Search results for: synthetic gene network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6912

Search results for: synthetic gene network

6912 Improved Predictive Models for the IRMA Network Using Nonlinear Optimisation

Authors: Vishwesh Kulkarni, Nikhil Bellarykar

Abstract:

Cellular complexity stems from the interactions among thousands of different molecular species. Thanks to the emerging fields of systems and synthetic biology, scientists are beginning to unravel these regulatory, signaling, and metabolic interactions and to understand their coordinated action. Reverse engineering of biological networks has has several benefits but a poor quality of data combined with the difficulty in reproducing it limits the applicability of these methods. A few years back, many of the commonly used predictive algorithms were tested on a network constructed in the yeast Saccharomyces cerevisiae (S. cerevisiae) to resolve this issue. The network was a synthetic network of five genes regulating each other for the so-called in vivo reverse-engineering and modeling assessment (IRMA). The network was constructed in S. cereviase since it is a simple and well characterized organism. The synthetic network included a variety of regulatory interactions, thus capturing the behaviour of larger eukaryotic gene networks on a smaller scale. We derive a new set of algorithms by solving a nonlinear optimization problem and show how these algorithms outperform other algorithms on these datasets.

Keywords: synthetic gene network, network identification, optimization, nonlinear modeling

Procedia PDF Downloads 123
6911 Construction of the Large Scale Biological Networks from Microarrays

Authors: Fadhl Alakwaa

Abstract:

One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.

Keywords: gene regulatory network, biclustering, denoising, system biology

Procedia PDF Downloads 208
6910 Integration of Microarray Data into a Genome-Scale Metabolic Model to Study Flux Distribution after Gene Knockout

Authors: Mona Heydari, Ehsan Motamedian, Seyed Abbas Shojaosadati

Abstract:

Prediction of perturbations after genetic manipulation (especially gene knockout) is one of the important challenges in systems biology. In this paper, a new algorithm is introduced that integrates microarray data into the metabolic model. The algorithm was used to study the change in the cell phenotype after knockout of Gss gene in Escherichia coli BW25113. Algorithm implementation indicated that gene deletion resulted in more activation of the metabolic network. Growth yield was more and less regulating gene were identified for mutant in comparison with the wild-type strain.

Keywords: metabolic network, gene knockout, flux balance analysis, microarray data, integration

Procedia PDF Downloads 551
6909 Paper-Based Detection Using Synthetic Gene Circuits

Authors: Vanessa Funk, Steven Blum, Stephanie Cole, Jorge Maciel, Matthew Lux

Abstract:

Paper-based synthetic gene circuits offer a new paradigm for programmable, fieldable biodetection. We demonstrate that by freeze-drying gene circuits with in vitro expression machinery, we can use complimentary RNA sequences to trigger colorimetric changes upon rehydration. We have successfully utilized both green fluorescent protein and luciferase-based reporters for easy visualization purposes in solution. Through several efforts, we are aiming to use this new platform technology to address a variety of needs in portable detection by demonstrating several more expression and reporter systems for detection functions on paper. In addition to RNA-based biodetection, we are exploring the use of various mechanisms that cells use to respond to environmental conditions to move towards all-hazards detection. Examples include explosives, heavy metals for water quality, and toxic chemicals.

Keywords: cell-free lysates, detection, gene circuits, in vitro

Procedia PDF Downloads 364
6908 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: biological pathway, gene identification, object detection, Siamese network

Procedia PDF Downloads 241
6907 Recognition of Gene Names from Gene Pathway Figures Using Siamese Network

Authors: Muhammad Azam, Micheal Olaolu Arowolo, Fei He, Mihail Popescu, Dong Xu

Abstract:

The number of biological papers is growing quickly, which means that the number of biological pathway figures in those papers is also increasing quickly. Each pathway figure shows extensive biological information, like the names of genes and how the genes are related. However, manually annotating pathway figures takes a lot of time and work. Even though using advanced image understanding models could speed up the process of curation, these models still need to be made more accurate. To improve gene name recognition from pathway figures, we applied a Siamese network to map image segments to a library of pictures containing known genes in a similar way to person recognition from photos in many photo applications. We used a triple loss function and a triplet spatial pyramid pooling network by combining the triplet convolution neural network and the spatial pyramid pooling (TSPP-Net). We compared VGG19 and VGG16 as the Siamese network model. VGG16 achieved better performance with an accuracy of 93%, which is much higher than OCR results.

