Search results for: battery energy storage efficiency
2846 Sustainable Project Management: Driving the Construction Industry Towards Sustainable Developmental Goals
Authors: Francis Kwesi Bondinuba, Seidu Abdullah, Mewomo Cecilia, Opoku Alex
Abstract:
Purpose: The purpose of this research is to develop a framework for understanding how sustainable project management contributes to the construction industry's pursuit of sustainable development goals. Study design/methodology/approach: The study employed a theoretical methodology to review existing theories and models that support Sustainable Project Management (SPM) in the construction industry. Additionally, a comprehensive review of current literature on SPM is conducted to provide a thorough understanding of this study. Findings: Sustainable Project Management (SPM) practices, including stakeholder engagement and collaboration, resource efficiency, waste management, risk management, and resilience, play a crucial role in achieving the Sustainable Development Goals (SDGs) within the construction industry. Conclusion: Adopting Sustainable Project Management (SPM) practices in the Ghanaian construction industry enhances social inclusivity by engaging communities and creating job opportunities. The adoption of these practices faces significant challenges, including a lack of awareness and understanding, insufficient regulatory frameworks, financial constraints, and a shortage of skilled professionals. Recommendation: There should be a comprehensive approach to project planning and execution that includes stakeholders such as local communities, government bodies, and environmental organisations, the use of green building materials and technologies, and the implementation of effective waste management strategies, all of which will ensure the achievement of SDGs in Ghana's construction industry. Originality/value: This paper adds to the current literature by offering the various theories and models in Sustainable Project Management (SPM) and a detailed review of how Sustainable Project Management (SPM) contribute to the achievement of the Sustainable Development Goals (SDGs) in the Ghanaian Construction Industry.Keywords: sustainable development, sustainable development goals, construction industry, ghana, sustainable project management
Procedia PDF Downloads 242845 Investigation of Wood Chips as Internal Carbon Source Supporting Denitrification Process in Domestic Wastewater Treatment
Authors: Ruth Lorivi, Jianzheng Li, John J. Ambuchi, Kaiwen Deng
Abstract:
Nitrogen removal from wastewater is accomplished by nitrification and denitrification processes. Successful denitrification requires carbon, therefore, if placed after biochemical oxygen demand (BOD) and nitrification process, a carbon source has to be re-introduced into the water. To avoid adding a carbon source, denitrification is usually placed before BOD and nitrification processes. This process however involves recycling the nitrified effluent. In this study wood chips were used as internal carbon source which enabled placement of denitrification after BOD and nitrification process without effluent recycling. To investigate the efficiency of a wood packed aerobic-anaerobic baffled reactor on carbon and nutrients removal from domestic wastewater, a three compartment baffled reactor was presented. Each of the three compartments was packed with 329 g wood chips 1x1cm acting as an internal carbon source for denitrification. The proposed mode of operation was aerobic-anoxic-anaerobic (OAA) with no effluent recycling. The operating temperature, hydraulic retention time (HRT), dissolved oxygen (DO) and pH were 24 ± 2 ℃, 24 h, less than 4 mg/L and 7 ± 1 respectively. The removal efficiencies of chemical oxygen demand (COD), ammonia nitrogen (NH4+-N) and total nitrogen (TN) attained was 99, 87 and 83% respectively. TN removal rate was limited by nitrification as 97% of ammonia converted into nitrate and nitrite was denitrified. These results show that application of wood chips in wastewater treatment processes is an efficient internal carbon source.
Keywords: aerobic-anaerobic baffled reactor, denitrification, nitrification, wood chip
Procedia PDF Downloads 2962844 The Effect of Supplementary Cementitious Materials on Fresh and Hardened Properties of Self-Compacting Concretes
Authors: Akram Salah Eddine Belaidi, Said Kenai, El-Hadj Kadri, Benchaâ Benabed, Hamza Soualhi
Abstract:
Self-compacting concrete (SCC) was developed in the middle of the 1980’s in Japan. SCC flows alone under its dead weight and consolidates itself without any entry of additional compaction energy and without segregation. As an integral part of a SCC, self-compacting mortars (SCM) may serve as a basis for the mix design of concrete since the measurement of the rheological properties of SCCs. This paper discusses the effect of using natural pozzolana (PZ) and marble powder (MP) in two alternative systems ratios PZ/MP = 1 and 1/3 of the performance of the SCC. A total of 11 SCC’s were prepared having a constant water-binder (w/b) ratio of 0.40 and total cementitious materials content of 475 kg/m3. Then, the fresh properties of the mortars were tested for mini-slump flow diameter and mini-V-funnel flow time for SCMs and Slumps flow test, L-Box height ratio, V-Funnel flow time and sieve stability for SCC. Moreover, the development in the compressive strength was determined at 3, 7, 28, 56, and 90 days. Test results have shown that using of ternary blends improved the fresh properties of the mixtures. The compressive strength of SCC at 90 days with 30% of PZ and MP was similar to those of ordinary concrete use in situ.Keywords: self-compacting mortar, self-compacting concrete, natural pozzolana, marble powder, rheology, compressive strength
Procedia PDF Downloads 3752843 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances
Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim
Abstract:
This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering
Procedia PDF Downloads 1862842 Arothron Stellatus Fish Skin Collagen Based Composite Biosheet Incorporated with Mupirocin as a Potential Dermal Substitute for Skin Tissue Regeneration
Authors: Giriprasath Ramanathan, Sivakumar Singaravelu, M. D. Raja, Uma Tirichurapalli Sivagnanam
Abstract:
