Search results for: biodegradable films
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1230

Search results for: biodegradable films

1140 Nanocellulose Reinforced Biocomposites Based on Wheat Plasticized Starch for Food Packaging

Authors: Belen Montero, Carmen Ramirez, Maite Rico, Rebeca Bouza, Irene Derungs

Abstract:

Starch is a promising polymer for producing biocomposite materials because it is renewable, completely biodegradable and easily available at a low cost. Thermoplastic starches (TPS) can be obtained after the disruption and plasticization of native starch with a plasticizer. In this work, the solvent casting method was used to obtain TPS films from wheat starch plasticized with glycerol and reinforced with nanocellulose (CNC). X-ray diffraction analysis was used to follow the evolution of the crystallinity. The native wheat starch granules have shown a profile corresponding to A-type crystal structures typical for cereal starches. When TPS films are analyzed a high amorphous halo centered on 19º is obtained, indicating the plasticization process is completed. SEM imaging was made in order to analyse the morphology. The image from the raw wheat starch granules shows a bimodal granule size distribution with some granules in large round disk-shape forms (A-type) and the others as smaller spherical particles (B-type). The image from the neat TPS surface shows a continuous surface. No starch aggregates or swollen granules can be seen so, the plasticization process is complete. In the surfaces of reinforced TPS films aggregates are seen as the CNC concentration in the matrix increases. The CNC influence on the mechanical properties of TPS films has been studied by dynamic mechanical analysis. A direct relation exists between the storage modulus values, E’, and the CNC content in reinforced TPS films: higher is the content of nanocellulose in the composite, higher is the value of E’. This reinforcement effect can be explained by the appearance of a strong and crystalline nanoparticle-TPS interphase. Thermal stability of films was analysed by TGA. It has not observed any influence on the behaviour related to the thermal degradation of films with the incorporation of the CNC. Finally, the resistance to the water absorption films was analysed following the standard UNE-EN ISO 1998:483. The percentage of water absorbed by the samples at each time was calculated. The addition of 5 wt % of CNC to the TPS matrix leads to a significant improvement in the moisture resistance of the starch based material decreasing their diffusivity. It has been associated to the formation of a nanocrystal network that prevents swelling of the starch and therefore water absorption and to the high crystallinity of cellulose compared to starch. As a conclusion, the wheat film reinforced with 5 wt % of cellulose nanocrystals seems to be a good alternative for short-life applications into the packaging industry, because of its greatest rigidity, thermal stability and moisture sorption resistance.

Keywords: biocomposites, nanocellulose, starch, wheat

Procedia PDF Downloads 187
1139 Contemporary Malayalam Independent Cinema: Limited Location Storytelling and It’s Prominence in the Pandemic Era.

Authors: Krishnanunni S.

Abstract:

The COVID-19 Pandemic has had an impact on every part of our lives, and the film industry is no exception. The restrictions the pandemic has brought made filmmakers confine their films to limited spaces. In India, Malayalam cinema was the first to incorporate the pandemic into its stories and started producing films within existing constraints. The purpose of this study was to study how the limited location storytelling concept influenced Malayalam independent and lockdown films. To answer this question, the three of the most popular films that we shot during the pandemic: The Great Indian Kitchen, Joji and Joyful Mystery, were dissected through text analysis and in-depth interviews were conducted with the makers of The Great Indian Kitchen and Joyful Mystery. The study revealed that the pandemic had had an influence on the way filmmakers visualize their stories and shoot them, especially while working within the restrictions of the pandemic. It was also observed that working with limited locations was the only way for filmmakers to make films during the times of pandemic. But rather than a hindrance to their work, filmmakers saw it as a new possibility to create in times of confinement. The findings of this study expanded the work of previous researchers about films shot in limited locations and the significant changes the pandemic has brought to the film industry.

Keywords: limited location storytelling, pandemic, pandemic restrictions, lockdown cinema, pandemic films, Malayalam cinema, OTT revolution, cinema, films

Procedia PDF Downloads 61
1138 Advanced Bio-Composite Materials Based on Biopolymer Blends and Cellulose Nanocrystals

Authors: Zineb Kassab, Nassima El Miri, A. Aboulkas, Abdellatif Barakat, Mounir El Achaby

Abstract:

Recently, more attention has been given to biopolymers with a focus on sustainable development and environmental preservation. Following this tendency, the attempt has been made to replace polymers derived from petroleum with superior biodegradable polymers (biopolymers). In this context, biopolymers are considered potential replacements for conventional plastic materials. However, some of their properties must be improved for better competitiveness, especially regarding their mechanical, thermal and barrier properties. Bio-nanocomposite technology using nanofillers has already been proven as an effective way to produce new materials with specific properties and high performances. With the emergence of nanostructured bio-composite materials, incorporating elongated rod-like cellulose nanocrystals (CNC) has attracted more and more attention in the field of nanotechnology. This study is aimed to develop bio-composite films of biopolymer matrices [Carboxymethyle cellulose (CMC), Starch (ST), Chitosan (CS) and Polyvinyl alcohol (PVA)] reinforced with cellulose nanocrystals (CNC) using the solution casting method. The CNC were extracted at a nanometric scale from lignocellulosic fibers via sulfuric acid hydrolysis and then characterized using X-ray diffraction (XRD), thermogravimetric analysis (TGA), confocal microscopy, infrared spectroscopy (IR), atomic force and transmission electron microscopies (AFM and TEM) techniques. The as extracted CNC were used as a reinforcing phase to produce a variety of bio-composite films at different CNC loading (0.5-10 wt %) with specific properties. The rheological properties of film-forming solutions (FFS) of bio-composites were studied, and their relation to the casting process was evaluated. Then, the structural, optical transparency, water vapor permeability, thermal stability and mechanical properties of all prepared bio-composite films were evaluated and studied in this report. The high performances of these bio-composite films are expected to have potential in biomaterials or packaging applications.