Keywords: biological pathway, image understanding, gene name recognition, object detection, Siamese network, VGG

Procedia PDF Downloads 241
6906 Chemical Synthesis of a cDNA and Its Expression Analysis

Authors: Salman Akrokayan

Abstract:

Synthetic cDNA (ScDNA) of granulocyte colony-stimulating factor (G-CSF) was constructed using a DNA synthesizer with the aim to increase its expression level. 5' end of the ScDNA of G-CSF coding region was modified by decreasing the GC content without altering the predicted amino acids sequence. The identity of the resulting protein from ScDNA was confirmed by the highly specific enzyme-linked immunosorbent assay. In conclusion, a synthetic G-CSF cDNA in combination with the recombinant DNA protocol offers a rapid and reliable strategy for synthesizing the target protein. However, the commercial utilization of this methodology requires rigorous validation and quality control.

Keywords: synthetic cDNA, recombinant G-CSF, cloning, gene expression

Procedia PDF Downloads 248
6905 Effects of Epinephrine on Gene Expressions during the Metamorphosis of Pacific Oyster Crassostrea gigas

Authors: Fei Xu, Guofan Zhang, Xiao Liu

Abstract:

Many major marine invertebrate phyla are characterized by indirect development. These animals transit from planktonic larvae to benthic adults via settlement and metamorphosis, which has many advantages for organisms to adapt marine environment. Studying the biological process of metamorphosis is thus a key to understand the origin and evolution of indirect development. Although the mechanism of metamorphosis has been largely studied on their relationships with the marine environment, microorganisms, as well as the neurohormones, little is known on the gene regulation network (GRN) during metamorphosis. We treated competent oyster pediveligers with epinephrine, which was known to be able to effectively induce oyster metamorphosis, and analyzed the dynamics of gene and proteins with transcriptomics and proteomics methods. The result indicated significant upregulation of protein synthesis system, as well as some transcription factors including Homeobox, basic helix-loop-helix, and nuclear receptors. The result suggested the GRN complexity of the transition stage during oyster metamorphosis.

Keywords: indirect development, gene regulation network, protein synthesis, transcription factors

Procedia PDF Downloads 107
6904 Fundamental Theory of the Evolution Force: Gene Engineering utilizing Synthetic Evolution Artificial Intelligence

Authors: L. K. Davis

Abstract:

The effects of the evolution force are observable in nature at all structural levels ranging from small molecular systems to conversely enormous biospheric systems. However, the evolution force and work associated with formation of biological structures has yet to be described mathematically or theoretically. In addressing the conundrum, we consider evolution from a unique perspective and in doing so we introduce the “Fundamental Theory of the Evolution Force: FTEF”. We utilized synthetic evolution artificial intelligence (SYN-AI) to identify genomic building blocks and to engineer 14-3-3 ζ docking proteins by transforming gene sequences into time-based DNA codes derived from protein hierarchical structural levels. The aforementioned served as templates for random DNA hybridizations and genetic assembly. The application of hierarchical DNA codes allowed us to fast forward evolution, while dampening the effect of point mutations. Natural selection was performed at each hierarchical structural level and mutations screened using Blosum 80 mutation frequency-based algorithms. Notably, SYN-AI engineered a set of three architecturally conserved docking proteins that retained motion and vibrational dynamics of native Bos taurus 14-3-3 ζ.

Keywords: 14-3-3 docking genes, synthetic protein design, time-based DNA codes, writing DNA code from scratch

Procedia PDF Downloads 84
6903 Elucidation of the Sequential Transcriptional Activity in Escherichia coli Using Time-Series RNA-Seq Data

Authors: Pui Shan Wong, Kosuke Tashiro, Satoru Kuhara, Sachiyo Aburatani

Abstract:

Functional genomics and gene regulation inference has readily expanded our knowledge and understanding of gene interactions with regards to expression regulation. With the advancement of transcriptome sequencing in time-series comes the ability to study the sequential changes of the transcriptome. This method presented here works to augment existing regulation networks accumulated in literature with transcriptome data gathered from time-series experiments to construct a sequential representation of transcription factor activity. This method is applied on a time-series RNA-Seq data set from Escherichia coli as it transitions from growth to stationary phase over five hours. Investigations are conducted on the various metabolic activities in gene regulation processes by taking advantage of the correlation between regulatory gene pairs to examine their activity on a dynamic network. Especially, the changes in metabolic activity during phase transition are analyzed with focus on the pagP gene as well as other associated transcription factors. The visualization of the sequential transcriptional activity is used to describe the change in metabolic pathway activity originating from the pagP transcription factor, phoP. The results show a shift from amino acid and nucleic acid metabolism, to energy metabolism during the transition to stationary phase in E. coli.