Collagen is the abundant protein found in the skin of the animal body that has been designed to provide adequate structural support for the adhesion of cells. The dressing material widely used for tissue engineering and biomedical application has to posses good swelling and biological property for the absorption of exudates and cell proliferation. Acid solubilised collagen from the fish skin of the Arothron stellatus was extracted. The collagen with hydroxypropyl and carboxy methyl cellulose has the better biological property to enhance the healing efficiency. The inter property of collagen with interesting perspectives in the tissue engineering process leads to the development of biomaterial with natural polymer with biologically derived collagen. Keeping this as an objective, the composite biomaterial was fabricated to improve the wound healing and biological properties. In this study the collagen from Arothron stellatus fish skin (ACO) was uniformly blended separately with hydroxypropyl methyl cellulose (HPMC) and carboxyl methyl cellulose (CMC) as biosheets. The casted biosheets were impregnated with mupirocin to get rid of infection from the microbes. Further, the results obtained from differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile studies and biocompatibility of the biosheets were assessed. The swelling, porosity and degradation of the casted biosheets were studied to make the biosheets as a suitable wound dressing material. ACO-HPMC and ACO-CMC biosheets both showed good results, but ACO-HPMC biosheet showed better results than ACO-CMC and hence it can be used as a potential dermal substitute in skin tissue engineering.Keywords: arothron stellatus, biocompatibility, collagen, tensile strenght
Procedia PDF Downloads 3212841 Vibration Control of Hermetic Compressors Using Flexible Multi-Body Dynamics Theory
Authors: Armin Amindari
Abstract:
Hermetic compressors are used widely for refrigeration, heat pump, and air conditioning applications. With the improvement of energy conservation and environmental protection requirements, inverter compressors that operates at different speeds have become increasingly attractive in the industry. Although speed change capability is more efficient, passing through resonant frequencies may lead to excessive vibrations. In this work, an integrated vibration control approach based on flexible multi-body dynamics theory is used for optimizing the vibration amplitudes of the compressor at different operating speeds. To examine the compressor vibrations, all the forces and moments exerted on the cylinder block were clarified and minimized using balancers attached to the upper and lower ends of the motor rotor and crankshaft. The vibration response of the system was simulated using Motionview™ software. In addition, mass-spring optimization was adopted to shift the resonant frequencies out of the operating speeds. The modal shapes of the system were studied using Optistruct™ solver. Using this approach, the vibrations were reduced up to 56% through dynamic simulations. The results were in high agreement with various experimental test data. In addition, the vibration resonance problem observed at low speeds was solved by shifting the resonant frequencies through optimization studies.Keywords: vibration, MBD, compressor, hermetic
Procedia PDF Downloads 1002840 In vitro Assessment of Bioactive Properties and Dose-Dependent Antioxidant Activities of Commercial Grape Cultivars in Taiwan
Authors: Kandi Sridhar, Charles Albert Linton
Abstract:
Grapes are excellent sources of bioactive compounds, which have been suggested to be responsible for lowering the risk of chronic diseases. Fresh and freeze-dried extracts of Kyoho and Jubilee, commercial grape varieties available in Taiwan and attractive for their quality berries, were investigated for their total phenolics and total flavonoids contents and related dose-dependent antioxidants properties using various in vitro assays. The efficiency of the extraction yield ranged from 7.10 % to 25.53 % (w/w), depending on solvent used. Fresh samples of Kyoho and Jubilee exhibited total polyphenolic contents (351.56 ± 23.08 and 328.67 ± 16.54 µg GAE/mL, respectively), whereas Kyoho freeze-dried methanol: water extracts contains the good levels of total flavonoids (4767.82 ± 22.20 µg QE/mL). Kyoho and Jubilee freeze-dried extracts exhibited the highest total flavonoid contents. There was a weak correlation between total phenolic and flavonoid assays (r= -0.05, R2 = 0.02, p > 0.05). Kyoho fresh and freeze-dried samples showed the DPPH (11.51 – 77.82 %), superoxide scavenging activity (33.61 – 81.95 %), and total antioxidant inhibition (92.01 – 99.28 %), respectively. Total flavonoids were statistically correlated with EC50 DPPH scavenging radicals (r =0.91, p < 0.01), EC50 nitric oxide (r = 0.25, p > 0.05), and EC50 lipid peroxidation radicals (r = 0.38, p > 0.05). These results suggested that the two commercial grape cultivars in Taiwan could be used as a good source of natural antioxidants. Thus, consumption of grapes as a source antioxidant might lower the risk of chronic diseases. Moreover, future studies will investigate and develop phenolic acid profile for the cultivars in Taiwan.Keywords: antioxidants, EC50 radical scavenging activity, grape cultivars, total phenolics
Procedia PDF Downloads 1782839 Plant Growth, Symbiotic Performance and Grain Yield of 63 Common Bean Genotypes Grown Under Field Conditions at Malkerns Eswatini
Authors: Rotondwa P. Gunununu, Mustapha Mohammed, Felix D. Dakora
Abstract:
Common bean is the most importantly high protein grain legume grown in Southern Africa for human consumption and income generation. Although common bean can associate with rhizobia to fix N₂ for bacterial use and plant growth, it is reported to be a poor nitrogen fixer when compared to other legumes. N₂ fixation can vary with legume species, genotype and rhizobial strain. Therefore, screening legume germplasm can reveal rhizobia/genotype combinations with high N₂-fixing efficiency for use by farmers. This study assessed symbiotic performance and N₂ fixation in 63 common bean genotypes under field conditions at Malkerns Station in Eswatini, using the ¹⁵N natural abundance technique. The shoots of common bean genotypes were sampled at a pod-filling stage, oven-dried (65oC for 72h), weighed, ground into a fine powder (0.50 mm sieve), and subjected to ¹⁵N/¹⁴N isotopic analysis using mass spectrometry. At maturity, plants from the inner rows were harvested for the determination of grain yield. The results revealed significantly higher modulation (p≤0.05) in genotypes MCA98 and CIM-RM01-97-8 relative to the other genotypes. Shoot N concentration was highest in genotype MCA 98, followed by KAB 10 F2.8-84, with most genotypes showing shoot N concentrations below 2%. Percent N derived from atmospheric N₂ fixation (%Ndfa) differed markedly among genotypes, with CIM-RM01-92-3 and DAB 174, respectively, recording the highest values of 66.65% and 66.22 % N derived from fixation. There were also significant differences in grain yield, with CIM-RM02-79-1 producing the highest yield (3618.75 kg/ha). These results represent an important contribution in the profiling of symbiotic functioning of common bean germplasm for improved N₂ fixation.Keywords: nitrogen fixation, %Ndfa, ¹⁵N natural abundance, grain yield