Keywords: biopolymer composites, cellulose nanocrystals, food packaging, lignocellulosic fibers

Procedia PDF Downloads 218
1137 Development and Utilization of Keratin-Fibrin-Gelatin Composite Films as Potential Material for Skin Tissue Engineering Application

Authors: Sivakumar Singaravelu, Giriprasath Ramanathan, M. D. Raja, Uma Tirichurapalli Sivagnanam

Abstract:

The goal of the present study was to develop and evaluate composite film for tissue engineering application. The keratin was extracted from bovine horn and used for preparation of keratin (HK), physiologically clotted fibrin (PCF) and gelatin (G) blend films in different stoichiometric ratios (1:1:1, 1:1:2 and 1:1:3) by using solvent casting method. The composite films (HK-PCF-G) were characterized physiochemically using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), Thermogravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). The mechanical properties of the composite films were analyzed. The results of tensile strength show that ultimate strength and elongation were 10.72 Mpa and 4.83 MPA respectively for 1:1:3 ratio combination. The SEM image showed a slight smooth surface for 1:1:3 ratio combination compared to other films. In order to impart antibacterial activities, the composite films were loaded with Mupirocin (MP) to act against infection. The composite films acted as a suitable carrier to protect and release the drug in a controlled manner. This developed composite film would be a suitable alternative material for tissue engineering application.

Keywords: bovine horn, keratin, fibrin, gelatin, tensile strength

Procedia PDF Downloads 423
1136 Structural and Optoelectronic Properties of Monovalent Cation Doping PbS Thin Films

Authors: Melissa Chavez Portillo, Hector Juarez Santiesteban, Mauricio Pacio Castillo, Oscar Portillo Moreno

Abstract:

Nanocrystalline Li-doped PbS thin films have been deposited by chemical bath deposition technique. The goal of this work is to study the modification of the optoelectronic and structural properties of Lithium incorporation. The increase of Li doping in PbS thin films leads to an increase of band gap in the range of 1.4-2.3, consequently, quantum size effect becomes pronounced in the Li-doped PbS films, which lead to a significant enhancement in the optical band gap. Doping shows influence in the film growth and results in a reduction of crystallite size from 30 to 14 nm. The refractive index was calculated and a relationship with dielectric constant was investigated. The dc conductivities of Li-doped and undoped samples were measured in the temperature range 290-340K, the conductivity increase with increase of Lithium content in the PbS films.

Keywords: doping, quantum confinement, optical band gap, PbS

Procedia PDF Downloads 356
1135 Polymer-Ceramic Composite Film Fabrication and Characterization for Harsh Environment Applications

Authors: Santiranjan Shannigrahi, Mohit Sharma, Ivan Tan Chee Kiang, Yong Anna Marie

Abstract:

Polymer-ceramics composites are gaining importance due to their high specific strength, corrosion resistance, and high mechanical properties, as well as low cost. As a result, polymer composites are suitable for various industrial applications, like automobiles, aerospace, and biomedical areas. The present work comprises the development of polymer-ceramic composite films and is tested for the harsh environment including weatherability and UV barrier property. The polymer composite films are kept in weather chamber for a fixed period of time followed by tested for their physical, mechanical and chemical properties. The composite films are fabricated using compounding followed by hot pressing. UV-visible spectroscopy results reveal that the pure polymer polyethylene (PE) films are transparent in the visible range and do not absorb UV. However, polymer ceramic composite films start absorbing UV completely even at very low filler loading amount of 5 wt.%. The changes in tensile properties of the various composite films before and after UV illuminations for 40 hrs at 60 degC are analyzed. The tensile strength of neat PE film has been observed 8% reduction, whereas the remarkable increase in tensile strength has been observed (18% improvement for 10 wt. % filled composites films). The UV exposure leads to strengthen the crosslinking among PE polymer chains in the filled composite films, which contributes towards the incremented tensile strength properties.

