Search results for: 3D remote sensing images
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3916

Search results for: 3D remote sensing images

2746 MSG Image Encryption Based on AES and RSA Algorithms "MSG Image Security"

Authors: Boukhatem Mohammed Belkaid, Lahdir Mourad

Abstract:

In this paper, we propose a new encryption system for security issues meteorological images from Meteosat Second Generation (MSG), which generates 12 images every 15 minutes. The hybrid encryption scheme is based on AES and RSA algorithms to validate the three security services are authentication, integrity and confidentiality. Privacy is ensured by AES, authenticity is ensured by the RSA algorithm. Integrity is assured by the basic function of the correlation between adjacent pixels. Our system generates a unique password every 15 minutes that will be used to encrypt each frame of the MSG meteorological basis to strengthen and ensure his safety. Several metrics have been used for various tests of our analysis. For the integrity test, we noticed the efficiencies of our system and how the imprint cryptographic changes at reception if a change affects the image in the transmission channel.

Keywords: AES, RSA, integrity, confidentiality, authentication, satellite MSG, encryption, decryption, key, correlation

Procedia PDF Downloads 383
2745 Design and Implement a Remote Control Robot Controlled by Zigbee Wireless Network

Authors: Sinan Alsaadi, Mustafa Merdan

Abstract:

Communication and access systems can be made with many methods in today’s world. These systems are such standards as Wifi, Wimax, Bluetooth, GPS and GPRS. Devices which use these standards also use system resources excessively in direct proportion to their transmission speed. However, large-scale data communication is not always needed. In such cases, a technology which will use system resources as little as possible and support smart network topologies has been needed in order to enable the transmissions of such small packet data and provide the control for this kind of devices. IEEE issued 802.15.4 standard upon this necessity and enabled the production of Zigbee protocol which takes these standards as its basis and devices which support this protocol. In our project, this communication protocol was preferred. The aim of this study is to provide the immediate data transmission of our robot from the field within the scope of the project. In addition, making the communication with the robot through Zigbee Protocol has also been aimed. While sitting on the computer, obtaining the desired data from the region where the robot is located has been taken as the basis. Arduino Uno R3 microcontroller which provides the control mechanism, 1298 shield as the motor driver.

Keywords: ZigBee, wireless network, remote monitoring, smart home, agricultural industry

Procedia PDF Downloads 278
2744 Assessment of the Spatio-Temporal Distribution of Pteridium aquilinum (Bracken Fern) Invasion on the Grassland Plateau in Nyika National Park

Authors: Andrew Kanzunguze, Lusayo Mwabumba, Jason K. Gilbertson, Dominic B. Gondwe, George Z. Nxumayo

Abstract:

Knowledge about the spatio-temporal distribution of invasive plants in protected areas provides a base from which hypotheses explaining proliferation of plant invasions can be made alongside development of relevant invasive plant monitoring programs. The aim of this study was to investigate the spatio-temporal distribution of bracken fern on the grassland plateau of Nyika National Park over the past 30 years (1986-2016) as well as to determine the current extent of the invasion. Remote sensing, machine learning, and statistical modelling techniques (object-based image analysis, image classification and linear regression analysis) in geographical information systems were used to determine both the spatial and temporal distribution of bracken fern in the study area. Results have revealed that bracken fern has been increasing coverage on the Nyika plateau at an estimated annual rate of 87.3 hectares since 1986. This translates to an estimated net increase of 2,573.1 hectares, which was recorded from 1,788.1 hectares (1986) to 4,361.9 hectares (2016). As of 2017 bracken fern covered 20,940.7 hectares, approximately 14.3% of the entire grassland plateau. Additionally, it was observed that the fern was distributed most densely around Chelinda camp (on the central plateau) as well as in forest verges and roadsides across the plateau. Based on these results it is recommended that Ecological Niche Modelling approaches be employed to (i) isolate the most important factors influencing bracken fern proliferation as well as (ii) identify and prioritize areas requiring immediate control interventions so as to minimize bracken fern proliferation in Nyika National Park.

Keywords: bracken fern, image classification, Landsat-8, Nyika National Park, spatio-temporal distribution

Procedia PDF Downloads 180
2743 Manufacturing Process and Cost Estimation through Process Detection by Applying Image Processing Technique

Authors: Chalakorn Chitsaart, Suchada Rianmora, Noppawat Vongpiyasatit

Abstract:

In order to reduce the transportation time and cost for direct interface between customer and manufacturer, the image processing technique has been introduced in this research where designing part and defining manufacturing process can be performed quickly. A3D virtual model is directly generated from a series of multi-view images of an object, and it can be modified, analyzed, and improved the structure, or function for the further implementations, such as computer-aided manufacturing (CAM). To estimate and quote the production cost, the user-friendly platform has been developed in this research where the appropriate manufacturing parameters and process detections have been identified and planned by CAM simulation.