Procedia PDF Downloads 2182838 Observations of Magnetospheric Ulf Waves in Connection to the Kelvin-Helmholtz Instability at Mercury
Authors: Elisabet Liljeblad, Tomas Karlsson, Torbjorn Sundberg, Anita Kullen
Abstract:
The magnetospheric magnetic field data from the MESSENGER spacecraft is investigated to establish the presence of ultra-low frequency (ULF) waves in connection to 131 previously observed nonlinear Kelvin-Helmholtz waves (KHWs) at Mercury. Distinct ULF signatures are detected in 44 out of the 131 magnetospheric traversals prior to or after observing a KHW. In particular, 39 of these 44 ULF events are highly coherent at the frequency of maximum power spectral density. The waves observed at the dayside, which appears mainly at the duskside and naturally following the KHW occurrence asymmetry, are significantly different to the events behind the dawn-dusk terminator and have the following distinct wave characteristics: they oscillate clearly in the perpendicular (azimuthal) direction to the mean magnetic field with a wave normal angle more in the parallel than the perpendicular direction, increase in absolute ellipticity with distance from noon, are almost exclusively right-hand polarized, and are observed mainly for frequencies in the range 0.02-0.04 Hz. These results indicate that the dayside ULF waves are likely to shear Alfvén waves driven by KHWs at the magnetopause, which in turn manifests the importance of the Kelvin-Helmholtz instability in terms of mass transport throughout the Mercury magnetosphere.Keywords: ultra-low frequency waves, kelvin-Helmholtz instability, magnetospheric processes, mercury, messenger, energy and momentum transfer in planetary environments
Procedia PDF Downloads 2402837 Effect of Wind and Humidity on Microwave Links in West North Libya
Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri
Abstract:
The propagation of microwave is affected by rain and dust particles by way of signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents the effect of wind and humidity on wireless communication such as microwave links in the west north region of Libya (Al-Khoms), experimental procedure to study the effects mentioned above. The experimental procedure is done on three selected antennae towers (Nagaza stations, Al-Khoms center stations, Al-Khoms gateway stations) to determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change which coverage in the studied region, it is required to collect the dust particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The result showed that effect of the humidity and dust, the antenna height, the visibility, on the complex permittivity effects both attenuation and phase shift, there is some consideration that has to be taken into account in the communication power budget.Keywords: attenuation, de-polarization, scattering, transmission loss
Procedia PDF Downloads 1542836 Post-Discharge Oral Nutritional Supplements Following Gastric Cancer Surgery: A systematic Review
Authors: Mohammad Mohammadi, Mohammad Pashmchi
Abstract:
Background: Malnutrition commonly develops and worsens following gastric cancer surgery, particularly after discharge, which is associated with adverse outcomes. Former studies have primarily focused on patients during their hospital stay period, and there is limited evidence regarding the recommendation of nutritional interventions for patients after discharge from the hospital following gastric cancer surgery. This review is aimed to evaluate the efficiency of post-discharge dietary counseling with oral nutritional supplements (ONS), and dietary counseling alone on post-surgical nutritional outcomes in patients undergoing gastric cancer surgery. Methods: The four databases of Embase, PubMed, web of science, and google scholar were searched up to November 2022 for relevant randomized controlled trials. The Cochrane Collaboration’s assessment tool for randomized trials was used to evaluate the quality of studies. Results: Compared to patients who only received dietary counseling, patients who received both dietary counseling and ONS had considerably higher SMI, BMI, and less weight loss and sarcopenia occurrence rate. The patients who had received dietary counseling and ONS had significantly lower risk of chemotherapy intolerance. No differences in the readmission rate between the two groups was found. In terms of the quality of life, concomitant dietary advice and ONS significantly was associated with lower appetite loss and fatigue rate, but there was no difference in the other outcomes between the two groups. Conclusions: Post-discharge dietary advice with ONS following gastric cancer surgery may improve skeletal muscle maintenance, nutritional outcomes, quality of life variables, and chemotherapy tolerance. This evidence supports the recommendation of post-discharge dietary advice with ONS for patients who underwent gastric cancer surgery.Keywords: gastric cancer surgery, oral nutritional supplements, malnutrition, gastric cancer
Procedia PDF Downloads 732835 Molecularly Imprinted Nanoparticles (MIP NPs) as Non-Animal Antibodies Substitutes for Detection of Viruses
Authors: Alessandro Poma, Kal Karim, Sergey Piletsky, Giuseppe Battaglia
Abstract:
The recent increasing emergency threat to public health of infectious influenza diseases has prompted interest in the detection of avian influenza virus (AIV) H5N1 in humans as well as animals. A variety of technologies for diagnosing AIV infection have been developed. However, various disadvantages (costs, lengthy analyses, and need for high-containment facilities) make these methods less than ideal in their practical application. Molecularly Imprinted Polymeric Nanoparticles (MIP NPs) are suitable to overcome these limitations by having high affinity, selectivity, versatility, scalability and cost-effectiveness with the versatility of post-modification (labeling – fluorescent, magnetic, optical) opening the way to the potential introduction of improved diagnostic tests capable of providing rapid differential diagnosis. Here we present our first results in the production and testing of MIP NPs for the detection of AIV H5N1. Recent developments in the solid-phase synthesis of MIP NPs mean that for the first time a reliable supply of ‘soluble’ synthetic antibodies can be made available for testing as potential biological or diagnostic active molecules. The MIP NPs have the potential to detect viruses that are widely circulating in farm animals and indeed humans. Early and accurate identification of the infectious agent will expedite appropriate control measures. Thus, diagnosis at an early stage of infection of a herd or flock or individual maximizes the efficiency with which containment, prevention and possibly treatment strategies can be implemented. More importantly, substantiating the practicability’s of these novel reagents should lead to an initial reduction and eventually to a potential total replacement of animals, both large and small, to raise such specific serological materials.Keywords: influenza virus, molecular imprinting, nanoparticles, polymers
Procedia PDF Downloads 3622834 Implementation of Fuzzy Version of Block Backward Differentiation Formulas for Solving Fuzzy Differential Equations
Authors: Z. B. Ibrahim, N. Ismail, K. I. Othman
Abstract:
Fuzzy Differential Equations (FDEs) play an important role in modelling many real life phenomena. The FDEs are used to model the behaviour of the problems that are subjected to uncertainty, vague or imprecise information that constantly arise in mathematical models in various branches of science and engineering. These uncertainties have to be taken into account in order to obtain a more realistic model and many of these models are often difficult and sometimes impossible to obtain the analytic solutions. Thus, many authors have attempted to extend or modified the existing numerical methods developed for solving Ordinary Differential Equations (ODEs) into fuzzy version in order to suit for solving the FDEs. Therefore, in this paper, we proposed the development of a fuzzy version of three-point block method based on Block Backward Differentiation Formulas (FBBDF) for the numerical solution of first order FDEs. The three-point block FBBDF method are implemented in uniform step size produces three new approximations simultaneously at each integration step using the same back values. Newton iteration of the FBBDF is formulated and the implementation is based on the predictor and corrector formulas in the PECE mode. For greater efficiency of the block method, the coefficients of the FBBDF are stored at the start of the program. The proposed FBBDF is validated through numerical results on some standard problems found in the literature and comparisons are made with the existing fuzzy version of the Modified Simpson and Euler methods in terms of the accuracy of the approximated solutions. The numerical results show that the FBBDF method performs better in terms of accuracy when compared to the Euler method when solving the FDEs.Keywords: block, backward differentiation formulas, first order, fuzzy differential equations
Procedia PDF Downloads 3192833 Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines
Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin
Abstract:
Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction.Keywords: flammable zones, gas pipelines, numerical simulation, wind effects
Procedia PDF Downloads 1662832 Design and Analysis of Enhanced Heat Transfer Kit for Plate Type Heat Exchanger
Authors: Muhammad Shahrukh Saeed, Syed Ahmad Nameer, Shafiq Ur Rehman, Aisha Jillani
Abstract:
Heat exchangers play a critical role in industrial applications of thermal systems. Its physical size and performance are vital parameters; therefore enhancement of heat transfer through different techniques remained a major research area for both academia and industry. This research reports the main purpose of heat exchanger with better kit design which plays a vital role during the process of heat transfer. Plate type heat exchanger mainly requires a design in which the plates can be easily be installed and removed without having any problem with the plates. For the flow of the fluid within the heat exchanger, it requires a flow should be fully developed. As natural laws allows the driving energy of the system to flow until equilibrium is achieved. As with a plate type heat exchanger heat the heat penetrates the surface which separates the hot medium with the cold one very easily. As some of the precautions should be considered while taking the heat exchanger accountable like heat should transfer from hot medium to cold, there should always be difference in temperature present and heat loss from hot body should be equal to the heat gained by the cold body regardless of the losses present to the surroundings. Aluminum plates of same grade are used in all experiments to ensure similarity. Size of all plates was 254 mm X 100 mm and thickness was taken as 5 mm.Keywords: heat transfer coefficient, aluminium, entry length, design
Procedia PDF Downloads 3332831 Evaluation of Greenhouse Covering Materials
Authors: Mouustafa A. Fadel, Ahmed Bani Hammad, Faisal Al Hosany, Osama Iwaimer
Abstract:
Covering materials of greenhouses is the most governing component of the construction which controls two major parameters the amount of light and heat diffused from the surrounding environment into the internal space. In hot areas, balancing between inside and outside the greenhouse consumes most of the energy spent in production systems. In this research, a special testing apparatus was fabricated to simulate the structure of the greenhouse provided with a 400W full spectrum light. Tests were carried out to investigate the effectiveness of different commercial covering material in light and heat diffusion. Twenty one combinations of Fiberglass, Polyethylene, Polycarbonate, Plexiglass and Agril (PP nonwoven fabric) were tested. It was concluded that Plexiglass was the highest in light transparency of 87.4% where the lowest was 33% and 86.8% for Polycarbonate sheets. The enthalpy of the air moving through the testing rig was calculated according to air temperature differences between inlet and outlet openings. The highest enthalpy value was for one layer of Fiberglass and it was 0.81 kj/kg air while it was for both Plexiglass and blocked Fiberglass with a value of 0.5 kj/kg air. It is concluded that, although Plexiglass has high level of transparency which is indeed very helpful under low levels of solar flux, it is not recommended under hot arid conditions where solar flux is available most of the year. On the other hand, it might be a disadvantage to use Plixeglass specially in summer where it helps to accumulate more heat inside the greenhouse.Keywords: greenhouse, covering materials, aridlands, environmental control
