Search results for: strategic intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3018

Search results for: strategic intelligence

1878 Evaluation and Strategic Development of IT in Accounting in Turkey

Authors: Eda Kocakaya, Sebahat Seker, Dogan Argun

Abstract:

The aim of this study is to determine the process of information technologies and the connections between concepts in accounting management services in Turkey. The objective of this study is to determine the adaptation and evaluation process of information technologies and the connections between concepts and differences in accounting management services in Turkey. The situation and determination of the IT applications of Accounting Management were studied. The applications of • Billing • Order Processing • Accounts Receivable/Payable Management • Contract Management • Bank Account Management Were discussed in this study. The IT applications were demonstrated and realized in actual accounting services. The sectoral representative's companies were selected, and the IT application was searched by bibliometric analysis.

Keywords: management, accounting, information technologies, adaptation

Procedia PDF Downloads 309
1877 Analyzing Brand Related Information Disclosure and Brand Value: Further Empirical Evidence

Authors: Yves Alain Ach, Sandra Rmadi Said

Abstract:

An extensive review of literature in relation to brands has shown that little research has focused on the nature and determinants of the information disclosed by companies with respect to the brands they own and use. The objective of this paper is to address this issue. More specifically, the aim is to characterize the nature of the information disclosed by companies in terms of estimating the value of brands and to identify the determinants of that information according to the company’s characteristics most frequently tested by previous studies on the disclosure of information on intangible capital, by studying the practices of a sample of 37 French companies. Our findings suggest that companies prefer to communicate accounting, economic and strategic information in relation to their brands instead of providing financial information. The analysis of the determinants of the information disclosed on brands leads to the conclusion that the groups which operate internationally and have chosen a category 1 auditing firm to communicate more information to investors in their annual report. Our study points out that the sector is not an explanatory variable for voluntary brand disclosure, unlike previous studies on intangible capital. Our study is distinguished by the study of an element that has been little studied in the financial literature, namely the determinants of brand-related information. With regard to the effect of size on brand-related information disclosure, our research does not confirm this link. Many authors point out that large companies tend to publish more voluntary information in order to respond to stakeholder pressure. Our study also establishes that the relationship between brand information supply and performance is insignificant. This relationship is already controversial by previous research, and it shows that higher profitability motivates managers to provide more information, as this strengthens investor confidence and may increase managers' compensation. Our main contribution focuses on the nature of the inherent characteristics of the companies that disclose the most information about brands. Our results show the absence of a link between size and industry on the one hand and the supply of brand information on the other, contrary to previous research. Our analysis highlights three types of information disclosed about brands: accounting, economics and strategy. We, therefore, question the reasons that may lead companies to voluntarily communicate mainly accounting, economic and strategic information in relation to our study from one year to the next and not to communicate detailed information that would allow them to reconstitute the financial value of their brands. Our results can be useful for companies and investors. Our results highlight, to our surprise, the lack of financial information that would allow investors to understand a better valuation of brands. We believe that additional information is needed to improve the quality of accounting and financial information related to brands. The additional information provided in the special report that we recommend could be called a "report on intangible assets”.

Keywords: brand related information, brand value, information disclosure, determinants

Procedia PDF Downloads 84
1876 A Correlation Analysis of an Effective Music Education with Students’ Mathematical Performance

Authors: Yoon Suh Song

Abstract:

Though music education can broaden one’s capacity for mathematical performance, many countries lag behind in music education. Little empirical evidence is found to identify the connection between math and music. Therefore, this research was set out to explore what music-related variables are associated with mathematical performance. The result of our analysis is as follows: A Pearson's Correlation analysis revealed that PISA math score is strongly correlated with students' Intelligence Quotient (IQ). This lays the foundation for further research as to what factors in students’ IQ lead to a better performance in math.

Keywords: music education, mathematical performance, education, IQ

Procedia PDF Downloads 212
1875 Transition Pathways of Commercial-Urban Fleet Electrification

Authors: Emily Gould, Walter Wehremeyer, David Greaves, Rodney Turtle

Abstract:

This paper considers current thinking on the pathway for electric vehicles, identifying the development blocks of alternative innovation within the market and analyse technological lock-in. The relationship between transition pathways and technological lock-in is largely under-researched particularly in the field of e-mobility. This paper is based on a study with three commercial-urban fleets that examines strategic decisions in new technology adaption alongside vehicle procurement and driver perspective. The paper will analyse the fleet’s decision matrix upon electric vehicles and seek to understand the influence of company culture, strategy and technology applicability, within the context of transition pathways.