Keywords: image processing technique, feature detections, surface registrations, capturing multi-view images, Production costs and Manufacturing processes

Procedia PDF Downloads 251
2742 Development and Power Characterization of an IoT Network for Agricultural Imaging Applications

Authors: Jacob Wahl, Jane Zhang

Abstract:

This paper describes the development and characterization of a prototype IoT network for use with agricultural imaging and monitoring applications. The sensor and gateway nodes are designed using the ESP32 SoC with integrated Bluetooth Low Energy 4.2 and Wi-Fi. A development board, the Arducam IoTai ESP32, is used for prototyping, testing, and power measurements. Google’s Firebase is used as the cloud storage site for image data collected by the sensor. The sensor node captures images using the OV2640 2MP camera module and transmits the image data to the gateway via Bluetooth Low Energy. The gateway then uploads the collected images to Firebase via a known nearby Wi-Fi network connection. This image data can then be processed and analyzed by computer vision and machine learning pipelines to assess crop growth or other needs. The sensor node achieves a wireless transmission data throughput of 220kbps while consuming 150mA of current; the sensor sleeps at 162µA. The sensor node device lifetime is estimated to be 682 days on a 6600mAh LiPo battery while acquiring five images per day based on the development board power measurements. This network can be utilized by any application that requires high data rates, low power consumption, short-range communication, and large amounts of data to be transmitted at low-frequency intervals.

Keywords: Bluetooth low energy, ESP32, firebase cloud, IoT, smart farming

Procedia PDF Downloads 139
2741 Optimization of Fused Deposition Modeling 3D Printing Process via Preprocess Calibration Routine Using Low-Cost Thermal Sensing

Authors: Raz Flieshman, Adam Michael Altenbuchner, Jörg Krüger

Abstract:

This paper presents an approach to optimizing the Fused Deposition Modeling (FDM) 3D printing process through a preprocess calibration routine of printing parameters. The core of this method involves the use of a low-cost thermal sensor capable of measuring tempera-tures within the range of -20 to 500 degrees Celsius for detailed process observation. The calibration process is conducted by printing a predetermined path while varying the process parameters through machine instructions (g-code). This enables the extraction of critical thermal, dimensional, and surface properties along the printed path. The calibration routine utilizes computer vision models to extract features and metrics from the thermal images, in-cluding temperature distribution, layer adhesion quality, surface roughness, and dimension-al accuracy and consistency. These extracted properties are then analyzed to optimize the process parameters to achieve the desired qualities of the printed material. A significant benefit of this calibration method is its potential to create printing parameter profiles for new polymer and composite materials, thereby enhancing the versatility and application range of FDM 3D printing. The proposed method demonstrates significant potential in enhancing the precision and reliability of FDM 3D printing, making it a valuable contribution to the field of additive manufacturing.

Keywords: FDM 3D printing, preprocess calibration, thermal sensor, process optimization, additive manufacturing, computer vision, material profiles

Procedia PDF Downloads 41
2740 Clinical Efficacy of Indigenous Software for Automatic Detection of Stages of Retinopathy of Prematurity (ROP)

Authors: Joshi Manisha, Shivaram, Anand Vinekar, Tanya Susan Mathews, Yeshaswini Nagaraj

Abstract:

Retinopathy of prematurity (ROP) is abnormal blood vessel development in the retina of the eye in a premature infant. The principal object of the invention is to provide a technique for detecting demarcation line and ridge detection for a given ROP image that facilitates early detection of ROP in stage 1 and stage 2. The demarcation line is an indicator of Stage 1 of the ROP and the ridge is the hallmark of typically Stage 2 ROP. Thirty Retcam images of Asian Indian infants obtained during routine ROP screening have been used for the analysis. A graphical user interface has been developed to detect demarcation line/ridge and to extract ground truth. This novel algorithm uses multilevel vessel enhancement to enhance tubular structures in the digital ROP images. It has been observed that the orientation of the demarcation line/ridge is normal to the direction of the blood vessels, which is used for the identification of the ridge/ demarcation line. Quantitative analysis has been presented based on gold standard images marked by expert ophthalmologist. Image based analysis has been based on the length and the position of the detected ridge. In image based evaluation, average sensitivity and positive predictive value was found to be 92.30% and 85.71% respectively. In pixel based evaluation, average sensitivity, specificity, positive predictive value and negative predictive value achieved were 60.38%, 99.66%, 52.77% and 99.75% respectively.

