxidizer; it exhibited near complete dissimilatory reduction of As5+ (1 mM). Utilization of various carbon sources with As5+ as TEA revealed lactate to serve as the best electron donor. Aerobic biotransformation assay yielded a lower Km for As3+ oxidation than As5+ reduction. Arsenic homeostasis was found to be conferred by the presence of arr, arsB, aioB, and acr3(1) genes. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis of this bacterium revealed reduction in cell size upon exposure to As and formation of As-rich electron opaque dots following growth with As3+. Incubation of this strain with sediment (sterilised) collected from BRB aquifers under varying OC, TEA and redox conditions revealed that the strain caused highest As mobilization from solid to aqueous phase under anaerobic condition with lactate and nitrate as electron donor and acceptor, respectively. Co-release of highest concentrations of oxalic acid, a well known bioweathering agent, considerable fold increase in viable cell counts and SEM-EDX and X-ray diffraction analysis of the sediment after incubation under this condition indicated that As release is consequent to microbial bioweathering of the minerals. Co-release of other elements statistically proves decoupled release of As with Fe and Zn. Principle component analysis also revealed prominent role of nitrate under aerobic and/or anaerobic condition in As release by strain IIIJ3-1. This study, therefore, is the first to isolate, characterize and reveal As mobilization property of a strain belonging to the Bacillus cereus sensu lato group isolated from highly As contaminated aquifers of Brahmaputra River Basin.

Keywords: anaerobic microcosm, arsenic rich electron opaque dots, Arsenic release, Bacillus strain IIIJ3-1

Procedia PDF Downloads 122
1055 [Keynote Speech]: Simulation Studies of Pulsed Voltage Effects on Cells

Authors: Jiahui Song

Abstract:

In order to predict or explain a complicated biological process, it is important first to construct mathematical models that can be used to yield analytical solutions. Through numerical simulation, mathematical model results can be used to test scenarios that might not be easily attained in a laboratory experiment, or to predict parameters or phenomena. High-intensity, nanosecond pulse electroporation has been a recent development in bioelectrics. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into pore formation energy equation to analyze and predict such electroporation effects. For greater accuracy, with inclusion of atomistic details, molecular dynamics (MD) simulations were also carried out during this study. Besides inducing pores in cells, external voltages could also be used in principle to modulate action potential generation in nerves. This could have an application in electrically controlled ‘pain management’. Also a simple model-based rate equation treatment of the various cellular bio-chemical processes has been used to predict the pulse number dependent cell survival trends.

Keywords: model, high-intensity, nanosecond, bioelectrics

Procedia PDF Downloads 219
1054 Molecular Characterization of Chicken B Cell Marker (ChB6) in Native Chicken of Poonch Region from International Borders of India and Pakistan

Authors: Mandeep Singh Azad.Dibyendu Chakraborty, Vikas Vohra

Abstract:

Introduction: Poonch is one of the remotest districts of the Jammu and Kashmir (UT) and situated on international borders. This native poultry population in these areas is quite hardy and thrives well in adverse climatic conditions. Till date, no local breed from this area (Jammu Province) has been characterized thus present study was undertaken with the main objectives of molecular characterization of ChB6 gene in local native chicken of Poonch region located at international borders between India and Pakistan. The chicken B-cell marker (ChB6) gene has been proposed as a candidate gene in regulating B-cell development. Material and Method: RNA was isolated by Blood RNA Purification Kit (HiPura) and Trizol method from whole blood samples. Positive PCR products with size 1110 bp were selected for further purification, sequencing and analysis. The amplified PCR product was sequenced by Sangers dideoxy chain termination method. The obtained sequence of ChB6 gene of Poonchi chicken were compared by MEGAX software. BioEdit software was used to construct phylogenic tree, and Neighbor Joining method was used to infer evolutionary history. In order to compute evolutionary distance Maximum Composite Likelihood method was used. Results: The positively amplified samples of ChB6 genes were then subjected to Sanger sequencing with “Primer Walking. The sequences were then analyzed using MEGA X and BioEdit software. The sequence results were compared with other reported sequence from different breed of chicken and with other species obtained from the NCBI (National Center for Biotechnology Information). ClustalW method using MEGA X software was used for multiple sequence alignment. The sequence results of ChB6 gene of Poonchi chicken was compared with Centrocercus urophasianus, G. gallus mRNA for B6.1 protein, G. gallus mRNA for B6.2, G. gallus mRNA for B6.3, Gallus gallus B6.1, Halichoeres bivittatus, Miniopterus fuliginosus Ferringtonia patagonica, Tympanuchus phasianellus. The genetic distances were 0.2720, 0.0000, 0.0245, 0.0212, 0.0147, 1.6461, 2.2394, 2.0070 and 0.2363 for ChB6 gene of Poonchi chicken sequence with other sequences in the present study respectively. Sequencing results showed variations between different species. It was observed that AT content were higher then GC content for ChB6 gene. The lower AT content suggests less thermostable. It was observed that there was no sequence difference within the Poonchi population for ChB6 gene. The high homology within chicken population indicates the conservation of ChB6 gene. The maximum difference was observed with Miniopterus fuliginosus (Eastern bent-wing bat) followed by Ferringtonia patagonica and Halichoeres bivittatus. Conclusion: Genetic variation is the essential component for genetic improvement. The results of immune related gene Chb6 shows between population genetic variability. Therefore, further association studies of this gene with some prevalent diseases in large population would be helpful to identify disease resistant/ susceptible genotypes in the indigenous chicken population.

Keywords: ChB6, sequencing, ClustalW, genetic distance, poonchi chicken, SNP

Procedia PDF Downloads 55