Keywords: electric vehicles, fleets, path dependencies, transition pathways

Procedia PDF Downloads 568
1874 Machine Learning Framework: Competitive Intelligence and Key Drivers Identification of Market Share Trends among Healthcare Facilities

Authors: Anudeep Appe, Bhanu Poluparthi, Lakshmi Kasivajjula, Udai Mv, Sobha Bagadi, Punya Modi, Aditya Singh, Hemanth Gunupudi, Spenser Troiano, Jeff Paul, Justin Stovall, Justin Yamamoto

Abstract:

The necessity of data-driven decisions in healthcare strategy formulation is rapidly increasing. A reliable framework which helps identify factors impacting a healthcare provider facility or a hospital (from here on termed as facility) market share is of key importance. This pilot study aims at developing a data-driven machine learning-regression framework which aids strategists in formulating key decisions to improve the facility’s market share which in turn impacts in improving the quality of healthcare services. The US (United States) healthcare business is chosen for the study, and the data spanning 60 key facilities in Washington State and about 3 years of historical data is considered. In the current analysis, market share is termed as the ratio of the facility’s encounters to the total encounters among the group of potential competitor facilities. The current study proposes a two-pronged approach of competitor identification and regression approach to evaluate and predict market share, respectively. Leveraged model agnostic technique, SHAP, to quantify the relative importance of features impacting the market share. Typical techniques in literature to quantify the degree of competitiveness among facilities use an empirical method to calculate a competitive factor to interpret the severity of competition. The proposed method identifies a pool of competitors, develops Directed Acyclic Graphs (DAGs) and feature level word vectors, and evaluates the key connected components at the facility level. This technique is robust since its data-driven, which minimizes the bias from empirical techniques. The DAGs factor in partial correlations at various segregations and key demographics of facilities along with a placeholder to factor in various business rules (for ex. quantifying the patient exchanges, provider references, and sister facilities). Identified are the multiple groups of competitors among facilities. Leveraging the competitors' identified developed and fine-tuned Random Forest Regression model to predict the market share. To identify key drivers of market share at an overall level, permutation feature importance of the attributes was calculated. For relative quantification of features at a facility level, incorporated SHAP (SHapley Additive exPlanations), a model agnostic explainer. This helped to identify and rank the attributes at each facility which impacts the market share. This approach proposes an amalgamation of the two popular and efficient modeling practices, viz., machine learning with graphs and tree-based regression techniques to reduce the bias. With these, we helped to drive strategic business decisions.

Keywords: competition, DAGs, facility, healthcare, machine learning, market share, random forest, SHAP

Procedia PDF Downloads 91
1873 The Project Management for Quality Services in Special Education Schools

Authors: Aysegul Salikutluk, Zehra Altinay, Gokmen Dagli, Fahriye Altinay

Abstract:

The aim of the study is to reveal the performance of special education schools as regards the service quality and management within the school culture. The project management and school climate are the fundamental elements for the quality in organisations. Having strategic plans, activities and funded projects improve service quality and satisfaction for the families who have children with disabilities. The research has qualitative nature, self-reports were used to examine the perceptions of teachers upon project management and school climate for service quality. The results show that special education schools' teachers are aware of essence of school climate and flow of communication for service quality and project management.

