Search results for: Nategheh Najafpour
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3

Search results for: Nategheh Najafpour

3 Determination of Safety Distance Around Gas Pipelines Using Numerical Methods

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Energy transmission pipelines are one of the most vital parts of each country which several strict laws have been conducted to enhance the safety of these lines and their vicinity. One of these laws is the safety distance around high pressure gas pipelines. Safety distance refers to the minimum distance from the pipeline where people and equipment do not confront with serious damages. In the present study, safety distance around high pressure gas transmission pipelines were determined by using numerical methods. For this purpose, gas leakages from cracked pipeline and created jet fires were simulated as continuous ignition, three dimensional, unsteady and turbulent cases. Numerical simulations were based on finite volume method and turbulence of flow was considered using k-ω SST model. Also, the combustion of natural gas and air mixture was applied using the eddy dissipation method. The results show that, due to the high pressure difference between pipeline and environment, flow chocks in the cracked area and velocity of the exhausted gas reaches to sound speed. Also, analysis of the incident radiation results shows that safety distances around 42 inches high pressure natural gas pipeline based on 5 and 15 kW/m2 criteria are 205 and 272 meters, respectively.

Keywords: gas pipelines, incident radiation, numerical simulation, safety distance

Procedia PDF Downloads 300
2 Numerical Simulation of Natural Gas Dispersion from Low Pressure Pipelines

Authors: Omid Adibi, Nategheh Najafpour, Bijan Farhanieh, Hossein Afshin

Abstract:

Gas release from the pipelines is one of the main factors in the gas industry accidents. Released gas ejects from the pipeline as a free jet and in the growth process, the fuel gets mixed with the ambient air. Accordingly, an accidental spark will release the chemical energy of the mixture with an explosion. Gas explosion damages the equipment and endangers the life of staffs. So due to importance of safety in gas industries, prevision of accident can reduce the number of the casualties. In this paper, natural gas leakages from the low pressure pipelines are studied in two steps: 1) the simulation of mixing process and identification of flammable zones and 2) the simulation of wind effects on the mixing process. The numerical simulations were performed by using the finite volume method and the pressure-based algorithm. Also, for the grid generation the structured method was used. The results show that, in just 6.4 s after accident, released natural gas could penetrate to 40 m in vertical and 20 m in horizontal direction. Moreover, the results show that the wind speed is a key factor in dispersion process. In fact, the wind transports the flammable zones into the downstream. Hence, to improve the safety of the people and human property, it is preferable to construct gas facilities and buildings in the opposite side of prevailing wind direction.

Keywords: flammable zones, gas pipelines, numerical simulation, wind effects

Procedia PDF Downloads 141
1 Macroscopic Evaluation of the Effect of Low-Level Laser and Plasma Jet on Wound Healing in Rats

Authors: Zahra Tabarsi, Mehdi Marjani, Alireza Najafpour, Alborz Mirzade

Abstract:

The aim of this study was to evaluate and compare the macroscopic effect of low level laser and plasma jet for wound healing in rats. The study was performed on 40 old male white rats with an average weight of 250 g and an average age of the same age. After preparing the rats from Ibn Sina Research Institute, they were kept the same for one week under environmental conditions such as temperature, humidity and light, and nutrition such as the type of diet and the number of meals. Then, to start the research, rats were randomly divided into two groups (A): laser treatment of wounds, group (B): plasma wound treatment. All rats were inhibited 4 hours before each anesthesia under conditions of abstinence and up to 2 hours after drinking water. Rats were anesthetized by intraperitoneal injection of ketamine 10% and xylazine 2%.After scrubbing between two shoulders of each rat, a circular wound was created by sterile 5 mm biopsy puncture. Group A rats were treated with low level laser in three sessions and group B in three sessions with argon plasma. Based on the observed results, it seems that Low level laser radiation has more acceptable and appropriate effects than cold plasma on the healing of rat skin wounds.

Keywords: low-level laser, plasma jet, rat, wound healing

Procedia PDF Downloads 78