Keywords: polymer ceramic composite, processing, harsh environment, mechanical properties

Procedia PDF Downloads 361
1134 Influence of Coenzyme as a Corrosion Barrier for Biodegradable Magnesium

Authors: Minjung Park, Jimin Park, Youngwoon Kim, Hyungseop Han, Myoungryul Ok, Hojeong Jeon, Hyunkwang Seok, Yuchan Kim

Abstract:

Magnesium is an essential element in human body and has unique characteristics such as bioabsorbable and biodegradable properties. Therefore, there has been much attention on studies on the implants based on magnesium to avoid subsequent surgery. However, high amount of hydrogen gas is generated by relatively severe corrosion of magnesium especially in aqueous condition with chloride ions. And it contributes to the causes of swelling of skin and causes consequent inflammation of soft tissue where is directly in contact with implants. Therefore, there is still concern about the safety of the using biodegradable magnesium alloys, which is limited to various applications. In this study, we analyzed the influence of coenzyme on corrosion behavior of magnesium. The analysis of corrosion rate was held by using Hanks’ balanced salt solution (HBSS) as a body stimulated fluid and in condition of 37°C. Thus, with deferring the concentration of the coenzyme used in this study, corrosion rates from 0.0654ml/ cm² to 0.0438ml/cm² were observed in immersion tests. Also, comparable results were obtained in electrochemical tests. Results showed that hydrogen gas produced from corrosion of magnesium can be controlled.

Keywords: biodegradable magnesium, biomaterials, coenzyme, corrosion

Procedia PDF Downloads 391
1133 Impact Factor of Annealing on Electrical Properties of Zinc Selenide (ZnSe) Thin Films

Authors: Esubalew Yehualaw Melaku, Tizazu Abeza

Abstract:

ZnSe thin films in an aqueous solution of zinc acetate and hydrazine hydrate (HH) using the non-toxic complexing agent EDTA along with the films were annealed at 200, 300, and 400oC. This research aimed to investigate the effect of annealing on the structural, optical, and electrical properties of the films. X-ray diffraction (XRD) analysis was used to study the structure and crystallite size of the ZnSe thin film. The ZnSe thin films are annealed in an oven at various temperatures which are characterized by structural and optical properties. An increase in annealing temperature distorted the nanocrystillinity and made the ZnSe thin films amorphous. The variation of resistivity indicates the semiconducting nature of the thin film. The electrical resistivity of the films decreases with increasing annealing temperature. In this study, the Band gap of ZnSe decreases from 2.8eV to 2.65eV with the increase in temperature and decreases for as-deposited to 2.5eV. As a result of this research, ZnSe is used for certain applications; it has been widely utilized in various optoelectronic devices such as thin film solar cells, green-blue light emitting diodes, lasers, photo-luminescent, and electro-luminescent devices.

Keywords: chemical bath deposition, ZnSe thin film, band gap, solar cells

Procedia PDF Downloads 95
1132 Comparison of Tribological Properties of TiO₂, ZrO₂ and TiO₂–ZrO₂ Composite Films Prepared by Sol–Gel Method

Authors: O. Çomaklı, M. Yazıcı, T. Yetim, A. F. Yetim, A. Çelik

Abstract:

In this study, TiO₂, ZrO₂, and TiO₂–ZrO₂ composite films were coated on Cp-Ti substrates by sol-gel method. Structures of uncoated and coated samples were investigated by X-ray diffraction and SEM. XRD data identified anatase phase in TiO₂ coated samples and tetragonal zirconia phase in ZrO₂ coated samples while both of anatase and tetragonal zirconia phases in TiO₂–ZrO₂ composite films. The mechanical and wear properties of samples were investigated using micro hardness, pin-on-disk tribotester, and 3D profilometer. The best wear resistance was obtained from TiO₂–ZrO₂ composite films. This can be attributed to their high surface hardness, low surface roughness and high thickness of the film.

Keywords: sol-gel, TiO₂, ZrO₂, TiO₂–ZrO₂, composite films, wear

Procedia PDF Downloads 240
1131 Influence of Molecular and Supramolecular Structure on Thermally Stimulated Short-Circuit Currents in Polyvinylidene Fluoride Films

Authors: Temnov D., Volgina E., Gerasimov D.

Abstract:

Relaxation processes in polyvinylidene fluoride (PVDF) films were studied by the method of thermally stimulated fractional polarization currents (TSTF). The films were obtained by extrusion of a polymer melt followed by isometric annealing. PVDF granules of the Kynar-720 brand (Atofina Chemicals, USA) with a molecular weight of Mw=190,000 g•mol-1 were used for the manufacture of films. The annealing temperature was varied in the range from 120 °C to 170 °C in increments of 10 °C. The dependences of the degree of crystallinity of films (χ) and the intensity of thermally stimulated depolarization currents on the annealing temperature (Toc) are investigated. The TSTF spectra were obtained at the TSC II facility (Setaram, France). Measurements were carried out in a helium atmosphere, and the values of currents were determined by a Keithley electrometer. The annealed PVDF films were polarized at an electric field strength of 100 V/mm at a temperature of 31°C, after which they were cooled to 26°C, at which they were kept for 1 minute. During depolarization, the external field was removed, and the short-circuit sample was cooled to 0°C. The thermally stimulated short-circuit current was recorded during linear heating. Relaxation processes in PVDF films were studied in the temperature range from 0 – 70 °C. It is shown that the intensity curve of the peaks of TST FP has a course that is the reverse of the dependence of the degree of crystallinity on the annealing temperature. This allows us to conclude that the relaxation processes occurring in PVDF in the 35°C region are associated with the amorphous part of the structure of PVDF films between the layers of the spherulite crystalline phase.