Keywords: ROP, ridge, multilevel vessel enhancement, biomedical

Procedia PDF Downloads 411
2739 Comparison between Simulation and Experimentally Observed Interactions between Two Different Sized Magnetic Beads in a Fluidic System

Authors: Olayinka Oduwole, Steve Sheard

Abstract:

The magnetic separation of biological cells using super-magnetic beads has been used widely for various bioassays. These bioassays can further be integrated with other laboratory components to form a biosensor which can be used for cell sorting, mixing, purification, transport, manipulation etc. These bio-sensing applications have also been facilitated by the wide availability of magnetic beads which range in size and magnetic properties produced by different manufacturers. In order to improve the efficiency and separation capabilities of these biosensors, it is important to determine the magnetic force induced velocities and interaction of beads within the magnetic field; this will help biosensor users choose the desired magnetic bead for their specific application. This study presents for the first time the interaction between a pair of different sized super-paramagnetic beads suspended in a static fluid moving within a uniform magnetic field using a modified finite-time-finite-difference scheme. A captured video was used to record the trajectory pattern and a good agreement was obtained between the simulated trajectories and the video data. The model is, therefore, a good approximation for predicting the velocities as well as the interaction between various magnetic particles which differ in size and magnetic properties for bio-sensing applications requiring a low concentration of magnetic beads.

Keywords: biosensor, magnetic field, magnetic separation, super-paramagnetic bead

Procedia PDF Downloads 473
2738 Evaluation of IMERG Performance at Estimating the Rainfall Properties through Convective and Stratiform Rain Events in a Semi-Arid Region of Mexico

Authors: Eric Muñoz de la Torre, Julián González Trinidad, Efrén González Ramírez

Abstract:

Rain varies greatly in its duration, intensity, and spatial coverage, it is important to have sub-daily rainfall data for various applications, including risk prevention. However, the ground measurements are limited by the low and irregular density of rain gauges. An alternative to this problem are the Satellite Precipitation Products (SPPs) that use passive microwave and infrared sensors to estimate rainfall, as IMERG, however, these SPPs have to be validated before their application. The aim of this study is to evaluate the performance of the IMERG: Integrated Multi-satellitE Retrievals for Global Precipitation Measurament final run V06B SPP in a semi-arid region of Mexico, using 4 automatic rain gauges (pluviographs) sub-daily data of October 2019 and June to September 2021, using the Minimum inter-event Time (MIT) criterion to separate unique rain events with a dry period of 10 hrs. for the purpose of evaluating the rainfall properties (depth, duration and intensity). Point to pixel analysis, continuous, categorical, and volumetric statistical metrics were used. Results show that IMERG is capable to estimate the rainfall depth with a slight overestimation but is unable to identify the real duration and intensity of the rain events, showing large overestimations and underestimations, respectively. The study zone presented 80 to 85 % of convective rain events, the rest were stratiform rain events, classified by the depth magnitude variation of IMERG pixels and pluviographs. IMERG showed poorer performance at detecting the first ones but had a good performance at estimating stratiform rain events that are originated by Cold Fronts.

Keywords: IMERG, rainfall, rain gauge, remote sensing, statistical evaluation

Procedia PDF Downloads 70
2737 Secure E-Pay System Using Steganography and Visual Cryptography

Authors: K. Suganya Devi, P. Srinivasan, M. P. Vaishnave, G. Arutperumjothi

Abstract:

Today’s internet world is highly prone to various online attacks, of which the most harmful attack is phishing. The attackers host the fake websites which are very similar and look alike. We propose an image based authentication using steganography and visual cryptography to prevent phishing. This paper presents a secure steganographic technique for true color (RGB) images and uses Discrete Cosine Transform to compress the images. The proposed method hides the secret data inside the cover image. The use of visual cryptography is to preserve the privacy of an image by decomposing the original image into two shares. Original image can be identified only when both qualified shares are simultaneously available. Individual share does not reveal the identity of the original image. Thus, the existence of the secret message is hard to be detected by the RS steganalysis.

Keywords: image security, random LSB, steganography, visual cryptography

Procedia PDF Downloads 330
2736 Content-Based Color Image Retrieval Based on the 2-D Histogram and Statistical Moments

Authors: El Asnaoui Khalid, Aksasse Brahim, Ouanan Mohammed

Abstract:

In this paper, we are interested in the problem of finding similar images in a large database. For this purpose we propose a new algorithm based on a combination of the 2-D histogram intersection in the HSV space and statistical moments. The proposed histogram is based on a 3x3 window and not only on the intensity of the pixel. This approach can overcome the drawback of the conventional 1-D histogram which is ignoring the spatial distribution of pixels in the image, while the statistical moments are used to escape the effects of the discretisation of the color space which is intrinsic to the use of histograms. We compare the performance of our new algorithm to various methods of the state of the art and we show that it has several advantages. It is fast, consumes little memory and requires no learning. To validate our results, we apply this algorithm to search for similar images in different image databases.

