Search results for: Naveen Verma
93 Design an Algorithm for Software Development in CBSE Envrionment Using Feed Forward Neural Network
Authors: Amit Verma, Pardeep Kaur
Abstract:
In software development organizations, Component based Software engineering (CBSE) is emerging paradigm for software development and gained wide acceptance as it often results in increase quality of software product within development time and budget. In component reusability, main challenges are the right component identification from large repositories at right time. The major objective of this work is to provide efficient algorithm for storage and effective retrieval of components using neural network and parameters based on user choice through clustering. This research paper aims to propose an algorithm that provides error free and automatic process (for retrieval of the components) while reuse of the component. In this algorithm, keywords (or components) are extracted from software document, after by applying k mean clustering algorithm. Then weights assigned to those keywords based on their frequency and after assigning weights, ANN predicts whether correct weight is assigned to keywords (or components) or not, otherwise it back propagates in to initial step (re-assign the weights). In last, store those all keywords into repositories for effective retrieval. Proposed algorithm is very effective in the error correction and detection with user base choice while choice of component for reusability for efficient retrieval is there.Keywords: component based development, clustering, back propagation algorithm, keyword based retrieval
Procedia PDF Downloads 37892 Characterization of Mg/Sc System for X-Ray Spectroscopy in the Water Window Range
Authors: Hina Verma, Karine Le Guen, Mohammed H. Modi, Rajnish Dhawan, Philippe Jonnard
Abstract:
Periodic multilayer mirrors have potential application as optical components in X-ray microscopy, particularly working in the water window region. The water window range, located between the absorption edges of carbon (285 eV) and oxygen (530eV), along with the presence of nitrogen K absorption edge (395 eV), makes it a powerful method for imaging biological samples due to the natural optical contrast between water and carbon. We characterized bilayer, trilayer, quadrilayer, and multilayer systems of Mg/Sc with ZrC thin layers introduced as a barrier layer and capping layer prepared by ion beam sputtering. The introduction of ZrC as a barrier layer is expected to improve the structure of the Mg/Sc system. The ZrC capping layer also prevents the stack from oxidation. The structural analysis of the Mg/Sc systems was carried out by using grazing incidence X-ray reflectivity (GIXRR) to obtain non-destructively a first description of the structural parameters, thickness, roughness, and density of the layers. Resonant soft X-ray reflectivity measurements in the vicinity of Sc L-absorption edge were performed to investigate and quantify the atomic distribution of deposited layers. Near absorption edge, the atomic scattering factor of an element changes sharply depending on its chemical environment inside the structure.Keywords: buried interfaces, resonant soft X-ray reflectivity, X-ray optics, X-ray reflectivity
Procedia PDF Downloads 17791 Investigation of User Position Accuracy for Stand-Alone and Hybrid Modes of the Indian Navigation with Indian Constellation Satellite System
Authors: Naveen Kumar Perumalla, Devadas Kuna, Mohammed Akhter Ali
Abstract:
Satellite Navigation System such as the United States Global Positioning System (GPS) plays a significant role in determining the user position. Similar to that of GPS, Indian Regional Navigation Satellite System (IRNSS) is a Satellite Navigation System indigenously developed by Indian Space Research Organization (ISRO), India, to meet the country’s navigation applications. This system is also known as Navigation with Indian Constellation (NavIC). The NavIC system’s main objective, is to offer Positioning, Navigation and Timing (PNT) services to users in its two service areas i.e., covering the Indian landmass and the Indian Ocean. Six NavIC satellites are already deployed in the space and their receivers are in the performance evaluation stage. Four NavIC dual frequency receivers are installed in the ‘Advanced GNSS Research Laboratory’ (AGRL) in the Department of Electronics and Communication Engineering, University College of Engineering, Osmania University, India. The NavIC receivers can be operated in two positioning modes: Stand-alone IRNSS and Hybrid (IRNSS+GPS) modes. In this paper, analysis of various parameters such as Dilution of Precision (DoP), three Dimension (3D) Root Mean Square (RMS) Position Error and Horizontal Position Error with respect to Visibility of Satellites is being carried out using the real-time IRNSS data, obtained by operating the receiver in both positioning modes. Two typical days (6th July 2017 and 7th July 2017) are considered for Hyderabad (Latitude-17°24'28.07’N, Longitude-78°31'4.26’E) station are analyzed. It is found that with respect to the considered parameters, the Hybrid mode operation of NavIC receiver is giving better results than that of the standalone positioning mode. This work finds application in development of NavIC receivers for civilian navigation applications.Keywords: DoP, GPS, IRNSS, GNSS, position error, satellite visibility
Procedia PDF Downloads 21390 Endothelial Progenitor Cell Biology in Ankylosing Spondylitis
Authors: Ashit Syngle, Inderjit Verma, Pawan Krishan
Abstract:
Aim: Endothelial progenitor cells (EPCs) are unique populations which have reparative potential in overcoming the endothelial damage and reducing cardiovascular risk. Patients with ankylosing spondylitis (AS) have increased risk of cardiovascular morbidity and mortality. The aim of this study was to investigate the endothelial progenitor cell population in AS patients and its potential relationships with disease variables. Methods: Endothelial progenitor cells were measured in peripheral blood samples from 20 AS and 20 healthy controls by flow cytometry on the basis of CD34 and CD133 expression. Disease activity was evaluated by using Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Functional ability was monitored by using Bath Ankylosing Spondylitis Functional Index (BASFI). Results: EPCs were depleted in AS patients as compared to the healthy controls (CD34+/CD133+: 0.027 ± 0.010 % vs. 0.044 ± 0.011 %, p<0.001). EPCs depletion were significantly associated with disease duration (r=-0.52, p=0.01) and BASDAI (r=-0.45, p=0.04). Conclusion: This is the first study to demonstrate endothelial progenitor cells depletion in AS patients. EPCs depletion inversely correlates with disease duration and disease activity, suggesting the pivotal role of inflammation in depletion of EPCs. EPC would possibly also serve as a therapeutic target for preventing cardiovascular disease in AS.Keywords: ankylosing spondylitis, endothelial progenitor cells, inflammation, vascular damage