Keywords: molecular and supramolecular structure, thermally stimulated currents, polyvinylidene fluoride films, relaxation processes

Procedia PDF Downloads 29
1130 Synthesis and Characterization of Biodegradable Elastomeric Polyester Amide for Tissue Engineering Applications

Authors: Abdulrahman T. Essa, Ahmed Aied, Omar Hamid, Felicity R. A. J. Rose, Kevin M. Shakesheff

Abstract:

Biodegradable poly(ester amide)s are promising polymers for biomedical applications such as drug delivery and tissue engineering because of their optimized chemical and physical properties. In this study, we developed a biodegradable polyester amide elastomer poly(serinol sebacate) (PSS) composed of crosslinked networks based on serinol and sebacic acid. The synthesized polymers were characterized to evaluate their chemical structures, mechanical properties, degradation behaviors and in vitro cytocompatibility. Analysis of proton nuclear magnetic resonance and Fourier transform infrared spectroscopy revealed the structure of the polymer. The PSS exhibit excellent solubility in a variety of solvents such as methanol, dimethyl sulfoxide and dimethylformamide. More importantly, the mechanical properties of PSS could be tuned by changing the curing conditions. In addition, the 3T3 fibroblast cells cultured on the PSS demonstrated good cell attachment and high viability.

Keywords: biodegradable, biomaterial, elastomer, mechanical properties, poly(serinol sebacate)

Procedia PDF Downloads 323
1129 Preparation and Characterization of Transparent and Conductive SnO2 Thin Films by Spray Pyrolysis

Authors: V. Jelev, P. Petkov, P. Shindov

Abstract:

Thin films of undoped and As-doped tin oxide (As:SnO2) were obtained on silicon and glass substrates at 450°- 480°C by spray pyrolysis technique. Tin chloride (SnCl4.5H2O) and As oxide (3As2O5.5H2O) were used as a source for Sn and As respectively. The As2O5 concentration was varied from 0 to 10 mol% in the starting water-alcoholic solution. The characterization of the films was provided with XRD, CEM, AFM and UV-VIS spectroscopy. The influence of the synthesis parameters (the temperature of the substrate, solution concentration, gas and solution flow rates, deposition time, nozzle-to substrate distance) on the optical, electrical and structural properties of the films was investigated. The substrate temperature influences on the surface topography, structure and resistivity of the films. Films grown at low temperatures (<300°C) are amorphous whereas this deposited at higher temperatures have certain degree of polycrystallinity. Thin oxide films deposited at 450°C are generally polycrystalline with tetragonal rutile structure. The resistivity decreases with dopant concentration. The minimum resistivity was achieved at dopant concentration about 2.5 mol% As2O5 in the solution. The transmittance greater than 80% and resistivity smaller than 7.5.10-4Ω.cm were achieved in the films deposited at 480°C. The As doped films (SnO2: As) deposited on silicon substrates was used for preparation of a large area position sensitive photodetector (PSD), acting on the base of a lateral photovoltaic effect. The position characteristic of PSD is symmetric to the zero and linear in the 80% of the active area. The SnO2 films are extremely stable under typical environmental conditions and extremely resistant to chemical etching.

Keywords: metal oxide film, SnO2 film, position sensitive photodetectors (PSD), lateral photovoltaic effect

Procedia PDF Downloads 276
1128 Trash Dash: An Educational Android Game Application for Proper Waste Segregation

Authors: Marylene S. Eder, Dorothy M. Jao, Paolo Marc Nicolas S. Laspiñas, Pukilan A. Malim, Sarah Jean D. Raterta

Abstract:

Trash Dash is an android game application developed to serve as an alternative tool to practice proper waste segregation for children ages 3 years old and above. The researchers designed the application using Unity 3D and developed the text file that served as the database of the game application. An observation of a pre-school teacher shows that children know how to throw their garbage but they do not know yet how to segregate wastes. After launching the mobile application to K-2 pupils 4 – 5 years of age, the researchers have noticed that children within this age are active and motivated to learn the difference between biodegradable and non-biodegradable. Based on the result of usability test conducted, it was concluded that the game is easy to use and children will most likely use this application frequently. Furthermore, the children may need assistance from their parents and teachers when playing the game. An actual testing of the application has been conducted to different devices as well as functionality test by Thwack Application and it can be concluded that the mobile application can be launched and installed on a device with a minimum API requirement of Gingerbread (2.3.1).

Keywords: waste segregation, android application, biodegradable, non-biodegradable

Procedia PDF Downloads 411
1127 Effect of O2 Pressure of Fe-Doped TiO2 Nanostructure on Morphology Properties for Gas Sensing

Authors: Samar Y. Al-Dabagh, Adawiya J. Haider, Mirvat D. Majed

Abstract:

Pure nanostructure TiO2 and thin films doped with transition metal Fe were prepared by pulsed laser deposition (PLD) on Si (111) substrate. The thin films structures were determined by X-ray diffraction (XRD). The morphology properties were determined from atomic force microscopy (AFM), which shows that the roughness increases when TiO2 is doped with Fe. Results show TiO2 doped with Fe metal thin films deposited on Si (111) substrate has maximum sensitivity to ethanol vapor at 10 mbar oxygen pressure than at 0.01 and 0.1 mbar with optimum operation temperature of 250°C.