Keywords: 2-D histogram, statistical moments, indexing, similarity distance, histograms intersection

Procedia PDF Downloads 457
2735 Urban Land Cover from GF-2 Satellite Images Using Object Based and Neural Network Classifications

Authors: Lamyaa Gamal El-Deen Taha, Ashraf Sharawi

Abstract:

China launched satellite GF-2 in 2014. This study deals with comparing nearest neighbor object-based classification and neural network classification methods for classification of the fused GF-2 image. Firstly, rectification of GF-2 image was performed. Secondly, a comparison between nearest neighbor object-based classification and neural network classification for classification of fused GF-2 was performed. Thirdly, the overall accuracy of classification and kappa index were calculated. Results indicate that nearest neighbor object-based classification is better than neural network classification for urban mapping.

Keywords: GF-2 images, feature extraction-rectification, nearest neighbour object based classification, segmentation algorithms, neural network classification, multilayer perceptron

Procedia PDF Downloads 389
2734 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria

Authors: Ofoegbu Ositadinma Edward

Abstract:

This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.

Keywords: fuel pump, microcontroller, GUI, web

Procedia PDF Downloads 434
2733 Development of Algorithms for the Study of the Image in Digital Form for Satellite Applications: Extraction of a Road Network and Its Nodes

Authors: Zineb Nougrara

Abstract:

In this paper, we propose a novel methodology for extracting a road network and its nodes from satellite images of Algeria country. This developed technique is a progress of our previous research works. It is founded on the information theory and the mathematical morphology; the information theory and the mathematical morphology are combined together to extract and link the road segments to form a road network and its nodes. We, therefore, have to define objects as sets of pixels and to study the shape of these objects and the relations that exist between them. In this approach, geometric and radiometric features of roads are integrated by a cost function and a set of selected points of a crossing road. Its performances were tested on satellite images of Algeria country.

Keywords: satellite image, road network, nodes, image analysis and processing

Procedia PDF Downloads 274
2732 Community Participation in Health Planning in Australia

Authors: Amanda Kenny, Virginia Dickson-Swift, Jane Farmer, Sarah Larkins, Karen Carlisle, Helen Hickson

Abstract:

Rural ECOH (Engaging Communities in Oral Health) is a collaborative project that connects policy makers, service providers and community members. The aim of the project is to empower community members to determine what is important for their community and to design the services that they need. This three-year project is currently underway in six rural communities across Australia. This study is specifically focused on Remote Services Futures (RSF), an evidence-based method of community participation that was developed in Scotland. The findings highlight the complexities of community participation in health service planning. We assumed that people living in rural communities would welcome participation in oral health planning and engage with their community to discuss these issues. We found that to understand the relationships between community members and health service providers, it was essential to identify the formal and informal community leaders and to engage stakeholders from the various community governance structures. Our study highlights the sometimes ‘messiness’ of decision making in rural communities as well as ways to ensure that community members have the training and practical skills necessary to participate in community decision making.

Keywords: community participation, health planning, rural ECOH, Remote Services Futures

Procedia PDF Downloads 539
2731 Soil Erosion Assessment Using the RUSLE Model, Remote Sensing, and GIS in the Shatt Al-Arab Basin (Iraq-Iran)

Authors: Hadi Allafta, Christian Opp

Abstract:

Soil erosion is a major concern in the Shatt Al-Arab basin owing to the steepness of its topography as well as the remarkable altitudinal deference between the upstream and downstream parts of the basin. Such conditions resulted in soil vulnerability to erosion; huge amounts of soil are annually transported, creating enormous implications such as land degradation, structure damage, biodiversity loss, productivity decline, etc. Thus, evaluation of soil erosion risk and its spatial distribution is crucial to build adatabase for efficient control measures. The present study used revised universal soil loss equation (RUSLE) model integrated with Geographic Information System (GIS) for depicting soil erosion hazard zones in the Shatt Al-Arab basin. The RUSLE model incorporated several parameters such as rainfall-runoff erosivity, soil erodibility, slope length and steepness, land cover and management, and conservation support practice for soil erosion zonation. High to medium soil loss of 100 to 20 ton perhectare per year represents around 25% of the basin area, while the areas of low soil loss of less than 20 ton per hectare per year occupied the rest of the total area. The high soil loss rates are linked to areas of high rainfall levels, loamy soil domination, elevated terrains/plateau margins with steep side slope, and high cultivation activities. The findings of the current study can be useful for managers and policy makers in the implementation of a suitable conservation program to reduce soil erosion or to recommend soil conservation acts if development projects are to be continued at regions of high soil erosion risk.