Keywords: Escherichia coli, gene regulation, network, time-series

Procedia PDF Downloads 336
6902 Characterization of Monoclonal Antibodies Specific for Synthetic Cannabinoids

Authors: Hiroshi Nakayama, Yuji Ito

Abstract:

Synthetic cannabinoids have attracted much public attention recently in Japan. 1-pentyl-3-(1-naphthoyl)-indole (JWH-018), 1-pentyl-2-methyl-3-(1-naphthoyl) indole (JWH-015), 1-(5-fluoropentyl)-3- (1-(2,2,3,3- tetramethylcyclopropyl)) indole (XLR-11) and 1-methyl-3- (1-admantyl) indole (JWH-018 adamantyl analog) are known as synthetic cannabinoids and are also considered dangerous illegal drugs in Japan. It has become necessary to develop sensitive and useful methods for detection of synthetic cannabinoids. We produced two monoclonal antibodies (MAb) against synthetic cannabinoids, named NT1 (IgG1) and NT2 (IgG1), using Hybridoma technology. The cross-reactivity of these produced MAbs was evaluated using a competitive enzyme-linked immunosorbent assay (ELISA). In the results, we found both of these antibodies recognize many kinds of synthetic cannabinoids analog. However, neither of these antibodies recognizes naphtoic acid, 1-methyl-indole and indole known as a raw material of synthetic cannabinoid. Thus, the MAbs produced in this study could be a useful tool for the detection of synthetic cannabinoids.

Keywords: ELISA, monoclonal antibody, sensor, synthetic cannabinoid

Procedia PDF Downloads 313
6901 Intelligent CRISPR Design for Bone Regeneration

Authors: Yu-Chen Hu

Abstract:

Gene editing by CRISPR and gene regulation by microRNA or CRISPR activation have dramatically changed the way to manipulate cellular gene expression and cell fate. In recent years, various gene editing and gene manipulation technologies have been applied to control stem cell differentiation to enhance tissue regeneration. This research will focus on how to develop CRISPR, CRISPR activation (CRISPRa), CRISPR inhibition (CRISPRi), as well as bi-directional CRISPR-AI gene regulation technologies to control cell differentiation and bone regeneration. Moreover, in this study, CRISPR/Cas13d-mediated RNA editng for miRNA editing and bone regeneration will be discussed.

Keywords: gene therapy, bone regeneration, stem cell, CRISPR, gene regulation

Procedia PDF Downloads 51
6900 SCANet: A Workflow for Single-Cell Co-Expression Based Analysis

Authors: Mhaned Oubounyt, Jan Baumbach

Abstract:

Differences in co-expression networks between two or multiple cells (sub)types across conditions is a pressing problem in single-cell RNA sequencing (scRNA-seq). A key challenge is to define those co-variations that differ between or among cell types and/or conditions and phenotypes to examine small regulatory networks that can explain mechanistic differences. To this end, we developed SCANet, an all-in-one Python package that uses state-of-the-art algorithms to facilitate the workflow of a combined single-cell GCN (Gene Correlation Network) and GRN (Gene Regulatory Networks) pipeline, including inference of gene co-expression modules from scRNA-seq, followed by trait and cell type associations, hub gene detection, co-regulatory networks, and drug-gene interactions. In an example case, we illustrate how SCANet can be applied to identify regulatory drivers behind a cytokine storm associated with mortality in patients with acute respiratory illness. SCANet is available as a free, open-source, and user-friendly Python package that can be easily integrated into systems biology pipelines.