Procedia PDF Downloads 43889 Performance Enhancement of Autopart Manufacturing Industry Using Lean Manufacturing Strategies: A Case Study
Authors: Raman Kumar, Jasgurpreet Singh Chohan, Chander Shekhar Verma
Abstract:
Today, the manufacturing industries respond rapidly to new demands and compete in this continuously changing environment, thus seeking out new methods allowing them to remain competitive and flexible simultaneously. The aim of the manufacturing organizations is to reduce manufacturing costs and wastes through system simplification, organizational potential, and proper infrastructural planning by using modern techniques like lean manufacturing. In India, large number of medium and large scale manufacturing industries has successfully implemented lean manufacturing techniques. Keeping in view the above-mentioned facts, different tools will be involved in the successful implementation of the lean approach. The present work is focused on the auto part manufacturing industry to improve the performance of the recliner assembly line. There is a number of lean manufacturing tools available, but the experience and complete knowledge of manufacturing processes are required to select an appropriate tool for a specific process. Fishbone diagrams (scrap, inventory, and waiting) have been drawn to identify the root cause of different. Effect of cycle time reduction on scrap and inventory is analyzed thoroughly in the case company. Results have shown that there is a decrease in inventory cost by 7 percent after the successful implementation of the lean tool.Keywords: lean tool, fish-bone diagram, cycle time reduction, case study
Procedia PDF Downloads 12788 Boosting Profits and Enhancement of Environment through Adsorption of Methane during Upstream Processes
Authors: Sudipt Agarwal, Siddharth Verma, S. M. Iqbal, Hitik Kalra
Abstract:
Natural gas as a fuel has created wonders, but on the contrary, the ill-effects of methane have been a great worry for professionals. The largest source of methane emission is the oil and gas industry among all industries. Methane depletes groundwater and being a greenhouse gas has devastating effects on the atmosphere too. Methane remains for a decade or two in the atmosphere and later breaks into carbon dioxide and thus damages it immensely, as it warms up the atmosphere 72 times more than carbon dioxide in those two decades and keeps on harming after breaking into carbon dioxide afterward. The property of a fluid to adhere to the surface of a solid, better known as adsorption, can be a great boon to minimize the hindrance caused by methane. Adsorption of methane during upstream processes can save the groundwater and atmospheric depletion around the site which can be hugely lucrative to earn profits which are reduced due to environmental degradation leading to project cancellation. The paper would deal with reasons why casing and cementing are not able to prevent leakage and would suggest methods to adsorb methane during upstream processes with mathematical explanation using volumetric analysis of adsorption of methane on the surface of activated carbon doped with copper oxides (which increases the absorption by 54%). The paper would explain in detail (through a cost estimation) how the proposed idea can be hugely beneficial not only to environment but also to the profits earned.Keywords: adsorption, casing, cementing, cost estimation, volumetric analysis
Procedia PDF Downloads 19187 Insect Inducible Methanol Production in Plants for Insect Resistance
Authors: Gourav Jain, Sameer Dixit, Surjeet Kumar Arya, Praveen C. Verma
Abstract:
Plant cell wall plays a major role in defence mechanism against biotic and abiotic stress as it constitutes the physical barrier between the microenvironment and internal component of the cell. It is a complex structure composed of mostly carbohydrates among which cellulose and hemicelluloses are most abundant that is embedded in a matrix of pectins and proteins. Multiple enzymes have been reported which plays a vital role in cell wall modification, Pectin Methylesterase (PME) is one of them which catalyses the demethylesterification of homogalacturonans component of pectin which releases acidic pectin and methanol. As emitted methanol is toxic to the insect pest, we use PME gene for the better methanol production. In the current study we showed overexpression of PME gene isolated from Withania somnifera under the insect inducible promoter causes enhancement of methanol production at the time of insect feeds to plants, and that provides better insect resistance property. We found that the 85-90% mortality causes by transgenic tobacco in both chewing (Spodoptera litura larvae and Helicoverpa armigera) and sap-sucking (Aphid, mealybug, and whitefly) pest. The methanol content and emission level were also enhanced by 10-15 folds at different inducible time point interval (15min, 30min, 45min, 60min) which would be analysed by Purpald/Alcohol Oxidase method.Keywords: methanol, Pectin methylesterase, inducible promoters, Purpald/Alcohol oxidase
Procedia PDF Downloads 24486 In-Silico Evaluation and Antihyperglycemic Potential of Leucas Cephalotes
Authors: Anjali Verma, Mahesh Pal, Veena Pande, Dalip Kumar Upreti
Abstract:
The present study is carried out to explore the anti-hyperglycemic activity of Leucas cephalotes plant parts. A fruit, leaves, stems, and roots part of the Leucas cephalotes has been extracted in ethanol and have been evaluated for anti-hyperglycemic activity. The present study indicated that, ethanolic extract of fruit and leaves have shown significant α- amylase inhibitory activity with IC50 value of 92.86 ± 0.89 μg/mL and 98.09 ± 0.69 μg/mL respectively. Two known compounds β-sitosterol and lupeol were isolated from ethanolic extract of L. cephalotes leaves and were subjected to anti-hyperglycemic activity. Lupeol shows the best activity with IC50 55.73 ± 0.47 μg/mL and the results were verified by docking study of these compounds with mammalian α-amylase was carried out on its active site. It was concluded from the study that β-sitosterol and lupeol form one H-bond interactions with the active site residues either Asp212 or Thr21. The estimated free energy binding of β-sitosterol was found to be -9.47 kcal mol-1 with an estimated inhibition constant (Ki) of 558.94 nmol whereas the estimated free energy binding of lupeol was -11.73 kcal mol-1 with an estimated inhibition constant (Ki) of 476.71pmmol. The present study clearly showed that lupeol is more potent in comparison to β-sitosterol. The study indicates that L. cephalotes have significant potential to inhibit α-amylase enzyme.Keywords: alpha-amylase, beta-sitosterol, hyperglycemia, lupeol
Procedia PDF Downloads 21185 Determinants of Contraceptive Demand among Young Nulliparous Women in India: Evidence from National Family Health Survey-4
Authors: Bhawna Verma
Abstract:
Looking at the contraceptive use and unmet need specific to the different age groups would help to understand various determinants and characteristics of women from different age groups, which are often being neglected. The study explores contraceptive behavior, unmet need for family planning and its correlates among young nulliparous women aged 15-29, using data from NFHS-4 (2015-16), India. Method: The study utilized information from 26,924 currently married women, who has no child or who have had first terminated pregnancy and was aged 15-29 at the time of the survey. Chi-Square and logistic regression analysis have been used to assess the effects of socio-economic characteristics. Results: Of all the considered explanatory variables religion, caste, education, current age, age at marriage, media exposure and regional differences were found to be significantly affecting the behavior of contraceptive use. Women of the 25-29 age group are 0.6 percent less likely to have an unmet need than women of 12-19 age group. Unmet need is increasing with the increased level of education. Muslim women are 0.3 percent less likely to have an unmet need than women of Hindu category. Conclusion: Separate considerations must be given to the needs for family planning formation among nulliparous women along with the factors associated with the use and non-use of contraceptives among them. Separate considerations must be given for effective promotion of FP knowledge through print, electronic media, towards the unequal access to the contraceptives among nulliparous women. Marriages after legal minimum age and encouraging women for higher education may address existing socio-economic barriers.Keywords: contraceptive use, unmet need, family planning, contraceptive behavior
Procedia PDF Downloads 11284 Annual and Seasonal Variations in Air Quality Index of the National Capital Region, India
Authors: Surinder Deswal, Vineet Verma
Abstract:
Air Quality Index (AQI) is used as a tool to indicate the level of severity and disseminate the information on air pollution to enable the public to understand the health and environmental impacts of air pollutant concentration levels. The annual and seasonal variation of criteria air pollutants concentration based on the National Ambient Air Quality Monitoring Programme has been conducted for a period of nine years (2006-2014) using the AQI system. AQI was calculated using IND-AQI methodology and Maximum Operator Concept is applied. An attempt has been made to quantify the variations in AQI on an annual and seasonal basis over a period of nine years. Further, year-wise frequency of occurrence of AQI in each category for all the five stations is analysed, which presents in depth analysis of trends over the period of study. The best air quality was observed in the Noida residential area, followed by Noida industrial area during the study period; whereas, Bulandshahar industrial area and Faridabad residential area were observed to have the worst air quality. A shift in the worst air quality from winter to summer season has also been observed during the study period. Further, the level of Respirable Suspended Particulate Matter was found to be above permissible limit at all the stations. The present study helps in enhancing public awareness and calls for the need of immediate measures to be taken to counter-effect the cause of the increasing level of air pollution.Keywords: air quality index, annual trends, criteria pollutants, seasonal variation
Procedia PDF Downloads 28183 Optimization Techniques of Doubly-Fed Induction Generator Controller Design for Reliability Enhancement of Wind Energy Conversion Systems
Authors: Om Prakash Bharti, Aanchal Verma, R. K. Saket
Abstract:
The Doubly-Fed Induction Generator (DFIG) is suggested for Wind Energy Conversion System (WECS) to extract wind power. DFIG is preferably employed due to its robustness towards variable wind and rotor speed. DFIG has the adaptable property because the system parameters are smoothly dealt with, including real power, reactive power, DC-link voltage, and the transient and dynamic responses, which are needed to analyze constantly. The analysis becomes more prominent during any unusual condition in the electrical power system. Hence, the study and improvement in the system parameters and transient response performance of DFIG are required to be accomplished using some controlling techniques. For fulfilling the task, the present work implements and compares the optimization methods for the design of the DFIG controller for WECS. The bio-inspired optimization techniques are applied to get the optimal controller design parameters for DFIG-based WECS. The optimized DFIG controllers are then used to retrieve the transient response performance of the six-order DFIG model with a step input. The results using MATLAB/Simulink show the betterment of the Firefly algorithm (FFA) over other control techniques when compared with the other controller design methods.Keywords: doubly-fed induction generator, wind turbine, wind energy conversion system, induction generator, transfer function, proportional, integral, derivatives