Keywords: pulsed laser deposition (PLD), TiO2 doped thin films, nanostructure, gas sensor

Procedia PDF Downloads 356
1126 Development of Biodegradable Wound Healing Patch of Curcumin

Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari

Abstract:

The objective of the present research work is to develop a topical biodegradable dermal patch based formulation to aid accelerated wound healing. It is always better for patient compliance to be able to reduce the frequency of dressings with improved drug delivery and overall therapeutic efficacy. In present study optimized formulation using biodegradable components was obtained evaluating polymers and excipients (HPMC K4M, Ethylcellulose, Povidone, Polyethylene glycol and Gelatin) to impart significant folding endurance, elasticity, and strength. Molten gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in acidic medium was mixed with stirring to Gelatin mixture. With continued stirring to the mixture Curcumin was added with the aid of DCM and Methanol in an optimized ratio of 60:40 to get homogenous dispersion. Polymers were dispersed with stirring in the final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23°C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2°C) and at room temperature (23 ± 2°C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2°C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as tested in vivo with correlation factor R2>0.9. In in vivo study administration of one dose in equivalent quantity per 2 days was applied topically. The data demonstrated a significant improvement with percentage wound contraction in contrast to control and plain drug respectively in given period. The film based formulation developed shows promising results in terms of stability and in vivo performance.

Keywords: wound healing, biodegradable, polymers, patch

Procedia PDF Downloads 451
1125 Novel Wound Healing Biodegradable Patch of Bioactive

Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari

Abstract:

The present research was aimed to develop a biodegradable dermal patch formulation for wound healing in a novel, sustained and systematic manner. The goal is to reduce the frequency of dressings with improved drug delivery and thereby enhance therapeutic performance. In present study optimized formulation was designed using component polymers and excipients (e.g. Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin) to impart significant folding endurance, elasticity and strength. Gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in suitable medium was mixed with stirring to gelatin mixture. With continued stirring to the mixture Curcumin was added in optimized ratio to get homogeneous dispersion. Polymers were dispersed with stirring in final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2C) and at room temperature (23 ± 2C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12 h and matched the biodegradation rate as drug release with correlation factor R2 > 0.9. The film based formulation developed shows promising results in terms of stability and release profiles.

Keywords: biodegradable, patch, bioactive, polymer

Procedia PDF Downloads 489
1124 Strategies to Synthesize Ambient Stable Ultrathin Ag Film Supported on Oxide Substrate

Authors: Allamula Ashok, Peela Lasya, Daljin Jacob, P. Muhammed Razi, Satyesh Kumar Yadav

Abstract:

We report zinc (Zn) as a seed layer material and a need for a specific disposition sequence to grow ultrathin silver (Ag) films on quartz (SiO₂). Ag films of thickness 4, 6, 8 and 10 nm were deposited by DC magnetron sputtering without and with Zn seed layer thickness of 1, 2 and 4 nm. The effect of Zn seed layer thickness and its annealing on the surface morphology, sheet resistance, and stability of ultrathin Ag films is investigated. We show that by increasing Zn seed layer thickness from 1 to 2 nm, there is a 5-order reduction in sheet resistance of 6 nm Ag films. We find that annealing of the seed layer is crucial to achieving stability of ultrathin Ag films. 6 nm Ag film with 2 nm Zn is unstable to 100 oC annealing, while the 6 nm Ag film with annealed 2 nm Zn seed layer is stable. 2 nm Zn seeded 8 nm Ag film maintained a constant sheet resistance of 7 Ω/□ for all 6 months of exposure to ambient conditions. Among the ultrathin film grown, 8nm Ag film with 2nm Zn seed layer had the best figure of merit with sheet resistance of 7 Ω/□, mean absolute surface roughness (Ra) ~1 nm, and optical transparency of 61 %. Such stable exposed ultrathin Ag films can find applications as catalysts, sensors, and transparent and conductive electrodes for solar cells, LEDs and plasmonic devices.

Keywords: ultrathin Ag films, magnetron sputtering, thermal stability, seed layer, exposed silver, zinc.

Procedia PDF Downloads 4
1123 Effect of Boric Acid Content on the Structural and Optical Properties of In2O3 Films Prepared by Spray Pyrolysis Technique

Authors: Mustafa Öztas, Metin Bedir, Yahya Özdemir

Abstract:

Boron doped of In2O3 films were prepared by spray pyrolysis technique at 350 °C substrate temperature, which is a low cost and large area technique to be well-suited for the manufacture of solar cells, using boric acid (H3BO3) as dopant source, and their properties were investigated as a function of doping concentration. X-ray analysis showed that the films were polycrystalline fitting well with a hexagonal structure and have preferred orientation in (220) direction. The changes observed in the energy band gap and structural properties of the films related to the boric acid concentration are discussed in detail.

Keywords: spray pyrolysis, In2O3, boron, optical properties, boric acid

Procedia PDF Downloads 565
1122 Discussion on Microstructural Changes Caused by Deposition Temperature of LZO Doped Mg Piezoelectric Films

Authors: Cheng-Ying Li, Sheng-Yuan Chu

Abstract:

This article deposited LZO-doped Mg piezoelectric thin films via RF sputtering and observed microstructure and electrical characteristics by varying the deposition temperature. The XRD analysis results indicate that LZO-doped Mg exhibits excellent (002) orientation, and there is no presence of ZnO(100), Influenced by the temperature's effect on the lattice constant, the (002) peak intensity increases with rising temperature. Finally, we conducted deformation intensity analysis on the films, revealing an over fourfold increase in deformation at a processing temperature of 500°C.