Keywords: single-cell, co-expression networks, drug-gene interactions, co-regulatory networks

Procedia PDF Downloads 98
6899 Compressive Strength of Synthetic Fiber Reinforced Concretes

Authors: Soner Guler, Demet Yavuz, Fuat Korkut

Abstract:

Synthetic fibers are commonly used in many civil engineering applications because of its some superior characteristics such as non-corrosive and cheapness. This study presents the results of experimental study on compressive strength of synthetic fiber reinforced concretes. Two types of polyamide (PA) synthetic fiber with the length of 12 and 54 mm are used for this study. The fiber volume ratio is kept as 0.25%, 0.75%, and 0.75% in all mixes. The plain concrete compressive strength is 36.2 MPa. The test results clearly show that the increase in compressive strength for synthetic fiber reinforced concretes is significant. The greatest increase in compressive strength is 23% for PA synthetic fiber reinforced concretes with 0.75% fiber volume.

Keywords: synthetic fibers, polyamide fibers, fiber volume, compressive strength

Procedia PDF Downloads 490
6898 A Local Tensor Clustering Algorithm to Annotate Uncharacterized Genes with Many Biological Networks

Authors: Paul Shize Li, Frank Alber

Abstract:

A fundamental task of clinical genomics is to unravel the functions of genes and their associations with disorders. Although experimental biology has made efforts to discover and elucidate the molecular mechanisms of individual genes in the past decades, still about 40% of human genes have unknown functions, not to mention the diseases they may be related to. For those biologists who are interested in a particular gene with unknown functions, a powerful computational method tailored for inferring the functions and disease relevance of uncharacterized genes is strongly needed. Studies have shown that genes strongly linked to each other in multiple biological networks are more likely to have similar functions. This indicates that the densely connected subgraphs in multiple biological networks are useful in the functional and phenotypic annotation of uncharacterized genes. Therefore, in this work, we have developed an integrative network approach to identify the frequent local clusters, which are defined as those densely connected subgraphs that frequently occur in multiple biological networks and consist of the query gene that has few or no disease or function annotations. This is a local clustering algorithm that models multiple biological networks sharing the same gene set as a three-dimensional matrix, the so-called tensor, and employs the tensor-based optimization method to efficiently find the frequent local clusters. Specifically, massive public gene expression data sets that comprehensively cover dynamic, physiological, and environmental conditions are used to generate hundreds of gene co-expression networks. By integrating these gene co-expression networks, for a given uncharacterized gene that is of biologist’s interest, the proposed method can be applied to identify the frequent local clusters that consist of this uncharacterized gene. Finally, those frequent local clusters are used for function and disease annotation of this uncharacterized gene. This local tensor clustering algorithm outperformed the competing tensor-based algorithm in both module discovery and running time. We also demonstrated the use of the proposed method on real data of hundreds of gene co-expression data and showed that it can comprehensively characterize the query gene. Therefore, this study provides a new tool for annotating the uncharacterized genes and has great potential to assist clinical genomic diagnostics.

Keywords: local tensor clustering, query gene, gene co-expression network, gene annotation

Procedia PDF Downloads 102
6897 Designing Directed Network with Optimal Controllability

Authors: Liang Bai, Yandong Xiao, Haorang Wang, Songyang Lao

Abstract:

The directedness of links is crucial to determine the controllability in complex networks. Even the edge directions can determine the controllability of complex networks. Obviously, for a given network, we wish to design its edge directions that make this network approach the optimal controllability. In this work, we firstly introduce two methods to enhance network by assigning edge directions. However, these two methods could not completely mitigate the negative effects of inaccessibility and dilations. Thus, to approach the optimal network controllability, the edge directions must mitigate the negative effects of inaccessibility and dilations as much as possible. Finally, we propose the edge direction for optimal controllability. The optimal method has been found to be successfully useful on real-world and synthetic networks.

Keywords: complex network, dynamics, network control, optimization

Procedia PDF Downloads 143
6896 Identification of Mx Gene Polymorphism in Indragiri Hulu duck by PCR-RFLP

Authors: Restu Misrianti

Abstract:

The amino acid variation of Asn (allele A) at position 631 in Mx gene was specific to positive antiviral to avian viral desease. This research was aimed at identifying polymorphism of Mx gene in duck using molecular technique. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to select the genotype of AA, AG and GG. There were thirteen duck from Indragiri Hulu regency (Riau Province) used in this experiment. DNA amplification results showed that the Mx gene in duck is found in a 73 bp fragment. Mx gene in duck did not show any polymorphism. The frequency of the resistant allele (AA) was 0%, while the frequency of the susceptible allele (GG) was 100%.

Keywords: duck, Mx gene, PCR, RFLP

Procedia PDF Downloads 292
6895 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (ΔG) for Gene Silencing

Authors: Reena Murali, David Peter S.