Keywords: geographic information system, revised universal soil loss equation, shatt Al-Arab basin, soil erosion

Procedia PDF Downloads 126
2730 „Real and Symbolic in Poetics of Multiplied Screens and Images“

Authors: Kristina Horvat Blazinovic

Abstract:

In the context of a work of art, one can talk about the idea-concept-term-intention expressed by the artist by using various forms of repetition (external, material, visible repetition). Such repetitions of elements (images in space or moving visual and sound images in time) suggest a "covert", "latent" ("dressed") repetition – i.e., "hidden", "latent" term-intention-idea. Repeating in this way reveals a "deeper truth" that the viewer needs to decode and which is hidden "under" the technical manifestation of the multiplied images. It is not only images, sounds, and screens that are repeated - something else is repeated through them as well, even if, in some cases, the very idea of repetition is repeated. This paper examines serial images and single-channel or multi-channel artwork in the field of video/film art and video installations, which in a way implies the concept of repetition and multiplication. Moving or static images and screens (as multi-screens) are repeated in time and space. The categories of the real and the symbolic partly refer to the Lacan registers of reality, i.e., the Imaginary - Symbolic – Real trinity that represents the orders within which human subjectivity is established. Authors such as Bruce Nauman, VALIE EXPORT, Ragnar Kjartansson, Wolf Vostell, Shirin Neshat, Paul Sharits, Harun Farocki, Dalibor Martinis, Andy Warhol, Douglas Gordon, Bill Viola, Frank Gillette, and Ira Schneider, and Marina Abramovic problematize, in different ways, the concept and procedures of multiplication - repetition, but not in the sense of "copying" and "repetition" of reality or the original, but of repeated repetitions of the simulacrum. Referential works of art are often connected by the theme of the traumatic. Repetitions of images and situations are a response to the traumatic (experience) - repetition itself is a symptom of trauma. On the other hand, repeating and multiplying traumatic images results in a new traumatic effect or cancels it. Reflections on repetition as a temporal and spatial phenomenon are in line with the chapters that link philosophical considerations of space and time and experience temporality with their manifestation in works of art. The observations about time and the relation of perception and memory are according to Henry Bergson and his conception of duration (durée) as "quality of quantity." The video works intended to be displayed as a video loop, express the idea of infinite duration ("pure time," according to Bergson). The Loop wants to be always present - to fixate in time. Wholeness is unrecognizable because the intention is to make the effect infinitely cyclic. Reflections on time and space end with considerations about the occurrence and effects of time and space intervals as places and moments "between" – the points of connection and separation, of continuity and stopping - by reference to the "interval theory" of Soviet filmmaker DzigaVertov. The scale of opportunities that can be explored in interval mode is wide. Intervals represent the perception of time and space in the form of pauses, interruptions, breaks (e.g., emotional, dramatic, or rhythmic) denote emptiness or silence, distance, proximity, interstitial space, or a gap between various states.

Keywords: video installation, performance, repetition, multi-screen, real and symbolic, loop, video art, interval, video time

Procedia PDF Downloads 173
2729 Modeling Vegetation Phenological Characteristics of Terrestrial Ecosystems

Authors: Zongyao Sha

Abstract:

Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by but also impose active feedback on climate changes. The phenological events of vegetation, such as the start of the season (SOS), end of the season (EOS), and length of the season (LOS), can respond to climate changes and affect gross primary productivity (GPP). Here we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated areas and explored their response to climate fluctuations and feedback on GPP during the last two decades. Results indicated that SOS advanced significantly, at an average rate of 0.19 days/year at a global scale, particularly in the northern hemisphere above the middle latitude (≥30°N) and that EOS was slightly delayed during the past two decades, resulting in prolonged LOS in 72.5% of the vegetated area. The climate factors, including seasonal temperature and precipitation, are attributed to the shifts in vegetation phenology but with a high spatial and temporal difference. The study revealed interactions between vegetation phenology and climate changes. Both temperature and precipitation affect vegetation phenology. Higher temperature as a direct consequence of global warming advanced vegetation green-up date. On the other hand, 75.9% and 20.2% of the vegetated area showed a positive correlation and significant positive correlation between annual GPP and length of vegetation growing season (LOS), likely indicating an enhancing effect on vegetation productivity and thus increased carbon uptake from the shifted vegetation phenology. Our study highlights a comprehensive view of the vegetation phenology changes of the global terrestrial ecosystems during the last two decades. The interactions between the shifted vegetation phenology and climate changes may provide useful information for better understanding the future trajectory of global climate changes. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.