Keywords: disability, education, service quality, project management

Procedia PDF Downloads 272
1872 How Strategic Urban Design Promote Sustainable Urban Mobility: A Comparative Analysis of Cities from Global North and Global South

Authors: Rati Sandeep Choudhari

Abstract:

Mobility flows are considered one of the most important elements of urbanisation, with transport infrastructure serving as a backbone of urban fabrics. Although rapid urbanisation and changing land use patterns have led to an increase in urban mobility levels around the globe, mobility, in general, has become an unpleasant experience for city dwellers, making locations around the city inconvenient to access. With public transport featured in almost every sustainable mobility plan in developing countries, the intermodality and integration with appropriate non–motorised transport infrastructure is often neglected. As a result, people choose to use private cars and two-wheelers to travel, rendering public transit systems underutilised, and encroaching onto pedestrian space on streets, thus making urban mobility unsafe and inconvenient for a major section of society. On the other hand, cities in the West, especially in Europe, depend heavily on inter–modal transit systems, allowing people to shift between metros, buses, trams, walking, and cycling to access even the remote locations of the city. Keeping accessibility as the focal point while designing urban mobility plans and policies, these cities have appropriately refined their urban form, optimised urban densities, developed a multimodal transit system, and adopted place-making strategies to foster a sense of place, thus, improving the quality of urban mobility experience in cities. Using a qualitative research approach, the research looks in detail into the existing literature on what kind of strategies can be applied to improve the urban mobility experience for city dwellers. It further studies and draws out a comparative analysis of cities in both developed and developing parts of the world where these strategies have been used to create people-centric mobility systems, fostering a sense of place with respect to urban mobility and how these strategies affected their social, economic, and environmental dynamics. The examples reflect on how different strategies like redefining land use patterns to form close knit neighbourhoods, development of non – motorise transit systems, and their integration with public transport infrastructure and place-making approach has helped in enhancing the quality and experience of mobility infrastructure in cities. The research finally concludes by laying out strategies that can be adopted by cities of the Global South to develop future mobility systems in a people-centric and sustainable way.

Keywords: urban mobility, sustainable transport, strategic planning, people-centric approach

Procedia PDF Downloads 128
1871 Embedded Hybrid Intuition: A Deep Learning and Fuzzy Logic Approach to Collective Creation and Computational Assisted Narratives

Authors: Roberto Cabezas H

Abstract:

The current work shows the methodology developed to create narrative lighting spaces for the multimedia performance piece 'cluster: the vanished paradise.' This empirical research is focused on exploring unconventional roles for machines in subjective creative processes, by delving into the semantics of data and machine intelligence algorithms in hybrid technological, creative contexts to expand epistemic domains trough human-machine cooperation. The creative process in scenic and performing arts is guided mostly by intuition; from that idea, we developed an approach to embed collective intuition in computational creative systems, by joining the properties of Generative Adversarial Networks (GAN’s) and Fuzzy Clustering based on a semi-supervised data creation and analysis pipeline. The model makes use of GAN’s to learn from phenomenological data (data generated from experience with lighting scenography) and algorithmic design data (augmented data by procedural design methods), fuzzy logic clustering is then applied to artificially created data from GAN’s to define narrative transitions built on membership index; this process allowed for the creation of simple and complex spaces with expressive capabilities based on position and light intensity as the parameters to guide the narrative. Hybridization comes not only from the human-machine symbiosis but also on the integration of different techniques for the implementation of the aided design system. Machine intelligence tools as proposed in this work are well suited to redefine collaborative creation by learning to express and expand a conglomerate of ideas and a wide range of opinions for the creation of sensory experiences. We found in GAN’s and Fuzzy Logic an ideal tool to develop new computational models based on interaction, learning, emotion and imagination to expand the traditional algorithmic model of computation.

Keywords: fuzzy clustering, generative adversarial networks, human-machine cooperation, hybrid collective data, multimedia performance

Procedia PDF Downloads 142
1870 Strategic Metals and Rare Earth Elements Exploration of Lithium Cesium Tantalum Type Pegmatites: A Case Study from Northwest Himalayas

Authors: Auzair Mehmood, Mohammad Arif

Abstract:

The LCT (Li, Cs and Ta rich)-type pegmatites, genetically related to peraluminous S-type granites, are being mined for strategic metals (SMs) and rare earth elements (REEs) around the world. This study investigates the SMs and REEs potentials of pegmatites that are spatially associated with an S-type granitic suite of the Himalayan sequence, specifically Mansehra Granitic Complex (MGC), northwest Pakistan. Geochemical signatures of the pegmatites and some of their mineral extracts were analyzed using Inductive Coupled Plasma Mass Spectroscopy (ICP-MS) technique to explore and generate potential prospects (if any) for SMs and REEs. In general, the REE patterns of the studied whole-rock pegmatite samples show tetrad effect and possess low total REE abundances, strong positive Europium (Eu) anomalies, weak negative Cesium (Cs) anomalies and relative enrichment in heavy REE. Similar features have been observed on the REE patterns of the feldspar extracts. However, the REE patterns of the muscovite extracts reflect preferential enrichment and possess negative Eu anomalies. The trace element evaluation further suggests that the MGC pegmatites have undergone low levels of fractionation. Various trace elements concentrations (and their ratios) including Ta versus Cs, K/Rb (Potassium/Rubidium) versus Rb and Th/U (Thorium/Uranium) versus K/Cs, were used to analyze the economically viable mineral potential of the studied rocks. On most of the plots, concentrations fall below the dividing line and confer either barren or low-level mineralization potential of the studied rocks for both SMs and REEs. The results demonstrate paucity of the MGC pegmatites with respect to Ta-Nb (Tantalum-Niobium) mineralization, which is in sharp contrast to many Pan-African S-type granites around the world. The MGC pegmatites are classified as muscovite pegmatites based on their K/Rb versus Cs relationship. This classification is consistent with the occurrence of rare accessory minerals like garnet, biotite, tourmaline, and beryl. Furthermore, the classification corroborates with an earlier sorting of the MCG pegmatites into muscovite-bearing, biotite-bearing, and subordinate muscovite-biotite types. These types of pegmatites lack any significant SMs and REEs mineralization potentials. Field relations, such as close spatial association with parent granitic rocks and absence of internal zonation structure, also reflect the barren character and hence lack of any potential prospects of the MGC pegmatites.

Keywords: exploration, fractionation, Himalayas, pegmatites, rare earth elements

Procedia PDF Downloads 204
1869 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 72
1868 Artificial Intelligence and Development: The Missing Link

Authors: Driss Kettani

Abstract:

ICT4D actors are naturally attempted to include AI in the range of enabling technologies and tools that could support and boost the Development process, and to refer to these as AI4D. But, doing so, assumes that AI complies with the very specific features of ICT4D context, including, among others, affordability, relevance, openness, and ownership. Clearly, none of these is fulfilled, and the enthusiastic posture that AI4D is a natural part of ICT4D is not grounded and, to certain extent, does not serve the purpose of Technology for Development at all. In the context of Development, it is important to emphasize and prioritize ICT4D, in the national digital transformation strategies, instead of borrowing "trendy" waves of the IT Industry that are motivated by business considerations, with no specific care/consideration to Development.

Keywords: AI, ICT4D, technology for development, position paper

Procedia PDF Downloads 88
1867 E-Resource Management: Digital Environment for a Library System

Authors: Vikram Munjal, Harpreet Munjal

Abstract:

A few years ago we could hardly think of Libraries' strategic plan that includes the bold and amazing prediction of a mostly digital environment for a library system. However, sheer hard work by the engineers, academicians, and librarians made it feasible. However, it requires huge expenditure and now a day‘s spending for electronic resources (e-resources) have been growing much more rapidly than have the materials budgets of which such resources are usually a part. And many libraries are spending a huge amount on e-resources. Libraries today are in the midst of a profound shift toward reliance on e-resources, and this reliance seems to have deepened in recent years as libraries have shed paper journal subscriptions to help pay for online access. This has been exercised only to cater user behavior and attitudes that seem to be changing even more quickly in this dynamic scenario.

Keywords: radio frequency identification, management, scanning, barcodes, checkout and tags

Procedia PDF Downloads 404
1866 Release Management with Continuous Delivery: A Case Study

Authors: A. Maruf Aytekin

Abstract:

We present our approach on using continuous delivery pattern for release management. One of the key practices of agile and lean teams is the continuous delivery of new features to stakeholders. The main benefits of this approach lie in the ability to release new applications rapidly which has real strategic impact on the competitive advantage of an organization. Organizations that successfully implement Continuous Delivery have the ability to evolve rapidly to support innovation, provide stable and reliable software in more efficient ways, decrease the amount of resources need for maintenance, and lower the software delivery time and costs. One of the objectives of this paper is to elaborate a case study where IT division of Central Securities Depository Institution (MKK) of Turkey apply Continuous Delivery pattern to improve release management process.