Abstract:

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies shows that up regulation of mRNA cause serious diseases like Cancer. So designing effective siRNA with good knockdown effects play an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (ΔG), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Keywords: artificial neural network, double stranded RNA, RNA interference, short interfering RNA

Procedia PDF Downloads 500
6894 Ordinary Differentiation Equations (ODE) Reconstruction of High-Dimensional Genetic Networks through Game Theory with Application to Dissecting Tree Salt Tolerance

Authors: Libo Jiang, Huan Li, Rongling Wu

Abstract:

Ordinary differentiation equations (ODE) have proven to be powerful for reconstructing precise and informative gene regulatory networks (GRNs) from dynamic gene expression data. However, joint modeling and analysis of all genes, essential for the systematical characterization of genetic interactions, are challenging due to high dimensionality and a complex pattern of genetic regulation including activation, repression, and antitermination. Here, we address these challenges by unifying variable selection and game theory through ODE. Each gene within a GRN is co-expressed with its partner genes in a way like a game of multiple players, each of which tends to choose an optimal strategy to maximize its “fitness” across the whole network. Based on this unifying theory, we designed and conducted a real experiment to infer salt tolerance-related GRNs for Euphrates poplar, a hero tree that can grow in the saline desert. The pattern and magnitude of interactions between several hub genes within these GRNs were found to determine the capacity of Euphrates poplar to resist to saline stress.

Keywords: gene regulatory network, ordinary differential equation, game theory, LASSO, saline resistance

Procedia PDF Downloads 611
6893 Early Diagnosis and Treatment of Cancer Using Synthetic Cationic Peptide

Authors: D. J. Kalita

Abstract:

Cancer is one of the prime causes of early death worldwide. Mutation of the gene involve in DNA repair and damage, like BRCA2 (Breast cancer gene two) genes, can be detected efficiently by PCR-RFLP to early breast cancer diagnosis and adopt the suitable method of treatment. Host Defense Peptide can be used as blueprint for the design and synthesis of novel anticancer drugs to avoid the side effect of conventional chemotherapy and chemo resistance. The change at nucleotide position 392 of a -› c in the cancer sample of dog mammary tumour at BRCA2 (exon 7) gene lead the creation of a new restriction site for SsiI restriction enzyme. This SNP may be a marker for detection of canine mammary tumour. Support vector machine (SVM) algorithm was used to design and predict the anticancer peptide from the mature functional peptide. MTT assay of MCF-7 cell line after 48 hours of post treatment showed an increase in the number of rounded cells when compared with untreated control cells. The ability of the synthesized peptide to induce apoptosis in MCF-7 cells was further investigated by staining the cells with the fluorescent dye Hoechst stain solution, which allows the evaluation of the nuclear morphology. Numerous cells with dense, pyknotic nuclei (the brighter fluorescence) were observed in treated but not in control MCF-7 cells when viewed using an inverted phase-contrast microscope. Thus, PCR-RFLP is one of the attractive approach for early diagnosis, and synthetic cationic peptide can be used for the treatment of canine mammary tumour.

Keywords: cancer, cationic peptide, host defense peptides, Breast cancer genes

Procedia PDF Downloads 58
6892 The Interplay between Autophagy and Macrophages' Polarization in Wound Healing: A Genetic Regulatory Network Analysis

Authors: Mayada Mazher, Ahmed Moustafa, Ahmed Abdellatif

Abstract:

Background: Autophagy is a eukaryotic, highly conserved catabolic process implicated in many pathophysiologies such as wound healing. Autophagy-associated genes serve as a scaffolding platform for signal transduction of macrophage polarization during the inflammatory phase of wound healing and tissue repair process. In the current study, we report a model for the interplay between autophagy-associated genes and macrophages polarization associated genes. Methods: In silico analysis was performed on 249 autophagy-related genes retrieved from the public autophagy database and gene expression data retrieved from Gene Expression Omnibus (GEO); GSE81922 and GSE69607 microarray data macrophages polarization 199 DEGS. An integrated protein-protein interaction network was constructed for autophagy and macrophage gene sets. The gene sets were then used for GO terms pathway enrichment analysis. Common transcription factors for autophagy and macrophages' polarization were identified. Finally, microRNAs enriched in both autophagy and macrophages were predicated. Results: In silico prediction of common transcription factors in DEGs macrophages and autophagy gene sets revealed a new role for the transcription factors, HOMEZ, GABPA, ELK1 and REL, that commonly regulate macrophages associated genes: IL6,IL1M, IL1B, NOS1, SOC3 and autophagy-related genes: Atg12, Rictor, Rb1cc1, Gaparab1, Atg16l1. Conclusions: Autophagy and macrophages' polarization are interdependent cellular processes, and both autophagy-related proteins and macrophages' polarization related proteins coordinate in tissue remodelling via transcription factors and microRNAs regulatory network. The current work highlights a potential new role for transcription factors HOMEZ, GABPA, ELK1 and REL in wound healing.