Keywords: vegetation phenology, growing season, NPP, correlation analysis

Procedia PDF Downloads 102
2728 Earth Observations and Hydrodynamic Modeling to Monitor and Simulate the Oil Pollution in the Gulf of Suez, Red Sea, Egypt

Authors: Islam Abou El-Magd, Elham Ali, Moahmed Zakzouk, Nesreen Khairy, Naglaa Zanaty

Abstract:

Maine environment and coastal zone are wealthy with natural resources that contribute to the local economy of Egypt. The Gulf of Suez and Red Sea area accommodates diverse human activities that contribute to the local economy, including oil exploration and production, touristic activities, export and import harbors, etc, however, it is always under the threat of pollution due to human interaction and activities. This research aimed at integrating in-situ measurements and remotely sensed data with hydrodynamic model to map and simulate the oil pollution. High-resolution satellite sensors including Sentinel 2 and Plantlab were functioned to trace the oil pollution. Spectral band ratio of band 4 (infrared) over band 3 (red) underpinned the mapping of the point source pollution from the oil industrial estates. This ratio is supporting the absorption windows detected in the hyperspectral profiles. ASD in-situ hyperspectral device was used to measure experimentally the oil pollution in the marine environment. The experiment used to measure water behavior in three cases a) clear water without oil, b) water covered with raw oil, and c) water after a while from throwing the raw oil. The spectral curve is clearly identified absorption windows for oil pollution, particularly at 600-700nm. MIKE 21 model was applied to simulate the dispersion of the oil contamination and create scenarios for crises management. The model requires precise data preparation of the bathymetry, tides, waves, atmospheric parameters, which partially obtained from online modeled data and other from historical in-situ stations. The simulation enabled to project the movement of the oil spill and could create a warning system for mitigation. Details of the research results will be described in the paper.

Keywords: oil pollution, remote sensing, modelling, Red Sea, Egypt

Procedia PDF Downloads 347
2727 Fruit Identification System in Sweet Orange Citrus (L.) Osbeck Using Thermal Imaging and Fuzzy

Authors: Ingrid Argote, John Archila, Marcelo Becker

Abstract:

In agriculture, intelligent systems applications have generated great advances in automating some of the processes in the production chain. In order to improve the efficiency of those systems is proposed a vision system to estimate the amount of fruits in sweet orange trees. This work presents a system proposal using capture of thermal images and fuzzy logic. A bibliographical review has been done to analyze the state-of-the-art of the different systems used in fruit recognition, and also the different applications of thermography in agricultural systems. The algorithm developed for this project uses the metrics of the fuzzines parameter to the contrast improvement and segmentation of the image, for the counting algorith m was used the Hough transform. In order to validate the proposed algorithm was created a bank of images of sweet orange Citrus (L.) Osbeck acquired in the Maringá Farm. The tests with the algorithm Indicated that the variation of the tree branch temperature and the fruit is not very high, Which makes the process of image segmentation using this differentiates, This Increases the amount of false positives in the fruit counting algorithm. Recognition of fruits isolated with the proposed algorithm present an overall accuracy of 90.5 % and grouped fruits. The accuracy was 81.3 %. The experiments show the need for a more suitable hardware to have a better recognition of small temperature changes in the image.

Keywords: Agricultural systems, Citrus, Fuzzy logic, Thermal images.

Procedia PDF Downloads 229
2726 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88
2725 Defect Detection for Nanofibrous Images with Deep Learning-Based Approaches

Authors: Gaokai Liu

Abstract:

Automatic defect detection for nanomaterial images is widely required in industrial scenarios. Deep learning approaches are considered as the most effective solutions for the great majority of image-based tasks. In this paper, an edge guidance network for defect segmentation is proposed. First, the encoder path with multiple convolution and downsampling operations is applied to the acquisition of shared features. Then two decoder paths both are connected to the last convolution layer of the encoder and supervised by the edge and segmentation labels, respectively, to guide the whole training process. Meanwhile, the edge and encoder outputs from the same stage are concatenated to the segmentation corresponding part to further tune the segmentation result. Finally, the effectiveness of the proposed method is verified via the experiments on open nanofibrous datasets.

Keywords: deep learning, defect detection, image segmentation, nanomaterials

Procedia PDF Downloads 149
2724 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies

Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G. M. Petrakis

Abstract:

Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called effective disorders, which is characterized by great mood swings.We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s non-response to treatment. We propose an architecture, as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.