Keywords: RF sputtering, piezoelectricity, ZnO, Mg

Procedia PDF Downloads 10
1121 PLA Plastic as Biodegradable Material for 3D Printers

Authors: Juraj Beniak, Ľubomír Šooš, Peter Križan, Miloš Matúš

Abstract:

Within Rapid Prototyping technologies are used many types of materials. Many of them are recyclable but there are still as plastic like, so practically they do not degrade in the landfill. Polylactic acid (PLA) is one of the special plastic materials which are biodegradable and also available for 3D printing within Fused Deposition Modelling (FDM) technology. The question is, if the mechanical properties of produced models are comparable to similar technical plastic materials which are usual for prototype production. Presented paper shows the experiments results for tensile strength measurements for specimens prepared with different 3D printer settings and model orientation. Paper contains also the comparison of tensile strength values with values measured on specimens produced by conventional technologies as injection moulding.

Keywords: 3D printing, biodegradable plastic, fused deposition modeling, PLA plastic, rapid prototyping

Procedia PDF Downloads 391
1120 Optical Characterization and Surface Morphology of SnO2 Thin Films Prepared by Spin Coating Technique

Authors: J. O. Ajayi, S. S. Oluyamo, D. B. Agunbiade

Abstract:

In this work, tin oxide thin films (SnO2) were prepared using the spin coating technique. The effects of precursor concentration on the thin film properties were investigated. Tin oxide was synthesized from anhydrous Tin (II) Chloride (SnCl2) dispersed in Methanol and Acetic acid. The metallic oxide (SnO2) films deposited were characterized using the UV Spectrophotometer and the Scanning Electron Microscope (SEM). From the absorption spectra, absorption increases with decrease in precursor concentration. Absorbance in the VIS region is lower than 0 % at higher concentration. The optical transmission spectrum shows that transmission increases as the concentration of precursor decreases and the maximum transmission in visible region is about 90% for films prepared with 0.2 M. Also, there is increase in the reflectance of thin films as concentration of precursor increases. The films have high transparency (more than 85%) and low reflectance (less than 40%) in the VIS region. Investigation showed that the direct band gap value increased from 3.79eV, to 3.82eV as the precursor concentration decreased from 0.6 M to 0.2 M. Average direct bandgap energy for all the tin oxide films was estimated to be 3.80eV. The effect of precursor concentration was directly observed in crystal outgrowth and surface particle densification. They were found to increase proportionately with higher concentration.

Keywords: anhydrous TIN (II) chloride, densification, NIS- VIS region, spin coating technique

Procedia PDF Downloads 243
1119 Nanostructure Antireflective Sol-Gel Silica Coatings for Solar Collectors

Authors: Najme Lari, Shahrokh Ahangarani, Ali Shanaghi

Abstract:

Sol-gel technology is a promising manufacturing method to produce anti reflective silica thin films for solar energy applications. So to improve the properties of the films, controlling parameter of the sol - gel method is very important. In this study, soaking treatment effect on optical properties of silica anti reflective thin films was investigated. UV-Visible Spectroscopy, Fourier-Transformed Infrared Spectrophotometer and Field Emission Scanning Electron Microscopy was used for the characterization of silica thin films. Results showed that all nanoporous silica layers cause to considerable reduction of light reflections compared with uncoated glasses. With single layer deposition, the amount of reduction depends on the dipping time of coating and has an optimal time. Also, it was found that solar transmittance increased from 91.5% for the bare slide up to 97.5% for the best made sample corresponding to two deposition cycles.

Keywords: sol–gel, silica thin films, anti reflective coatings, optical properties, soaking treatment

Procedia PDF Downloads 431
1118 Effect of Addition of Surfactant to the Surface Hydrophilicity and Photocatalytic Activity of Immobilized Nano TiO2 Thin Films

Authors: Eden G. Mariquit, Winarto Kurniawan, Masahiro Miyauchi, Hirofumi Hinode

Abstract:

This research studied the effect of adding surfactant to the titanium dioxide (TiO2) sol-gel solution that was used to immobilize TiO2 on glass substrates by dip coating technique using TiO2 sol-gel solution mixed with different types of surfactants. After dipping into the TiO2 sol, the films were calcined and produced pure anatase crystal phase. The thickness of the thin film was varied by repeating the dip and calcine cycle. The prepared films were characterized using FE-SEM, TG-DTA, and XRD, and its photocatalytic performances were tested on degradation of an organic dye, methylene blue. Aside from its phocatalytic performance, the photo-induced hydrophilicity of thin TiO2 films surface was also studied. Characterization results showed that the addition of surfactant gave rise to characteristic patterns on the surface of the TiO2 thin film which also affects the photocatalytic activity. The addition of CTAB to the TiO2 dipping solution had a negative effect because the calcination temperature was not high enough to burn all the surfactants off. As for the surface wettability, the addition of surfactant also affected the induced surface hydrophilicity of the TiO2 films when irradiated under UV light.