Keywords: automation, continuous delivery, deployment, release management

Procedia PDF Downloads 256
1865 Chatbots in Education: Case of Development Using a Chatbot Development Platform

Authors: Dulani Jayasuriya

Abstract:

This study outlines the developmental steps of a chatbot for administrative purposes of a large undergraduate course. The chatbot is able to handle student queries about administrative details, including assessment deadlines, course documentation, how to navigate the course, group formation, etc. The development window screenshots are that of a free account on the Snatchbot platform such that this can be adopted by the wider public. While only one connection to an answer based on possible keywords is shown here, one needs to develop multiple connections leading to different answers based on different keywords for the actual chatbot to function. The overall flow of the chatbot showing connections between different interactions is depicted at the end.

Keywords: chatbots, education, technology, snatch bot, artificial intelligence

Procedia PDF Downloads 104
1864 Snapchat’s Scanning Feature

Authors: Reham Banwair, Lana Alshehri, Sara Hadrawi

Abstract:

The purpose of this project is to identify user satisfaction with the AI functions on Snapchat, in order to generate improvement proposals that allow its development within the app. To achieve this, a qualitative analysis was carried out through interviews to people who usually use the application, revealing their satisfaction or dissatisfaction with the usefulness of the AI. In addition, the background of the company and its introduction in these algorithms were analyzed. Furthermore, the characteristics of the three main functions of AI were explained: identify songs, solve mathematical problems, and recognize plants. As a result, it was obtained that 50% still do not know the characteristics of AI, 50% still believe song recognition is not always correct, 41.7% believe that math problems are usually accurate and 91.7% believes the plant detection tool is working properly.

Keywords: artificial intelligence, scanning, Snapchat, machine learning

Procedia PDF Downloads 134
1863 Corrosion Interaction Between Steel and Acid Mine Drainage: Use of AI Based on Fuzzy Logic

Authors: Maria Luisa de la Torre, Javier Aroba, Jose Miguel Davila, Aguasanta M. Sarmiento

Abstract:

Steel is one of the most widely used materials in polymetallic sulfide mining installations. One of the main problems suffered by these facilities is the economic losses due to the corrosion of this material, which is accelerated and aggravated by the contact with acid waters generated in these mines when sulfides come into contact with oxygen and water. This generation of acidic water, in turn, is accelerated by the presence of acidophilic bacteria. In order to gain a more detailed understanding of this corrosion process and the interaction between steel and acidic water, a laboratory experiment was carried out in which carbon steel plates were introduced into four different solutions for 27 days: distilled water (BK), which tried to assimilate the effect produced by rain on this material, an acid solution from a mine with a high Fe2+/Fe3+ (PO) content, another acid solution of water from another mine with a high Fe3+/Fe2+ (PH) content and, finally, one that reproduced the acid mine water with a high Fe2+/Fe3+ content but in which there were no bacteria (ST). Every 24 hours, physicochemical parameters were measured, and water samples were taken to carry out an analysis of the dissolved elements. The results of these measurements were processed using an explainable AI model based on fuzzy logic. It could be seen that, in all cases, there was an increase in pH, as well as in the concentrations of Fe and, in particular, Fe(II), as a consequence of the oxidation of the steel plates. Proportionally, the increase in Fe concentration was higher in PO and ST than in PH because Fe precipitates were produced in the latter. The rise of Fe(II) was proportionally much higher in PH, especially in the first hours of exposure, because it started from a lower initial concentration of this ion. Although to a lesser extent than in PH, the greater increase in Fe(II) also occurred faster in PO than in ST, a consequence of the action of the catalytic bacteria. On the other hand, Cu concentrations decreased throughout the experiment (with the exception of distilled water, which initially had no Cu, as a result of an electrochemical process that generates a precipitation of Cu together with Fe hydroxides. This decrease is lower in PH because the high total acidity keeps it in solution for a longer time. With the application of an artificial intelligence tool, it has been possible to evaluate the effects of steel corrosion in mining environments, corroborating and extending what was obtained by means of classical statistics.