Keywords: autophagy related proteins, integrated network analysis, macrophages polarization M1 and M2, tissue remodelling

Procedia PDF Downloads 116
6891 Classification of Generative Adversarial Network Generated Multivariate Time Series Data Featuring Transformer-Based Deep Learning Architecture

Authors: Thrivikraman Aswathi, S. Advaith

Abstract:

As there can be cases where the use of real data is somehow limited, such as when it is hard to get access to a large volume of real data, we need to go for synthetic data generation. This produces high-quality synthetic data while maintaining the statistical properties of a specific dataset. In the present work, a generative adversarial network (GAN) is trained to produce multivariate time series (MTS) data since the MTS is now being gathered more often in various real-world systems. Furthermore, the GAN-generated MTS data is fed into a transformer-based deep learning architecture that carries out the data categorization into predefined classes. Further, the model is evaluated across various distinct domains by generating corresponding MTS data.

Keywords: GAN, transformer, classification, multivariate time series

Procedia PDF Downloads 87
6890 Macronutrients and the FTO Gene Expression in Hypothalamus: A Systematic Review of Experimental Studies

Authors: Saeid Doaei

Abstract:

The various studies have examined the relationship between FTO gene expression and macronutrients levels. In order to obtain better viewpoint from this interactions, all of the existing studies were reviewed systematically. All published papers have been obtained and reviewed using standard and sensitive keywords from databases such as CINAHL, Embase, PubMed, PsycInfo, and the Cochrane, from 1990 to 2016. The results indicated that all of 6 studies that met the inclusion criteria (from a total of 428 published article) found FTO gene expression changes at short-term follow-ups. Four of six studies found an increased FTO gene expression after calorie restriction, while two of them indicated decreased FTO gene expression. The effect of protein, carbohydrate and fat were separately assessed and suggested by all of six studies. In conclusion, the level of FTO gene expression in hypothalamus is related to macronutrients levels. Future research should evaluate the long-term impact of dietary interventions.

Keywords: obesity, gene expression, FTO, macronutrients

Procedia PDF Downloads 237
6889 Generative AI: A Comparison of Conditional Tabular Generative Adversarial Networks and Conditional Tabular Generative Adversarial Networks with Gaussian Copula in Generating Synthetic Data with Synthetic Data Vault

Authors: Lakshmi Prayaga, Chandra Prayaga. Aaron Wade, Gopi Shankar Mallu, Harsha Satya Pola

Abstract:

Synthetic data generated by Generative Adversarial Networks and Autoencoders is becoming more common to combat the problem of insufficient data for research purposes. However, generating synthetic data is a tedious task requiring extensive mathematical and programming background. Open-source platforms such as the Synthetic Data Vault (SDV) and Mostly AI have offered a platform that is user-friendly and accessible to non-technical professionals to generate synthetic data to augment existing data for further analysis. The SDV also provides for additions to the generic GAN, such as the Gaussian copula. We present the results from two synthetic data sets (CTGAN data and CTGAN with Gaussian Copula) generated by the SDV and report the findings. The results indicate that the ROC and AUC curves for the data generated by adding the layer of Gaussian copula are much higher than the data generated by the CTGAN.