Procedia PDF Downloads 9382 Enhancing Industrial Wastewater Treatment through Fe3o4 Nanoparticles-loaded Activated Charcoal: Design and Optimization for Sustainable Development
Authors: Komal Verma, V. S. Moholkar
Abstract:
This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result is essentially a consequence of synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Microconvection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe₃O₄@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater The Fe₃O₄@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.Keywords: Fe₃O₄@AC nanocomposite, RSM, COD;, LC-MS, Toxicity
Procedia PDF Downloads 11681 Simulation Study of Enhanced Terahertz Radiation Generation by Two-Color Laser Plasma Interaction
Authors: Nirmal Kumar Verma, Pallavi Jha
Abstract:
Terahertz (THz) radiation generation by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization and spectroscopic techniques. Due to non ionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser - plasma based THz radiation sources. The present paper is devoted to the simulation study of the enhanced THz radiation generation by propagation of two-color, linearly polarized laser pulses through magnetized plasma. The two laser pulses orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.Keywords: two-color laser pulses, terahertz radiation, magnetized plasma, ordinary and extraordinary mode
Procedia PDF Downloads 30180 Study of Buried Interfaces in Fe/Si Multilayer by Hard X-Ray Emission Spectroscopy
Authors: Hina Verma, Karine Le Guen, Renaud Dalaunay, Iyas Ismail, Vita Ilakovac, Jean Pascal Rueff, Yunlin Jacques Zheng, Philippe Jonnard
Abstract:
To the extent of our knowledge, X-ray emission spectroscopy (XES) has been applied in the soft x-ray region (photon energy ≤ 2 keV) to study the buried layers and interfaces of stacks of nanometer-thin films. Now we extend the methodology to study the buried interfaces in the hard X-ray region (i.e., ≥ five keV). The emission spectra allow us to study the interactions between elements in the buried layers from the analysis of their valence states, thereby providing sensitive information about the physical-chemical environment of the emitting element in multilayers. We exploit the chemical sensitivity of XES to study the interfaces between Fe and Si layers in the Fe/Si multilayer from the Fe Kβ₂,₅ emission spectra (7108 eV). The Fe Kβ₅ emission line results from the electronic transition from occupied 3d to 1s levels (i.e., valence to core transition) and is hence sensitive to the chemical state of emitting Fe atoms. The comparison of emission spectra recorded for Fe/Si multilayer with Fe and FeSi₂ references reveal the formation of FeSi₂ at the Fe-Si interfaces inside the multilayer stack. The interfacial thickness was calculated to be 1.4 ± 0.2 nm by taking into consideration the intensity of Fe atoms emitted from the interface and the Fe layer. The formation of FeSi₂ at the interface was further confirmed by the X-ray diffraction and X-ray photoelectron spectroscopy done on the Fe/Si multilayer. Hence, we can conclude that the XES in the hard X-ray range could be used to study multilayers and their interfaces and obtain information both qualitatively and quantitatively.Keywords: buried interfaces, hard X-ray emission spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy
Procedia PDF Downloads 14379 Effect of Column Stiffness and Orientation on Seismic Behaviour of Buildings with Vertical Irregularities
Authors: Saraswati Verma, Ankit Batra
Abstract:
In the modern day, structures are designed with a lot of complexities due to economical, aesthetical, and functional needs causing various levels of irregularities to be induced. In the past, several studies have repeatedly shown that irregular structures suffer more damage than regular structures during earthquakes. The present study makes an effort to study the contribution of the orientation of columns in the seismic behaviour of buildings with vertical irregularities namely, soft storey irregularity, mass irregularity and geometric irregularity. The response of the various models is analysed using sap2000 version 14. The parameters through which a comparative response is investigated are displacement, variation in the stiffness contribution, and inter-storey drift. Models with different configurations of column orientations were studied for each vertical irregularity and it was observed that column orientation contributed significantly in affecting a better seismic response. Square columns of the same cross-sectional area showed a good response as compared to that of rectangular columns. The study concludes that as displacement values for buildings with a soft storey and mass irregularity are very high, square columns could be used to minimise the effect of displacement in x and y-axis. In buildings with geometric irregularity, exterior column orientations can be played with to enhance the stiffness in the shorter direction to control the displacement and drift values in both x and y directions.Keywords: soft storey, mass irregularity, geometric irregularity, column orientation, square column
Procedia PDF Downloads 37878 Analysis of a Discrete-time Geo/G/1 Queue Integrated with (s, Q) Inventory Policy at a Service Facility
Authors: Akash Verma, Sujit Kumar Samanta
Abstract:
This study examines a discrete-time Geo/G/1 queueing-inventory system attached with (s, Q) inventory policy. Assume that the customers follow the Bernoulli process on arrival. Each customer demands a single item with arbitrarily distributed service time. The inventory is replenished by an outside supplier, and the lead time for the replenishment is determined by a geometric distribution. There is a single server and infinite waiting space in this facility. Demands must wait in the specified waiting area during a stock-out period. The customers are served on a first-come-first-served basis. With the help of the embedded Markov chain technique, we determine the joint probability distributions of the number of customers in the system and the number of items in stock at the post-departure epoch using the Matrix Analytic approach. We relate the system length distribution at post-departure and outside observer's epochs to determine the joint probability distribution at the outside observer's epoch. We use probability distributions at random epochs to determine the waiting time distribution. We obtain the performance measures to construct the cost function. The optimum values of the order quantity and reordering point are found numerically for the variety of model parameters.Keywords: discrete-time queueing inventory model, matrix analytic method, waiting-time analysis, cost optimization