Keywords: bipolar disorder, intelligent systems patient monitoring, semantic web technologies, healthcare

Procedia PDF Downloads 509
2723 Smart Material for Bacterial Detection Based on Polydiacetylene/Polyvinyl Butyrate Fiber Composites

Authors: Pablo Vidal, Misael Martinez, Carlos Hernandez, Ananta R. Adhikari, Luis Materon, Yuanbing Mao, Karen Lozano

Abstract:

Conjugated polymers are smart materials that show tremendous practical applications in diverse subjects. Polydiacetylenes are conjugated polymers with special optical properties. In response to the environmental changes such as pH and molecular binding, it changes its color. Such an interesting chromic and emissive behavior of polydiacetylenes make them a highly popular polymer in wide areas, including biomedicine such as a biosensor. In this research, we used polyvinyl butyrate as a matrix to fibrillate polydiacetylenes. We initially prepared polyvinyl butyrate/diacetylene matrix using forcespinning technique. They were then polymerized to form polyvinyl butyrate/polydiacetylene (PVB/PDA). These matrices then studied for their bio-sensing response to gram-positive and gram-negative bacteria. The sensing ability of the PVB/PDA biosensor was observed as early as 30 min in the presence of bacteria at 37°C. Now our effort is to decrease this effective temperature to room temperature to make this device applicable in the general daily life. These chromic biosensors will find extensive application not only alert the infection but also find other promising applications such as wearable sensors and diagnostic systems.

Keywords: smart material, conjugated polymers, biosensor, polyvinyl butyrate/polydiacetylene

Procedia PDF Downloads 128
2722 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection

Authors: Ankur Dixit, Hiroaki Wagatsuma

Abstract:

The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.

Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform

Procedia PDF Downloads 173
2721 Principle Component Analysis on Colon Cancer Detection

Authors: N. K. Caecar Pratiwi, Yunendah Nur Fuadah, Rita Magdalena, R. D. Atmaja, Sofia Saidah, Ocky Tiaramukti

Abstract:

Colon cancer or colorectal cancer is a type of cancer that attacks the last part of the human digestive system. Lymphoma and carcinoma are types of cancer that attack human’s colon. Colon cancer causes deaths about half a million people every year. In Indonesia, colon cancer is the third largest cancer case for women and second in men. Unhealthy lifestyles such as minimum consumption of fiber, rarely exercising and lack of awareness for early detection are factors that cause high cases of colon cancer. The aim of this project is to produce a system that can detect and classify images into type of colon cancer lymphoma, carcinoma, or normal. The designed system used 198 data colon cancer tissue pathology, consist of 66 images for Lymphoma cancer, 66 images for carcinoma cancer and 66 for normal / healthy colon condition. This system will classify colon cancer starting from image preprocessing, feature extraction using Principal Component Analysis (PCA) and classification using K-Nearest Neighbor (K-NN) method. Several stages in preprocessing are resize, convert RGB image to grayscale, edge detection and last, histogram equalization. Tests will be done by trying some K-NN input parameter setting. The result of this project is an image processing system that can detect and classify the type of colon cancer with high accuracy and low computation time.

Keywords: carcinoma, colorectal cancer, k-nearest neighbor, lymphoma, principle component analysis

Procedia PDF Downloads 205
2720 Neuron Imaging in Lateral Geniculate Nucleus

Authors: Sandy Bao, Yankang Bao

Abstract:

The understanding of information that is being processed in the brain, especially in the lateral geniculate nucleus (LGN), has been proven challenging for modern neuroscience and for researchers with a focus on how neurons process signals and images. In this paper, we are proposing a method to image process different colors within different layers of LGN, that is, green information in layers 4 & 6 and red & blue in layers 3 & 5 based on the surface dimension of layers. We take into consideration the images in LGN and visual cortex, and that the edge detected information from the visual cortex needs to be considered in order to return back to the layers of LGN, along with the image in LGN to form the new image, which will provide an improved image that is clearer, sharper, and making it easier to identify objects in the image. Matrix Laboratory (MATLAB) simulation is performed, and results show that the clarity of the output image has significant improvement.

Keywords: lateral geniculate nucleus, matrix laboratory, neuroscience, visual cortex

Procedia PDF Downloads 279
2719 The Role of the University Campus in Shaping the Built Environment of Its Local Communities

Authors: Lawrence Babatunde Ogunsanya

Abstract:

The university has been in existence, in one form or another, for over a thousand years and has contributed in multiple ways to modern society. It is considered a center of culture, aesthetic direction, and moral forces shaping the civilized society. Universities also contribute in important ways to the economic health and physical landscape of neighborhoods and cities, serving as permanent fixtures of the urban economy and the built environment. Due to the size and location of university campuses, they put demands on the urban character, systems, and infrastructure of the neighboring communities. These demands or impacts have substantial implications for the built environment. It is important to understand the impacts university campuses have on their surrounding communities and urban environments because the destiny of the university is inextricably linked to the destiny of the adjacent neighborhoods. This paper identifies the diverse factors generated by universities in shaping the built environments of their local communities within different spatial contexts such as urban, rural, and township regions situated in South Africa.By applying a mixed methods approach in four university campuses within the province of KwaZulu-Natal in South Africa. Several data collection instruments were used, such as in-depth interviews, a survey, remote sensing, and onsite observations. The thematic findings revealed numerous factors which influence the morphology of neighbourhood built environments and the myriad of relationships the university has with its local community. This paper also reveals that the university campus is more than a precinct which accommodates buildings and academic endeavours, the role of the university in this century has changed dramatically from its traditional roots of being an elite enclave of academics to a more inclusive and engaged entity that is concerned about providing relevant holistic solutions to society’s current challenges in the built environment.