Procedia PDF Downloads 4772830 Performance Evaluation of Using Genetic Programming Based Surrogate Models for Approximating Simulation Complex Geochemical Transport Processes
Authors: Hamed K. Esfahani, Bithin Datta
Abstract:
Transport of reactive chemical contaminant species in groundwater aquifers is a complex and highly non-linear physical and geochemical process especially for real life scenarios. Simulating this transport process involves solving complex nonlinear equations and generally requires huge computational time for a given aquifer study area. Development of optimal remediation strategies in aquifers may require repeated solution of such complex numerical simulation models. To overcome this computational limitation and improve the computational feasibility of large number of repeated simulations, Genetic Programming based trained surrogate models are developed to approximately simulate such complex transport processes. Transport process of acid mine drainage, a hazardous pollutant is first simulated using a numerical simulated model: HYDROGEOCHEM 5.0 for a contaminated aquifer in a historic mine site. Simulation model solution results for an illustrative contaminated aquifer site is then approximated by training and testing a Genetic Programming (GP) based surrogate model. Performance evaluation of the ensemble GP models as surrogate models for the reactive species transport in groundwater demonstrates the feasibility of its use and the associated computational advantages. The results show the efficiency and feasibility of using ensemble GP surrogate models as approximate simulators of complex hydrogeologic and geochemical processes in a contaminated groundwater aquifer incorporating uncertainties in historic mine site.Keywords: geochemical transport simulation, acid mine drainage, surrogate models, ensemble genetic programming, contaminated aquifers, mine sites
Procedia PDF Downloads 2762829 Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore
Authors: Alafara A. Baba, Kuranga I. Ayinla, Folahan A. Adekola, Rafiu B. Bale
Abstract:
Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided.Keywords: chalcopyrite ore, Nigeria, copper, copper oxide, solvent extraction
Procedia PDF Downloads 3942828 Psychological Well Being of Female Prisoners
Authors: Sujata Gupta Kedar, J. N. Tulika
Abstract:
Early researchers suggested that imprisonment had negative psychological and physical effects on its inmates, leading to psychological deterioration. The term “prisons” in the Consensus Statement of WHO is intended to denote, as those institutions which hold people who have been sentenced to a period of imprisonment by the courts for offences against the law. Thus “prisons” if local circumstances justify it, may also be taken to include secure institutions holding on a compulsory basis on any of the following categories of people: remand prisoners; civil prisoners; juvenile detainees; immigration detainees; some categories of mentally disordered patients; asylum seekers; refugees; people detained pending expulsion, deportation, exile, exclusion or any other form of compulsory transfer to other countries or areas of the country; people detained in police cells; and any other compulsorily detained group. Prisons are aimed to cure the criminal and their behavior but their records are not encouraging. Instead the imprisonment affects all prisoners in different way. From withstanding the shock of entry to the new culture, which is very different from their own, prisoners must try to determine how to spend the time in prison, since the hours appears to be endless in prisons. There is also the fear of deterioration. This article aims to provide an overview of the psychological well being of female prisoners in the prison environment in five areas- satisfaction, efficiency, sociability, mental health and interpersonal relations. Research was done on two different types of imprisonment- under trial prisoner and convict. Total sample included 22 female prisoners of Nagaon Special Jail of Assam. The instrument used for the study was based on Psychological Well Being Scale. Statistical analysis was done with t-test and one way anova test. The result demonstrated that there is no significant difference in the psychological wellbeing of female prisoners in the prison and that there is no significant difference in the psychological well being of different types of female prisoners involved in different crimes but there is significant difference in the mental health of the female prisoners in prison.Keywords: psychological effect, female prisoners, prison, well being of prisoners
Procedia PDF Downloads 4082827 Tsunami Vulnerability of Critical Infrastructure: Development and Application of Functions for Infrastructure Impact Assessment
Authors: James Hilton Williams
Abstract:
Recent tsunami events, including the 2011 Tohoku Tsunami, Japan, and the 2015 Illapel Tsunami, Chile, have highlighted the potential for tsunami impacts on the built environment. International research in the tsunami impacts domain has been largely focused toward impacts on buildings and casualty estimations, while only limited attention has been placed on the impacts on infrastructure which is critical for the recovery of impacted communities. New Zealand, with 75% of the population within 10 km of the coast, has a large amount of coastal infrastructure exposed to local, regional and distant tsunami sources. To effectively manage tsunami risk for New Zealand critical infrastructure, including energy, transportation, and communications, the vulnerability of infrastructure networks and components must first be determined. This research develops infrastructure asset vulnerability, functionality and repair- cost functions based on international post-event tsunami impact assessment data from technologically similar countries, including Japan and Chile, and adapts these to New Zealand. These functions are then utilized within a New Zealand based impact framework, allowing for cost benefit analyses, effective tsunami risk management strategies and mitigation options for exposed critical infrastructure to be determined, which can also be applied internationally.Keywords: impact assessment, infrastructure, tsunami impacts, vulnerability functions
Procedia PDF Downloads 1612826 Stability Analysis of Green Coffee Export Markets of Ethiopia: Markov-Chain Analysis
Authors: Gabriel Woldu, Maria Sassi
Abstract:
Coffee performs a pivotal role in Ethiopia's GDP, revenue, employment, domestic demand, and export earnings. Ethiopia's coffee production and exports show high variability in the amount of production and export earnings. Despite being the continent's fifth-largest coffee producer, Ethiopia has not developed its ability to shine as a major exporter in the globe's green coffee exports. Ethiopian coffee exports were not stable and had high volume and earnings fluctuations. The main aim of this study was to analyze the dynamics of the export of coffee variation to different importing nations using a first-order Markov Chain model. 14 years of time-series data has been used to examine the direction and structural change in the export of coffee. A compound annual growth rate (CAGR) was used to determine the annual growth rate in the coffee export quantity, value, and per-unit price over the study period. The major export markets for Ethiopian coffee were Germany, Japan, and the USA, which were more stable, while countries such as France, Italy, Belgium, and Saudi Arabia were less stable and had low retention rates for Ethiopian coffee. The study, therefore, recommends that Ethiopia should again revitalize its market to France, Italy, Belgium, and Saudi Arabia, as these countries are the major coffee-consuming countries in the world to boost its export stake to the global coffee markets in the future. In order to further enhance export stability, the Ethiopian Government and other stakeholders in the coffee sector should have to work on reducing the volatility of coffee output and exports in order to improve production and quality efficiency, so that stabilize markets as well as to make the product attractive and price competitive in the importing countries.Keywords: coffee, CAGR, Markov chain, direction of trade, Ethiopia
Procedia PDF Downloads 1382825 The Role of Financial Literacy in Driving Consumer Well-Being
Authors: Amin Nazifi, Amir Raki, Doga Istanbulluoglu
Abstract:
The incorporation of technological advancements into financial services, commonly referred to as Fintech, is primarily aimed at promoting services that are accessible, convenient, and inclusive, thereby benefiting both consumers and businesses. Fintech services employ a variety of technologies, including Artificial Intelligence (AI), blockchain, and big data, to enhance the efficiency and productivity of traditional services. Cryptocurrency, a component of Fintech, is projected to be a trillion-dollar industry, with over 320 million consumers globally investing in various forms of cryptocurrencies. However, these potentially transformative services can also lead to adverse outcomes. For instance, recent Fintech innovations have been increasingly linked to misconduct and disservice, resulting in serious implications for consumer well-being. This could be attributed to the ease of access to Fintech, which enables adults to trade cryptocurrencies, shares, and stocks via mobile applications. However, there is little known about the darker aspects of technological advancements, such as Fintech. Hence, this study aims to generate scholarly insights into the design of robust and resilient Fintech services that can add value to businesses and enhance consumer well-being. Using a mixed-method approach, the study will investigate the personal and contextual factors influencing consumers’ adoption and usage of technology innovations and their impacts on consumer well-being. First, semi-structured interviews will be conducted with a sample of Fintech users until theoretical saturation is achieved. Subsequently, based on the findings of the first study, a quantitative study will be conducted to develop and empirically test the impacts of these factors on consumers’ well-being using an online survey with a sample of 300 participants experienced in using Fintech services. This study will contribute to the growing Transformative Service Research (TSR) literature by addressing the latest priorities in service research and shedding light on the impact of fintech services on consumer well-being.Keywords: consumer well-being, financial literacy, Fintech, service innovation
Procedia PDF Downloads 642824 A Novel Heuristic for Analysis of Large Datasets by Selecting Wrapper-Based Features
Authors: Bushra Zafar, Usman Qamar
Abstract:
Large data sample size and dimensions render the effectiveness of conventional data mining methodologies. A data mining technique are important tools for collection of knowledgeable information from variety of databases and provides supervised learning in the form of classification to design models to describe vital data classes while structure of the classifier is based on class attribute. Classification efficiency and accuracy are often influenced to great extent by noisy and undesirable features in real application data sets. The inherent natures of data set greatly masks its quality analysis and leave us with quite few practical approaches to use. To our knowledge first time, we present a new approach for investigation of structure and quality of datasets by providing a targeted analysis of localization of noisy and irrelevant features of data sets. Machine learning is based primarily on feature selection as pre-processing step which offers us to select few features from number of features as a subset by reducing the space according to certain evaluation criterion. The primary objective of this study is to trim down the scope of the given data sample by searching a small set of important features which may results into good classification performance. For this purpose, a heuristic for wrapper-based feature selection using genetic algorithm and for discriminative feature selection an external classifier are used. Selection of feature based on its number of occurrence in the chosen chromosomes. Sample dataset has been used to demonstrate proposed idea effectively. A proposed method has improved average accuracy of different datasets is about 95%. Experimental results illustrate that proposed algorithm increases the accuracy of prediction of different diseases.Keywords: data mining, generic algorithm, KNN algorithms, wrapper based feature selection
Procedia PDF Downloads 3162823 Human-Machine Cooperation in Facial Comparison Based on Likelihood Scores
Authors: Lanchi Xie, Zhihui Li, Zhigang Li, Guiqiang Wang, Lei Xu, Yuwen Yan
Abstract:
Image-based facial features can be classified into category recognition features and individual recognition features. Current automated face recognition systems extract a specific feature vector of different dimensions from a facial image according to their pre-trained neural network. However, to improve the efficiency of parameter calculation, an algorithm generally reduces the image details by pooling. The operation will overlook the details concerned much by forensic experts. In our experiment, we adopted a variety of face recognition algorithms based on deep learning, compared a large number of naturally collected face images with the known data of the same person's frontal ID photos. Downscaling and manual handling were performed on the testing images. The results supported that the facial recognition algorithms based on deep learning detected structural and morphological information and rarely focused on specific markers such as stains and moles. Overall performance, distribution of genuine scores and impostor scores, and likelihood ratios were tested to evaluate the accuracy of biometric systems and forensic experts. Experiments showed that the biometric systems were skilled in distinguishing category features, and forensic experts were better at discovering the individual features of human faces. In the proposed approach, a fusion was performed at the score level. At the specified false accept rate, the framework achieved a lower false reject rate. This paper contributes to improving the interpretability of the objective method of facial comparison and provides a novel method for human-machine collaboration in this field.Keywords: likelihood ratio, automated facial recognition, facial comparison, biometrics
Procedia PDF Downloads 1302822 Influence of Optical Fluence Distribution on Photoacoustic Imaging
Authors: Mohamed K. Metwally, Sherif H. El-Gohary, Kyung Min Byun, Seung Moo Han, Soo Yeol Lee, Min Hyoung Cho, Gon Khang, Jinsung Cho, Tae-Seong Kim
Abstract:
Photoacoustic imaging (PAI) is a non-invasive and non-ionizing imaging modality that combines the absorption contrast of light with ultrasound resolution. Laser is used to deposit optical energy into a target (i.e., optical fluence). Consequently, the target temperature rises, and then thermal expansion occurs that leads to generating a PA signal. In general, most image reconstruction algorithms for PAI assume uniform fluence within an imaging object. However, it is known that optical fluence distribution within the object is non-uniform. This could affect the reconstruction of PA images. In this study, we have investigated the influence of optical fluence distribution on PA back-propagation imaging using finite element method. The uniform fluence was simulated as a triangular waveform within the object of interest. The non-uniform fluence distribution was estimated by solving light propagation within a tissue model via Monte Carlo method. The results show that the PA signal in the case of non-uniform fluence is wider than the uniform case by 23%. The frequency spectrum of the PA signal due to the non-uniform fluence has missed some high frequency components in comparison to the uniform case. Consequently, the reconstructed image with the non-uniform fluence exhibits a strong smoothing effect.Keywords: finite element method, fluence distribution, Monte Carlo method, photoacoustic imaging
Procedia PDF Downloads 3782821 White Wine Discrimination Based on Deconvoluted Surface Enhanced Raman Spectroscopy Signals
Authors: Dana Alina Magdas, Nicoleta Simona Vedeanu, Ioana Feher, Rares Stiufiuc
Abstract:
Food and beverages authentication using rapid and non-expensive analytical tools represents nowadays an important challenge. In this regard, the potential of vibrational techniques in food authentication has gained an increased attention during the last years. For wines discrimination, Raman spectroscopy appears more feasible to be used as compared with IR (infrared) spectroscopy, because of the relatively weak water bending mode in the vibrational spectroscopy fingerprint range. Despite this, the use of Raman technique in wine discrimination is in an early stage. Taking this into consideration, the wine discrimination potential of surface-enhanced Raman scattering (SERS) technique is reported in the present work. The novelty of this study, compared with the previously reported studies, concerning the application of vibrational techniques in wine discrimination consists in the fact that the present work presents the wines differentiation based on the individual signals obtained from deconvoluted spectra. In order to achieve wines classification with respect to variety, geographical origin and vintage, the peaks intensities obtained after spectra deconvolution were compared using supervised chemometric methods like Linear Discriminant Analysis (LDA). For this purpose, a set of 20 white Romanian wines from different viticultural Romanian regions four varieties, was considered. Chemometric methods applied directly to row SERS experimental spectra proved their efficiency, but discrimination markers identification found to be very difficult due to the overlapped signals as well as for the band shifts. By using this approach, a better general view related to the differences that appear among the wines in terms of compositional differentiation could be reached.Keywords: chemometry, SERS, variety, wines discrimination
Procedia PDF Downloads 1602820 Analysis of CO₂ Capture Products from Carbon Capture and Utilization Plant
Authors: Bongjae Lee, Beom Goo Hwang, Hye Mi Park
Abstract:
CO₂ capture products manufactured through Carbon Capture and Utilization (CCU) Plant that collect CO₂ directly from power plants require accurate measurements of the amount of CO₂ captured. For this purpose, two tests were carried out on the weight loss test. And one was analyzed using a carbon dioxide quantification device. First, the ignition loss analysis was performed by measuring the weight of the sample at 550°C after the first conversation and then confirming the loss when ignited at 950°C. Second, in the thermogravimetric analysis, the sample was divided into two sections of 40 to 500°C and 500 to 800°C to confirm the reduction. The results of thermal weight loss analysis and thermogravimetric analysis were confirmed to be almost similar. However, the temperature of the ignition loss analysis method was 950°C, which was 150°C higher than that of the thermogravimetric method at a temperature of 800°C, so that the difference in the amount of weight loss was 3 to 4% higher by the heat loss analysis method. In addition, the tendency that the CO₂ content increases as the reaction time become longer is similarly confirmed. Third, the results of the wet titration method through the carbon dioxide quantification device were found to be significantly lower than the weight loss method. Therefore, based on the results obtained through the above three analysis methods, we will establish a method to analyze the accurate amount of CO₂. Acknowledgements: This work was supported by the Korea Institute of Energy Technology Evaluation and planning (No. 20152010201850).Keywords: carbon capture and utilization, CCU, CO2, CO2 capture products, analysis method