Keywords: synthetic data generation, generative adversarial networks, conditional tabular GAN, Gaussian copula

Procedia PDF Downloads 31
6888 Generative Adversarial Network for Bidirectional Mappings between Retinal Fundus Images and Vessel Segmented Images

Authors: Haoqi Gao, Koichi Ogawara

Abstract:

Retinal vascular segmentation of color fundus is the basis of ophthalmic computer-aided diagnosis and large-scale disease screening systems. Early screening of fundus diseases has great value for clinical medical diagnosis. The traditional methods depend on the experience of the doctor, which is time-consuming, labor-intensive, and inefficient. Furthermore, medical images are scarce and fraught with legal concerns regarding patient privacy. In this paper, we propose a new Generative Adversarial Network based on CycleGAN for retinal fundus images. This method can generate not only synthetic fundus images but also generate corresponding segmentation masks, which has certain application value and challenge in computer vision and computer graphics. In the results, we evaluate our proposed method from both quantitative and qualitative. For generated segmented images, our method achieves dice coefficient of 0.81 and PR of 0.89 on DRIVE dataset. For generated synthetic fundus images, we use ”Toy Experiment” to verify the state-of-the-art performance of our method.

Keywords: retinal vascular segmentations, generative ad-versarial network, cyclegan, fundus images

Procedia PDF Downloads 105
6887 Identification of Significant Genes in Rheumatoid Arthritis, Melanoma Metastasis, Ulcerative Colitis and Crohn’s Disease

Authors: Krishna Pal Singh, Shailendra Kumar Gupta, Olaf Wolkenhauer

Abstract:

Background: Our study aimed to identify common genes and potential targets across the four diseases, which include rheumatoid arthritis, melanoma metastasis, ulcerative colitis, and Crohn’s disease. We used a network and systems biology approach to identify the hub gene, which can act as a potential target for all four disease conditions. The regulatory network was extracted from the PPI using the MCODE module present in Cytoscape. Our objective was to investigate the significance of hub genes in these diseases using gene ontology and KEGG pathway enrichment analysis. Methods: Our methodology involved collecting disease gene-related information from DisGeNET databases and performing protein-protein interaction (PPI) network and core genes screening. We then conducted gene ontology and KEGG pathway enrichment analysis. Results: We found that IL6 plays a critical role in all disease conditions and in different pathways that can be associated with the development of all four diseases. Conclusions: The theoretical importance of our research is that we employed various systems and structural biology techniques to identify a crucial protein that could serve as a promising target for treating multiple diseases. Our data collection and analysis procedures involved rigorous scrutiny, ensuring high-quality results. Our conclusion is that IL6 plays a significant role in all four diseases, and it can act as a potential target for treating them. Our findings may have important implications for the development of novel therapeutic interventions for these diseases.

Keywords: melanoma metastasis, rheumatoid arthritis, inflammatory bowel diseases, integrated bioinformatics analysis

Procedia PDF Downloads 53
6886 A Fast Community Detection Algorithm

Authors: Chung-Yuan Huang, Yu-Hsiang Fu, Chuen-Tsai Sun

Abstract:

Community detection represents an important data-mining tool for analyzing and understanding real-world complex network structures and functions. We believe that at least four criteria determine the appropriateness of a community detection algorithm: (a) it produces useable normalized mutual information (NMI) and modularity results for social networks, (b) it overcomes resolution limitation problems associated with synthetic networks, (c) it produces good NMI results and performance efficiency for Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks, and (d) it produces good modularity and performance efficiency for large-scale real-world complex networks. To our knowledge, no existing community detection algorithm meets all four criteria. In this paper, we describe a simple hierarchical arc-merging (HAM) algorithm that uses network topologies and rule-based arc-merging strategies to identify community structures that satisfy the criteria. We used five well-studied social network datasets and eight sets of LFR benchmark networks to validate the ground-truth community correctness of HAM, eight large-scale real-world complex networks to measure its performance efficiency, and two synthetic networks to determine its susceptibility to resolution limitation problems. Our results indicate that the proposed HAM algorithm is capable of providing satisfactory performance efficiency and that HAM-identified communities were close to ground-truth communities in social and LFR benchmark networks while overcoming resolution limitation problems.

Keywords: complex network, social network, community detection, network hierarchy

Procedia PDF Downloads 189
6885 Numerical Investigation of Improved Aerodynamic Performance of a NACA 0015 Airfoil Using Synthetic Jet

Authors: K. Boualem, T. Yahiaoui, A. Azzi

Abstract:

Numerical investigations are performed to analyze the flow behavior over NACA0015 and to evaluate the efficiency of synthetic jet as active control device. The second objective of this work is to investigate the influence of momentum coefficient of synthetic jet on the flow behaviour. The unsteady Reynolds-averaged Navier-Stokes equations of the turbulent flow are solved using, k-ω SST provided by ANSYS CFX-CFD code. The model presented in this paper is a comprehensive representation of the information found in the literature. Comparison of obtained numerical flow parameters with the experimental ones shows that the adopted computational procedure reflects nearly the real flow nature. Also, numerical results state that use of synthetic jets devices has positive effects on the flow separation, and thus, aerodynamic performance improvement of NACA0015 airfoil. It can also be observed that the use of synthetic jet increases the lift coefficient about 13.3% and reduces the drag coefficient about 52.7%.