Keywords: photocatalysis, surface hydrophilicity, TiO2 thin films, surfactant

Procedia PDF Downloads 391
1117 Lead Free BNT-BKT-BMgT-CoFe₂O₄ Magnetoelectric Nanoparticulate Composite Thin Films Prepared by Chemical Solution Deposition Method

Authors: A. K. Paul, Vinod Kumar

Abstract:

Lead free magnetoelectric (ME) nanoparticulate (1−x) BNT-BKT-BMgT−x CFO (x = 0, 0.1, 0.2, 0.3) composite films were synthesized using chemical solution deposition method. The X-ray diffraction and transmission electron microscope (TEM) reveal that CFO nanoparticles were well distributed in the matrix of BNT-BKT-BMgT. The nanocomposite films exhibit both good magnetic and ferroelectric properties at room temperature (R-T). It is concluded that the modulation in compositions of piezomagnetic/piezoelectric components plays a fundamental role in the magnetoelectric coupling in these nanoparticulate composite films. These ME composites provide a great opportunity as potential lead-free systems for ME devices.

Keywords: lead free multiferroic, nanocomposite, ferroelectric, ferromagnetic and magneto-electric properties

Procedia PDF Downloads 105
1116 Development of Potato Starch Based Active Packaging Films Loaded with Antioxidants and Its Effect on Shelf Life of Beef

Authors: Bilal Ahmad Ashwar, Inam u nisa, Asima Shah, Adil Gani, Farooq Ahmad Masoodi

Abstract:

The effects of 5% BHT and green tea extracts (GTE) on the physical, barrier, mechanical, thermal and antioxidant properties of potato starch films were investigated. Results showed both BHT and GTE significantly lowered solubility of films. Addition of BHT significantly decreased water vapour transmission rate. Both BHT and GTE promoted significant increase in the elastic modulus but a decrease in % EAB, however BHT was more effective in increasing elastic modulus. Increase in glass transition temperature (Tg) and enthalpy of transition (ΔH) of films was observed with the incorporation of GTE and BHT. Scanning electron microscopy (SEM) revealed smooth surface of the films. The DPPH radical scavenging ability of both BHT and GTE films were stronger in fatty food stimulant (95% ethanol. The GTE and BHT films were individually applied to fresh beef samples and were stored at 4 0C and room temperature for 10 days. Metmyoglobin formation and lipid oxidation (TBARS) were monitored periodically. The addition of GTE extracts and BHT resulted in decreases in metmyoglobin and TBARS values. We conclude that extracts of GTE and BHT have potential as preservatives for fresh beef.

Keywords: starch film, WVTR, tensile properties, SEM, thermal analysis, DPPH scavenging activity, TBARS, metmyoglobin

Procedia PDF Downloads 566
1115 The Effect of the Calcination Temperature and SiO2 Addition on the Physical Properties’ of Sol Gel TiO2 Thin Films

Authors: Nour El Houda Arabi, Aicha Iratni, Talaighil Razika, Bruno Capoen, Mohamed Bouazaoui

Abstract:

In this paper, we report the effect of the calcination temperature and SiO2 addition on structural, optical and hydrophilicity of TiO2 films deposited by deep-coating sol-gel process. XRD investigation of the structural TiO2 films with increasing the temperature calcination, reveals that rutile phase will appear for the high temperature (>1000°C). However, the addition of SiO2 relate the densification of TiO2 films. Ellipsometric and UV-visible measure show that the refractive index grow with increasing temperature, against the film thickness decreases. On the other hand, the addition of SiO2 decreases the refractive index and increases the TiO2 film thickness. Finally, the hydrophilicity is assisted by contact angle measurement. It is found that addition of 50% of SiO2 to TiO2 is most effective for reducing the contact angle of water.

Keywords: physical properties, sol, gel, TiO2/SiO2 composite films

Procedia PDF Downloads 466
1114 Photoelectrochemical Study of Nanostructured Acropora-Like Lead Sulfide Thin Films

Authors: S. Kaci, A. Keffous, O. Fellahi, I. Bozetine, H. Menari

Abstract:

In this paper, we report the fabrication and characterization of Acropora-like lead sulfide nanostructured thin films using chemical bath deposition. The method has the strong points of low temperature and no surfactant, comparing with the other method. The preferential growth directions of the broad branches were indexed as along (200) directions. The photoelectrochemical property of the as-deposited thin films was also investigated. Photoelectrochemical characterization was performed in the aim to determine the flat band potential (Vfb) and to confirm the n-type character of PbS, elucidated from the J(V) curves both in the dark and under illumination. The apparition of the photocurrent Jph started at a potential VON of −0.41 V/ECS and increased towards the anodic direction, which is typical of n-type behavior. The near infrared absorbance spectrum displayed an absorbance edge at 1959 nm, showing blue shift comparing to bulk PbS (3020 nm). These nanostructured lead sulfide thin films may have potential application as dispersed photoelectrode capable of generating H2 under visible light.