Procedia PDF Downloads 4277 Numerical Simulation of a Point Absorber Wave Energy Converter Using OpenFOAM in Indian Scenario
Authors: Pooja Verma, Sumana Ghosh
Abstract:
There is a growing need for alternative way of power generation worldwide. The reason can be attributed to limited resources of fossil fuels, environmental pollution, increasing cost of conventional fuels, and lower efficiency of conversion of energy in existing systems. In this context, one of the potential alternatives for power generation is wave energy. However, it is difficult to estimate the amount of electrical energy generation in an irregular sea condition by experiment and or analytical methods. Therefore in this work, a numerical wave tank is developed using the computational fluid dynamics software Open FOAM. In this software a specific utility known as waves2Foam utility is being used to carry out the simulation work. The computational domain is a tank of dimension: 5m*1.5m*1m with a floating object of dimension: 0.5m*0.2m*0.2m. Regular waves are generated at the inlet of the wave tank according to Stokes second order theory. The main objective of the present study is to validate the numerical model against existing experimental data. It shows a good matching with the existing experimental data of floater displacement. Later the model is exploited to estimate energy extraction due to the movement of such a point absorber in real sea conditions. Scale down the wave properties like wave height, wave length, etc. are used as input parameters. Seasonal variations are also considered.Keywords: OpenFOAM, numerical wave tank, regular waves, floating object, point absorber
Procedia PDF Downloads 35276 Prevalence of Enterocytozoon hepatopenaei in Shrimp Cultured in Inland Saline Water
Authors: Naveen Kumar B. T., Anuj Tyagi, Prabjeet Singh, Shanthanagouda A. H., Sumeet Rai
Abstract:
Inland saline water resources are gaining the importance in expanding the aquaculture activities to mitigate the nutritional and food security issues of the world. For profitable and sustainable aquaculture practices, scientific farming, biosecurity measure, and best fish health management should be the integral part of developmental activities. Keeping in line with global awareness and trends, the Indian government has taken an innovative step to conduct disease surveillance and awareness programme for aquatic disease through network project. This ‘National Surveillance Programme for Aquatic Animal Diseases (NSPAAD)’ is being implemented in collaboration of national institutes and state agriculture universities with funding support from National Fisheries Development Board (NFDB), Govt. of India. Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, an NSPAAD collaborator, has been actively engaged in disease surveillance in the Indian state of Punjab. Shrimp farming in inland saline areas of Punjab is expanding at a tremendous pace under the guidance of GADVASU along with the support of State Fisheries Department. Under this national disease surveillance programme, we reported Enterocytozoon hepatopenaei (EHP) infection in the Litopenaeus vannamei cultured in the inland saline waters. Polymerase chain reaction (PCR) based diagnosis was carried out using the OIE (World Organisation for Animal Health) protocol. It was observed that out of 20 shrimp farms, two farms were 1st step PCR positive and two more farms were nested PCR positive. All the EHP positive ponds had shown the white faeces along with mortalities at very low rate. Therefore, implementation of biosecurity and continuous surveillance and monitoring program for finfish and shellfish aquaculture are in need of the hour to prevent and control the large-scale disease outbreaks and subsequent economic losses.Keywords: disease, EHP, inland saline water, shrimp culture
Procedia PDF Downloads 26275 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit
Authors: Prabal Singh Verma
Abstract:
Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration
Procedia PDF Downloads 38574 Electromagnetic Radiation Generation by Two-Color Sinusoidal Laser Pulses Propagating in Plasma
Authors: Nirmal Kumar Verma, Pallavi Jha
Abstract:
Generation of the electromagnetic radiation oscillating at the frequencies in the terahertz range by propagation of two-color laser pulses in plasma is an active area of research due to its potential applications in various areas, including security screening, material characterization, and spectroscopic techniques. Due to nonionizing nature and the ability to penetrate several millimeters, THz radiation is suitable for diagnosis of cancerous cells. Traditional THz emitters like optically active crystals, when irradiated with high power laser radiation, are subject to material breakdown and hence low conversion efficiencies. This problem is not encountered in laser-plasma based THz radiation sources. The present paper is devoted to the study of the enhanced electromagnetic radiation generation by propagation of two-color, linearly polarized laser pulses through the magnetized plasma. The two lasers pulse orthogonally polarized are co-propagating along the same direction. The direction of the external magnetic field is such that one of the two laser pulses propagates in the ordinary mode, while the other pulse propagates in the extraordinary mode through the homogeneous plasma. A transverse electromagnetic wave with frequency in the THz range is generated due to the presence of the static magnetic field. It is observed that larger amplitude terahertz can be generated by mixing of ordinary and extraordinary modes of two-color laser pulses as compared with a single laser pulse propagating in the extraordinary mode.Keywords: two-color laser pulses, electromagnetic radiation, magnetized plasma, ordinary and extraordinary modes
Procedia PDF Downloads 28573 Design and Fabrication of a Smart Quadruped Robot
Authors: Shivani Verma, Amit Agrawal, Pankaj Kumar Meena, Ashish B. Deoghare
Abstract:
Over the decade robotics has been a major area of interest among the researchers and scientists in reducing human efforts. The need for robots to replace human work in different dangerous fields such as underground mining, nuclear power station and war against terrorist attack has gained huge attention. Most of the robot design is based on human structure popularly known as humanoid robots. However, the problems encountered in humanoid robots includes low speed of movement, misbalancing in structure, poor load carrying capacity, etc. The simplification and adaptation of the fundamental design principles seen in animals have led to the creation of bio-inspired robots. But the major challenges observed in naturally inspired robot include complexity in structure, several degrees of freedom and energy storage problem. The present work focuses on design and fabrication of a bionic quadruped walking robot which is based on different joint of quadruped mammals like a dog, cheetah, etc. The design focuses on the structure of the robot body which consists of four legs having three degrees of freedom per leg and the electronics system involved in it. The robot is built using readily available plastics and metals. The proposed robot is simple in construction and is able to move through uneven terrain, detect and locate obstacles and take images while carrying additional loads which may include hardware and sensors. The robot will find possible application in the artificial intelligence sector.Keywords: artificial intelligence, bionic, quadruped robot, degree of freedom
Procedia PDF Downloads 21572 Optimization Based Extreme Learning Machine for Watermarking of an Image in DWT Domain
Authors: RAM PAL SINGH, VIKASH CHAUDHARY, MONIKA VERMA
Abstract:
In this paper, we proposed the implementation of optimization based Extreme Learning Machine (ELM) for watermarking of B-channel of color image in discrete wavelet transform (DWT) domain. ELM, a regularization algorithm, works based on generalized single-hidden-layer feed-forward neural networks (SLFNs). However, hidden layer parameters, generally called feature mapping in context of ELM need not to be tuned every time. This paper shows the embedding and extraction processes of watermark with the help of ELM and results are compared with already used machine learning models for watermarking.Here, a cover image is divide into suitable numbers of non-overlapping blocks of required size and DWT is applied to each block to be transformed in low frequency sub-band domain. Basically, ELM gives a unified leaning platform with a feature mapping, that is, mapping between hidden layer and output layer of SLFNs, is tried for watermark embedding and extraction purpose in a cover image. Although ELM has widespread application right from binary classification, multiclass classification to regression and function estimation etc. Unlike SVM based algorithm which achieve suboptimal solution with high computational complexity, ELM can provide better generalization performance results with very small complexity. Efficacy of optimization method based ELM algorithm is measured by using quantitative and qualitative parameters on a watermarked image even though image is subjected to different types of geometrical and conventional attacks.Keywords: BER, DWT, extreme leaning machine (ELM), PSNR
Procedia PDF Downloads 31171 Nutritional Evaluation of Different Quercus Species in Temperate Regions of Himachal Pradesh
Authors: Ankush Verma, Rohit Bishist
Abstract:
The present investigation was carried out at different locations of Shimla and Kinnaur district and nutrient analysis was done in the laboratory of Department of Silviculture and Agroforestry, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Distt. Solan, Himachal Pradesh during 2019-2020 with the objectives to study the seasonal variation in the nutritive value of different Quercus species and to study the farmers’ preference rating of fodder tress species. From each location leaf samples were collected at 3 months interval from each Quercus spp. The findings of the present study revealed that the nutritional traits of leaves of different Quercus species varied among different seasons throughout the year. The dry matter (61.12 to 64.99%), ether extract (4.07 to 4.42%), crude fibre (34.38 to 37.85%), neutral detergent fibre (57.70 to 61.54%), acid detergent fibre (44.64 to 48.51%), total ash (3.57 to 3.91%), acid insoluble ash (44.64 to 48.51%) and calcium (1.31 to 1.53%) increased with the maturity in the leaves of different Quercus species. While, crude protein (9.10 to 10.61%), nitrogen free extract (44.73 to 47.41%), organic matter (96.09 to 96.43%), and phosphorus (0.16 to 0.31%) decreased with the advancing maturity in the leaves of different Quercus species. Maximum mean values for dry matter (65.05%), ether extract (4.45%), crude fibre (40.82%), neutral detergent fibre (61.48%), acid detergent fibre (48.44%), and organic matter (96.67%) among different Quercus species were recorded in Quercus ilex, while, Maximum mean values for crude protein (10.54%), nitrogen free extract (50.53%), total ash (4.05%), acid insoluble ash (0.59%), calcium (1.61%) and phosphorus (0.40%) were recorded in Quercus leucotrichophora.Keywords: nutritional evaluation, fodder species, crude protein, carbohydrates
Procedia PDF Downloads 8870 Effect of Injection Moulding Process Parameter on Tensile Strength of Using Taguchi Method
Authors: Gurjeet Singh, M. K. Pradhan, Ajay Verma
Abstract:
The plastic industry plays very important role in the economy of any country. It is generally among the leading share of the economy of the country. Since metals and their alloys are very rarely available on the earth. So to produce plastic products and components, which finds application in many industrial as well as household consumer products is beneficial. Since 50% plastic products are manufactured by injection moulding process. For production of better quality product, we have to control quality characteristics and performance of the product. The process parameters plays a significant role in production of plastic, hence the control of process parameter is essential. In this paper the effect of the parameters selection on injection moulding process has been described. It is to define suitable parameters in producing plastic product. Selecting the process parameter by trial and error is neither desirable nor acceptable, as it is often tends to increase the cost and time. Hence optimization of processing parameter of injection moulding process is essential. The experiments were designed with Taguchi’s orthogonal array to achieve the result with least number of experiments. Here Plastic material polypropylene is studied. Tensile strength test of material is done on universal testing machine, which is produced by injection moulding machine. By using Taguchi technique with the help of MiniTab-14 software the best value of injection pressure, melt temperature, packing pressure and packing time is obtained. We found that process parameter packing pressure contribute more in production of good tensile plastic product.Keywords: injection moulding, tensile strength, poly-propylene, Taguchi