Keywords: active control, synthetic jet, NACA airfoil, CFD

Procedia PDF Downloads 280
6884 Detecting Memory-Related Gene Modules in sc/snRNA-seq Data by Deep-Learning

Authors: Yong Chen

Abstract:

To understand the detailed molecular mechanisms of memory formation in engram cells is one of the most fundamental questions in neuroscience. Recent single-cell RNA-seq (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) techniques have allowed us to explore the sparsely activated engram ensembles, enabling access to the molecular mechanisms that underlie experience-dependent memory formation and consolidation. However, the absence of specific and powerful computational methods to detect memory-related genes (modules) and their regulatory relationships in the sc/snRNA-seq datasets has strictly limited the analysis of underlying mechanisms and memory coding principles in mammalian brains. Here, we present a deep-learning method named SCENTBOX, to detect memory-related gene modules and causal regulatory relationships among themfromsc/snRNA-seq datasets. SCENTBOX first constructs codifferential expression gene network (CEGN) from case versus control sc/snRNA-seq datasets. It then detects the highly correlated modules of differential expression genes (DEGs) in CEGN. The deep network embedding and attention-based convolutional neural network strategies are employed to precisely detect regulatory relationships among DEG genes in a module. We applied them on scRNA-seq datasets of TRAP; Ai14 mouse neurons with fear memory and detected not only known memory-related genes, but also the modules and potential causal regulations. Our results provided novel regulations within an interesting module, including Arc, Bdnf, Creb, Dusp1, Rgs4, and Btg2. Overall, our methods provide a general computational tool for processing sc/snRNA-seq data from case versus control studie and a systematic investigation of fear-memory-related gene modules.

Keywords: sc/snRNA-seq, memory formation, deep learning, gene module, causal inference

Procedia PDF Downloads 83
6883 The Role of the STAT3 Signaling for Melatonergic Synthetic Pathway in the Rat Pineal Gland

Authors: Simona Moravcova, Jiri Novotny, Zdenka Bendova

Abstract:

The pineal gland of the vertebrate brain is a circumventricular organ which serves as a major neuroendocrine gland with the primary function of rhythmic secretion of neurohormone melatonin under the control of the hypothalamic suprachiasmatic nucleus (SCN). Soon after the onset of the darkness, the activity of the key rate-limiting enzyme for melatonin synthesis, arylalkylamine N-acetyltransferase (AANAT), raises due to the increased release of norepinephrine from sympathetic neurons terminating on the parenchymal cells where it binds to β-adrenergic receptors. Melatonin codes the length of the night, and it is well recognized for its anti-inflammatory effects. However, to our knowledge, less is known about the effect of the immune system on the melatonin biosynthesis and the precise role of the STAT3 in the signaling pathway leading to the expression of AANAT. Lipopolysaccharide (LPS) is the essential component in the outer surface membrane of gram-negative bacteria and acts as a strong stimulator of natural and innate immunity. STAT3 acts as an important factor in immune response. Here we investigated the effect of LPS on the components of the melatonergic synthetic pathway in the pineal gland. The experiments were performed both in vivo and in vitro. The changes in AANAT activity were determined by radioenzymatic assay. PCR analyses were carried out to detect aa-nat, icer, spi-3 and stat3 gene expression. From our results, it is apparent that the high basal level of phosphorylated forms of STAT3 can be elevated after systemic as well as in vitro administration of LPS. Our experiments have shown that LPS reduces melatonin synthesis, nevertheless, the activity of AANAT was increased. Moreover, the basal level of phosphorylated STAT3 counteracts β-adrenergic receptor-mediated aa-nat gene expression and sustains its own and spi-3 gene expression. In conclusion, LPS can affect immunomodulators such as melatonin in the pineal gland.

Keywords: AANAT, lipopolysaccharide, pineal gland, rat, STAT3

Procedia PDF Downloads 136