Keywords: university campus, built environment, architecture, neighborhood planning

Procedia PDF Downloads 124
2718 Challenge in Teaching Physics during the Pandemic: Another Way of Teaching and Learning

Authors: Edson Pierre, Gustavo de Jesus Lopez Nunez

Abstract:

The objective of this work is to analyze how physics can be taught remotely through the use of platforms and software to attract the attention of 2nd-year high school students at Colégio Cívico Militar Professor Carmelita Souza Dias and point out how remote teaching can be a teaching-learning strategy during the period of social distancing. Teaching physics has been a challenge for teachers and students, permeating common sense with the great difficulty of teaching and learning the subject. The challenge increased in 2020 and 2021 with the impact caused by the new coronavirus pandemic (Sars-Cov-2) and its variants that have affected the entire world. With these changes, a new teaching modality emerged: remote teaching. It brought new challenges and one of them was promoting distance research experiences, especially in physics teaching, since there are learning difficulties and it is often impossible for the student to relate the theory observed in class with the reality that surrounds them. Teaching physics in schools faces some difficulties, which makes it increasingly less attractive for young people to choose this profession. Bearing in mind that the study of physics is very important, as it puts students in front of concrete and real situations, situations that physical principles can respond to, helping to understand nature, nourishing and nurturing a taste for science. The use of new platforms and software, such as PhET Interactive Simulations from the University of Colorado at Boulder, is a virtual laboratory that has numerous simulations of scientific experiments, which serve to improve the understanding of the content taught practically, facilitating student learning and absorption of content, being a simple, practical and free simulation tool, attracts more attention from students, causing them to acquire greater knowledge about the subject studied, or even a quiz, bringing certain healthy competitiveness to students, generating knowledge and interest in the themes used. The present study takes the Theory of Social Representations as a theoretical reference, examining the content and process of constructing the representations of teachers, subjects of our investigation, on the evaluation of teaching and learning processes, through a methodology of qualitative. The result of this work has shown that remote teaching was really a very important strategy for the process of teaching and learning physics in the 2nd year of high school. It provided greater interaction between the teacher and the student. Therefore, the teacher also plays a fundamental role since technology is increasingly present in the educational environment, and he is the main protagonist of this process.

Keywords: physics teaching, technologies, remote learning, pandemic

Procedia PDF Downloads 66
2717 Hydrological Revival Possibilities for River Assi: A Tributary of the River Ganga in the Middle Ganga Basin

Authors: Anurag Mishra, Prabhat Kumar Singh, Anurag Ohri, Shishir Gaur

Abstract:

Streams and rivulets are crucial in maintaining river networks and their hydrology, influencing downstream ecosystems, and connecting different watersheds of urban and rural areas. The river Assi, an urban river, once a lifeline for the locals, has degraded over time. Evidence, such as the presence of paleochannels and patterns of water bodies and settlements, suggests that the river Assi was initially an alluvial stream or rivulet that originated near Rishi Durvasha Ashram near Prayagraj, flowing approximately 120 km before joining the river Ganga at Assi ghat in Varanasi. Presently, a major challenge is that nearly 90% of its original channel has been silted and disappeared, with only the last 8 km retaining some semblance of a river. It is possible that initially, the river Assi branched off from the river Ganga and functioned as a Yazoo stream. In this study, paleochannels of the river Assi were identified using Landsat 5 imageries and SRTM DEM. The study employed the Normalized Difference Vegetation Seasonality Index (NDVSI) and Principal Component Analysis (PCA) of the Normalized Difference Vegetation Index (NDVI) to detect these paleochannels. The average elevation of the sub-basin at the Durvasha Rishi Ashram of river Assi is 96 meters, while it reduces to 80 meters near its confluence with the Ganga in Varanasi, resulting in a 16-meter elevation drop along its course. There are 81 subbasins covering an area of 83,241 square kilometers. It is possible that due to the increased resistance in the flow of river Assi near urban areas of Varanasi, a new channel, Morwa, has originated at an elevation of 87 meters, meeting river Varuna at an elevation of 79 meters. The difference in elevation is 8 meters. Furthermore, the study explored the possibility of restoring the paleochannel of the river Assi and nearby ponds and water bodies to improve the river's base flow and overall hydrological conditions.

Keywords: River Assi, small river restoration, paleochannel identification, remote sensing, GIS

Procedia PDF Downloads 72