Procedia PDF Downloads 28869 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction
Authors: Arunima Verma, Padmabati Mondal
Abstract:
Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.Keywords: allostery, CADD, MD simulations, MM-PBSA
Procedia PDF Downloads 8768 The Effect of Different Concentrations of Extracting Solvent on the Polyphenolic Content and Antioxidant Activity of Gynura procumbens Leaves
Authors: Kam Wen Hang, Tan Kee Teng, Huang Poh Ching, Chia Kai Xiang, H. V. Annegowda, H. S. Naveen Kumar
Abstract:
Gynura procumbens (G. procumbens) leaves, commonly known as ‘sambung nyawa’ in Malaysia is a well-known medicinal plant commonly used as folk medicines in controlling blood glucose, cholesterol level as well as treating cancer. These medicinal properties were believed to be related to the polyphenolic content present in G. procumbens extract, therefore optimization of its extraction process is vital to obtain highest possible antioxidant activities. The current study was conducted to investigate the effect of different concentrations of extracting solvent (ethanol) on the amount of polyphenolic content and antioxidant activities of G. procumbens leaf extract. The concentrations of ethanol used were 30-70%, with the temperature and time kept constant at 50°C and 30 minutes, respectively using ultrasound-assisted extraction. The polyphenolic content of these extracts were quantified by Folin-Ciocalteu colorimetric method and results were expressed as milligram gallic acid equivalent (mg GAE)/g. Phosphomolybdenum method and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays were used to investigate the antioxidant properties of the extract and the results were expressed as milligram ascorbic acid equivalent (mg AAE)/g and effective concentration (EC50) respectively. Among the three different (30%, 50% and 70%) concentrations of ethanol studied, the 50% ethanolic extract showed total phenolic content of 31.565 ± 0.344 mg GAE/g and total antioxidant activity of 78.839 ± 0.199 mg AAE/g while 30% ethanolic extract showed 29.214 ± 0.645 mg GAE/g and 70.701 ± 1.394 mg AAE/g, respectively. With respect to DPPH radical scavenging assay, 50% ethanolic extract had exhibited slightly lower EC50 (314.3 ± 4.0 μg/ml) values compared to 30% ethanol extract (340.4 ± 5.3 μg/ml). Out of all the tested extracts, 70% ethanolic extract exhibited significantly (p< 0.05) highest total phenolic content (38.000 ± 1.009 mg GAE/g), total antioxidant capacity (95.874 ± 2.422 mg AAE/g) and demonstrated the lowest EC50 in DPPH assay (244.2 ± 5.9 μg/ml). An excellent correlations were drawn between total phenolic content, total antioxidant capacity and DPPH radical scavenging activity (R2 = 0.949 and R2 = 0.978, respectively). It was concluded from this study that, 70% ethanol should be used as the optimal polarity solvent to obtain G. procumbens leaf extract with maximum polyphenolic content with antioxidant properties.Keywords: antioxidant activity, DPPH assay, Gynura procumbens, phenolic compounds
Procedia PDF Downloads 41167 Water Reclamation and Reuse in Asia’s Largest Sewage Treatment Plant
Authors: Naveen Porika, Snigdho Majumdar, Niraj Sethi
Abstract:
Water, food and energy securities are emerging as increasingly important and vital issues for India and the world. Hyderabad urban agglomeration (HUA), the capital city of Andhra Pradesh State in India, is the sixth largest city has a population of about 8.2 million. The Musi River, which is a tributary of Krishna river flows from west to east right through the heart of Hyderabad, about 80% of the water used by people is released back as sewage, which flows back into Musi every day with detrimental effects on the environment and people downstream of the city. The average daily sewage generated in Hyderabad city is 950 MLD, however, treatment capacity exists only for 541 Million Liters per Day (MLD) but only 407 MLD of sewage is treated. As a result, 543 MLD of sewage daily flows into Musi river. Hyderabad’s current estimated water demand stands at 320 Million Gallons per Day (MGD). However, its installed capacity is merely 270 MGD; by 2020 estimated demand will grow to 400 MGD. There is huge gap between current supply and demand, and this is likely to widen by 2021. Developing new fresh water sources is a challenge for Hyderabad, as the fresh water sources are few and far from the City (about 150-200 km) and requires excessive pumping. The constraints presented above make the conventional alternatives for supply augmentation unsustainable and unattractive .One such dependable and captive source of easily available water is the treated sewage. With proper treatment, water of desired quality can be recovered from the waste water (sewage) for recycle and reuse. Hyderabad Amberpet sewage treatment of capacity 339 MLD is Asia’s largest sewage treatment plant. Tertiary sewage treatment Standard basic engineering modules of 30 MLD,60 MLD, 120MLD & 180 MLD for sewage treatment plants has been developed which are utilized for developing Sewage Reclamation & Reuse model in Asia’s largest sewage treatment plant. This paper will focus on Hyderabad Water Supply & Demand, Sewage Generation & Treatment, Technical aspects of Tertiary Sewage Treatment and Utilization of developed standard modules for reclamation & reuse of treated sewage to overcome the deficit of 130 MGD as projected by 2021.Keywords: water reclamation, reuse, Andhra Pradesh, hyderabad, musi river, sewage, demand and supply, recycle, Amberpet, 339 MLD, engineering modules, tertiary treatment