Procedia PDF Downloads 2172819 Highly Efficient Ca-Doped CuS Counter Electrodes for Quantum Dot Sensitized Solar Cells
Authors: Mohammed Panthakkal Abdul Muthalif, Shanmugasundaram Kanagaraj, Jumi Park, Hangyu Park, Youngson Choe
Abstract:
The present study reports the incorporation of calcium ions into the CuS counter electrodes (CEs) in order to modify the photovoltaic performance of quantum dot-sensitized solar cells (QDSSCs). Metal ion-doped CuS thin film was prepared by the chemical bath deposition (CBD) method on FTO substrate and used directly as counter electrodes for TiO₂/CdS/CdSe/ZnS photoanodes based QDSSCs. For the Ca-doped CuS thin films, copper nitrate and thioacetamide were used as anionic and cationic precursors. Calcium nitrate tetrahydrate was used as doping material. The surface morphology of Ca-doped CuS CEs indicates that the fragments are uniformly distributed, and the structure is densely packed with high crystallinity. The changes observed in the diffraction patterns suggest that Ca dopant can introduce increased disorder into CuS material structure. EDX analysis was employed to determine the elemental identification, and the results confirmed the presence of Cu, S, and Ca on the FTO glass substrate. The photovoltaic current density – voltage characteristics of Ca-doped CuS CEs shows the specific improvements in open circuit voltage decay (Voc) and short-circuit current density (Jsc). Electrochemical impedance spectroscopy results display that Ca-doped CuS CEs have greater electrocatalytic activity and charge transport capacity than bare CuS. All the experimental results indicate that 20% Ca-doped CuS CE based QDSSCs exhibit high power conversion efficiency (η) of 4.92%, short circuit current density of 15.47 mA cm⁻², open circuit photovoltage of 0.611 V, and fill factor (FF) of 0.521 under illumination of one sun.Keywords: Ca-doped CuS counter electrodes, surface morphology, chemical bath deposition method, electrocatalytic activity
Procedia PDF Downloads 1642818 Cloud Computing Impact on e-Government Adoption
Authors: Ali Elshabrawy
Abstract:
Cloud computing is expected to be important for e Government in near future. Governments need it for solving some of its e Government, financial, infrastructure, legacy systems and integration problems. It reduces information technology (IT) infrastructure needs and support costs, and offers on-demand infrastructure and computational power, improved collaboration capabilities, which are important for e Government projects start up and sustainability. Budget pressures will continue to drive more and more government IT to hybrid and even public clouds, and more cooperation between cloud service providers and governmental agencies are expected, Or developing governmental private, community clouds. Motivation to convince governments to use cloud computing services, will create a pressure on cloud service providers to cope with government's requirements for interoperability, security standards, open data and integration between their cloud systems There will be significant legal action arising out of governmental uses of cloud computing, and legislation addressing both IT and business needs and consumer fears and protections. Cloud computing is a considered a revolution for IT and E business in general and e commerce, e Government in particular. As governments faces increasing challenges regarding IT infrastructure required for e Government projects implementation. As a result of Lack of required financial resources allocated for e Government projects in developed and developing countries. Cloud computing can play a major role to solve some of e Government projects challenges such as, lack of financial resources, IT infrastructure, Human resources trained to manage e Government applications, interoperability, cost efficiency challenges. If we could solve some security issues related to cloud computing usage which considered critical for e Government projects. Pretty sure it’s Just a matter of time before cloud service providers will find out solutions to attract governments as major customers for their business.Keywords: cloud computing, e-government, adoption, supply side barriers, e-government requirements, challenges
Procedia PDF Downloads 3462817 The Effect of Environmental CSR on Corporate Social Performance: The Mediating Role of Green Innovation and Corporate Image
Authors: Edward Fosu
Abstract:
Green innovation has emerged as a significant environmental concern across the world. Green innovation refers to the utilization of technological developments that facilitate energy savings and waste material recycling. The stakeholder theory and resourced-based theory were used to examine how stakeholders' expectations affect corporate green innovation activities and how corporate innovation initiatives affect the corporate image and social performance. This study used structural equation modelling (SEM) and hierarchical regression to test the effects of environmental corporate social responsibility on social performance through mediators: green innovation and corporate image. A quantitative design was employed using data from Chinese companies in Ghana for this study. The study assessed. The results revealed that environmental practices promote corporate social performance (β = 0.070, t = 1.974, p = 0.049), positively affect green product innovation (β = 0.251, t = 7.478, p < 0.001), and has direct effect on green process innovation (β = 0.174, t = 6.192, p < 0.001). Green product innovation and green process innovation significantly promote corporate image respectively (β = 0.089, t = 2.581, p = 0.010), (β = 0.089, t = 2.367, p = 0.018). Corporate image has significant direct effects on corporate social performance (β = 0.146, t = 4.256, p < 0.001). Corporate environmental practices have an impact on the development of green products and processes which promote companies’ social performance. Additionally, evidence supports that corporate image influences companies’ social performance.Keywords: environmental CSR, corporate image, green innovation, coprorate social performance
Procedia PDF Downloads 126