Keywords: lead sulfide, nanostructures, photo-conversion, thin films

Procedia PDF Downloads 333
1113 SO2 Sensing Performance of Nanostructured CdSnO3 Thin Films Prepared by Spray Pyrolysis Technique

Authors: R. H. Bari

Abstract:

The nanostructured thin films of CdSnO3 are sensitive to change in their environment. CdSnO3 is successfully used as gas sensor due to the dependence of the electrical conductivity on the ambient gas composition. Nanostructured CdSnO3 thin films of different substrate temperature (300 0C, 350 0C, 400 0C and 450 0C) were deposited onto heated glass substrate by simple spray pyrolysis (SP) technique. Sensing elements of nanostructured CdSnO3 were annealed at 500 0C for 1 hrs. Characterization includes a different analytical technique such as, X-ray diffractogram (XRD), energy dispersive X-ray analysis (EDAX), and Field emission scanning electron microscope (FE-SEM). The average grain size observed from XRD and FF-SEM was found to be less than 18.36 and 23 nm respectively. The films sprayed at substrate temperature for 400 0C was observed to be most sensitive (S = 530) to SO2 for 500 ppm at 300 0C. The response and recovery time is 4 sec, 8 sec respectively.

Keywords: nanostructured CdSnO3, spray pyrolysis, SO2 gas sensing, quick response

Procedia PDF Downloads 263
1112 Sustainable Antimicrobial Biopolymeric Food & Biomedical Film Engineering Using Bioactive AMP-Ag+ Formulations

Authors: Eduardo Lanzagorta Garcia, Chaitra Venkatesh, Romina Pezzoli, Laura Gabriela Rodriguez Barroso, Declan Devine, Margaret E. Brennan Fournet

Abstract:

New antimicrobial interventions are urgently required to combat rising global health and medical infection challenges. Here, an innovative antimicrobial technology, providing price competitive alternatives to antibiotics and readily integratable with currently technological systems is presented. Two cutting edge antimicrobial materials, antimicrobial peptides (AMPs) and uncompromised sustained Ag+ action from triangular silver nanoplates (TSNPs) reservoirs, are merged for versatile effective antimicrobial action where current approaches fail. Antimicrobial peptides (AMPs) exist widely in nature and have recently been demonstrated for broad spectrum of activity against bacteria, viruses, and fungi. TSNP’s are highly discrete, homogenous and readily functionisable Ag+ nanoreseviors that have a proven amenability for operation within in a wide range of bio-based settings. In a design for advanced antimicrobial sustainable plastics, antimicrobial TSNPs are formulated for processing within biodegradable biopolymers. Histone H5 AMP was selected for its reported strong antimicrobial action and functionalized with the TSNP (AMP-TSNP) in a similar fashion to previously reported TSNP biofunctionalisation methods. A synergy between the propensity of biopolymers for degradation and Ag+ release combined with AMP activity provides a novel mechanism for the sustained antimicrobial action of biopolymeric thin films. Nanoplates are transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. Extrusion is used in combination with calendering rolls to create thin polymerc film where the nanoplates are embedded onto the surface. The resultant antibacterial functional films are suitable to be adapted for food packing and biomedical applications. TSNP synthesis were synthesized by adapting a previously reported seed mediated approach. TSNP synthesis was scaled up for litre scale batch production and subsequently concentrated to 43 ppm using thermally controlled H2O removal. Nanoplates were transferred from aqueous phase to an organic solvent in order to facilitate integration within hydrophobic polymers. This was acomplised by functionalizing the TSNP with thiol terminated polyethylene glycol and using centrifugal force to transfer them to chloroform. Polycaprolactone (PCL) and Polylactic acid (PLA) were individually processed through extrusion, TSNP and AMP-TSNP solutions were sprayed onto the polymer immediately after exiting the dye. Calendering rolls were used to disperse and incorporate TSNP and TSNP-AMP onto the surface of the extruded films. Observation of the characteristic blue colour confirms the integrity of the TSNP within the films. Antimicrobial tests were performed by incubating Gram + and Gram – strains with treated and non-treated films, to evaluate if bacterial growth was reduced due to the presence of the TSNP. The resulting films successfully incorporated TSNP and AMP-TSNP. Reduced bacterial growth was observed for both Gram + and Gram – strains for both TSNP and AMP-TSNP compared with untreated films indicating antimicrobial action. The largest growth reduction was observed for AMP-TSNP treated films demonstrating the additional antimicrobial activity due to the presence of the AMPs. The potential of this technology to impede bacterial activity in food industry and medical surfaces will forge new confidence in the battle against antibiotic resistant bacteria, serving to greatly inhibit infections and facilitate patient recovery.

Keywords: antimicrobial, biodegradable, peptide, polymer, nanoparticle

Procedia PDF Downloads 92
1111 Study of the Morphological and Optical Properties of Nanometric NiO

Authors: Nassima Hamzaoui, Mostefa Ghamnia

Abstract:

Nanoscale thin films of pure and Mn-doped Nickel oxide (NiO) were prepared by dissolving nickel chloride hexahydrate (NiCl2, 6H2O) and manganese chloride tetrahydrate (MnCl2,4H2O) under experimental conditions. The resulting solution was stirred at room temperature for 30 OC minutes in order to obtain homogeneity. The solution was sprayed onto heated glass substrates. The films obtained were characterized by X-ray diffraction to verify crystallinity. Atomic force microscopy (AFM) reveals surface topographical structure. UV-visible spectroscopy shows good transparency of the NiO layers.

Keywords: films, NiO, AFM, X-ray diffraction

Procedia PDF Downloads 32