Procedia PDF Downloads 61766 Dual Drug Piperine-Paclitaxel Nanoparticles Inhibit Migration and Invasion in Human Breast Cancer Cells
Authors: Monika Verma, Renuka Sharma, B. R. Gulati, Namita Singh
Abstract:
In combination therapy, two chemotherapeutic agents work together in a collaborative action. It has appeared as one of the promising approaches to improve anti-cancer treatment efficacy. In the present investigation, piperine (P-NPS), paclitaxel (PTX NPS), and a combination of both, piperine-paclitaxel nanoparticle (Pip-PTX NPS), were made by the nanoprecipitation method and later characterized by PSA, DSC, SEM, TEM, and FTIR. All nanoparticles exhibited a monodispersed size distribution with a size of below 200 nm, zeta potential ranges from (-30-40mV) and a narrow polydispersity index (>0.3) of the drugs. The average encapsulation efficiency was found to be between 80 and 90%. In vitro release of drugs for nanoparticles was done spectrophotometrically. FTIR and DSC results confirmed the presence of the drug. The Pip-PTX NPS significantly inhibit cell proliferation as compared to the native drugs nanoparticles in the breast cancer cell line MCF-7. In addition, Pip-PTX NPS suppresses cells in colony formation and soft gel agar assay. Scratch migration and Transwell chamber invasion assays revealed that combined nanoparticles reduce the migration and invasion of breast cancer cells. Morphological studies showed that Pip-PTX NPS penetrates the cells and induces apoptosis, which was further confirmed by DNA fragmentation, SEM, and western blot analysis. Taken together, Pip-PTX NPS inhibits cell proliferation, anchorage dependent and anchorage independent cell growth, reduces migration and invasion, and induces apoptosis in cells. These findings support that combination therapy using Pip-PTX NPS represents a potential approach and could be helpful in the future for breast cancer therapy.Keywords: piperine, paclitaxel, breast cancer, apoptosis
Procedia PDF Downloads 10165 Critical Role of Lipid Rafts in Influenza a Virus Binding to Host Cell
Authors: Dileep Kumar Verma, Sunil Kumar Lal
Abstract:
Influenza still remains one of the most challenging diseases posing significant threat to public health causing seasonal epidemics and pandemics. Influenza A Virus (IAV) surface protein hemagglutinin is known to play an important role in viral attachment to the host sialic acid receptors and concentrate in lipid rafts for efficient viral fusion. Selective nature of Influenza A virus to utilize rafts micro-domain for efficient virus assembly and budding has been explored in depth. However, the detailed mechanism of IAV binding to host cell membrane and entry into the host remains elusive. In the present study we investigated the role of lipid rafts in early life cycle events of IAV. Role of host lipid rafts was studied using raft disruption method by extraction of cholesterol by Methyl-β-Cyclodextrin. Using GM1, a well-known lipid raft marker, we were able to observe co-localization of IAV on lipid rafts on the host cell membrane. This experiment suggests a direct involvement of lipid rafts in the initiation of the IAV life cycle. Upon disruption of lipid rafts by Methyl-b-cyclodextrin, we observed a significant reduction in IAV binding on the host cell surface indicating a significant decrease in virus attachment to coherent membrane rafts. Our results provide proof that host lipid rafts and their constituents play an important role in the adsorption of IAV. This study opens a new avenues in IAV virus-host interactions to combat infection at a very early steps of the viral lifecycle.Keywords: lipid raft, adsorption, cholesterol, methyl-β-cyclodextrin, GM1
Procedia PDF Downloads 36564 Understanding and Addressing the Tuberculosis Notification Gap in Nepal
Authors: Lok Raj Joshi, Naveen Prakash Shah, Sharad Kumar Sharma, I. Ratna Bhattarai, Rajendra Basnet, Deepak Dahal, Bahagwan Maharjan, Seraphine Kaminsa
Abstract:
Context: Tuberculosis (TB) is a significant health issue in Nepal, a country with a high burden of the disease. Despite efforts to control TB, there is still a gap in the notification of TB cases, which hinders effective control and treatment. This paper aims to address this notification gap and proposes strategies to improve TB control in Nepal. Research Aim: The aim of this research is to understand and address the tuberculosis notification gap in Nepal. The focus is on enhancing the healthcare system, involving the private sector and communities, raising awareness, and addressing social determinants to achieve sustainable TB control. Methodology: The research methodology involved a review of existing epidemiological data and research studies related to TB in Nepal. Additionally, consultation with an expert group from the TB control program in Nepal provided insights into the current state of TB control and challenges in addressing the notification gap. Findings: The findings reveal that only 55% of TB cases were reported in 2022, indicating a significant notification gap. Of the reported cases, only 32% and 19% were referred by the private sector and community, respectively. Furthermore, 20% of diagnosed cases were not treated in the initial phase. The estimated number of cases of multidrug-resistant TB (MDR TB) was 2,800, suggesting a low diagnosis rate. Among the diagnosed MDR TB cases, only 60% were receiving treatment. Additionally, it was observed that 20% of diagnosed MDR TB cases were from India and not enrolling in TB treatment in Nepal, indicating a high rate of defaulters. Theoretical Importance: The study highlights the importance of adopting a holistic strategy to address the notification gap in TB cases in Nepal. It emphasizes the need to enhance healthcare infrastructure, raise awareness, involve the private sector and local communities, establish effective methods to trace initial defaulters, implement TB interventions in border regions, and mitigate the social stigma associated with the disease. Data Collection and Analysis Procedures: Data for this study was collected through a review of existing epidemiological data and research studies. The data were then analyzed to identify patterns, trends, and gaps in TB case notification in Nepal.Keywords: TB, tuberculosis, private sector, community, migrants, nepal
Procedia PDF Downloads 100