Keywords: acid mine drainage, artificial intelligence, carbon steel, corrosion, fuzzy logic

Procedia PDF Downloads 7
1862 Duo Lingo: Learning Languages through Play

Authors: Yara Bajnaid, Malak Zaidan, Eman Dakkak

Abstract:

This research explores the use of Artificial Intelligence in Duolingo, a popular mobile application for language learning. Duolingo's success hinges on its gamified approach and adaptive learning system, both heavily reliant on AI functionalities. The research also analyzes user feedback regarding Duolingo's AI functionalities. While a significant majority (70%) consider Duolingo a reliable tool for language learning, there's room for improvement. Overall, AI plays a vital role in personalizing the learning journey and delivering interactive exercises. However, continuous improvement based on user feedback can further enhance the effectiveness of Duolingo's AI functionalities.

Keywords: AI, Duolingo, language learning, application

Procedia PDF Downloads 47
1861 Automatic Content Curation of Visual Heritage

Authors: Delphine Ribes Lemay, Valentine Bernasconi, André Andrade, Lara DéFayes, Mathieu Salzmann, FréDéRic Kaplan, Nicolas Henchoz

Abstract:

Digitization and preservation of large heritage induce high maintenance costs to keep up with the technical standards and ensure sustainable access. Creating impactful usage is instrumental to justify the resources for long-term preservation. The Museum für Gestaltung of Zurich holds one of the biggest poster collections of the world from which 52’000 were digitised. In the process of building a digital installation to valorize the collection, one objective was to develop an algorithm capable of predicting the next poster to show according to the ones already displayed. The work presented here describes the steps to build an algorithm able to automatically create sequences of posters reflecting associations performed by curator and professional designers. The exposed challenge finds similarities with the domain of song playlist algorithms. Recently, artificial intelligence techniques and more specifically, deep-learning algorithms have been used to facilitate their generations. Promising results were found thanks to Recurrent Neural Networks (RNN) trained on manually generated playlist and paired with clusters of extracted features from songs. We used the same principles to create the proposed algorithm but applied to a challenging medium, posters. First, a convolutional autoencoder was trained to extract features of the posters. The 52’000 digital posters were used as a training set. Poster features were then clustered. Next, an RNN learned to predict the next cluster according to the previous ones. RNN training set was composed of poster sequences extracted from a collection of books from the Gestaltung Museum of Zurich dedicated to displaying posters. Finally, within the predicted cluster, the poster with the best proximity compared to the previous poster is selected. The mean square distance between features of posters was used to compute the proximity. To validate the predictive model, we compared sequences of 15 posters produced by our model to randomly and manually generated sequences. Manual sequences were created by a professional graphic designer. We asked 21 participants working as professional graphic designers to sort the sequences from the one with the strongest graphic line to the one with the weakest and to motivate their answer with a short description. The sequences produced by the designer were ranked first 60%, second 25% and third 15% of the time. The sequences produced by our predictive model were ranked first 25%, second 45% and third 30% of the time. The sequences produced randomly were ranked first 15%, second 29%, and third 55% of the time. Compared to designer sequences, and as reported by participants, model and random sequences lacked thematic continuity. According to the results, the proposed model is able to generate better poster sequencing compared to random sampling. Eventually, our algorithm is sometimes able to outperform a professional designer. As a next step, the proposed algorithm should include a possibility to create sequences according to a selected theme. To conclude, this work shows the potentiality of artificial intelligence techniques to learn from existing content and provide a tool to curate large sets of data, with a permanent renewal of the presented content.

Keywords: Artificial Intelligence, Digital Humanities, serendipity, design research

Procedia PDF Downloads 184
1860 Analyzing the Untenable Corruption Intricate Patterns in Africa and Combating Strategies for the Efficiency of Public Sector Supply Chains

Authors: Charles Mazhazhate

Abstract:

This study interrogates and analyses the intricate kin- and- kith network patterns of corruption and mismanagement of resources prevalent in public sector supply chains bedeviling the developing economies of Sub-Saharan Africa with particular reference to Zimbabwe. This is forcing governments to resort to harsh fiscal policies that see their citizens paying high taxes against a backdrop of incomes below the poverty datum line, and this negatively affects their quality of life. The corporate world is also affected by the various tax-regime instituted. Mismanagement of resources and corrupt practices are rampant in state-owned enterprises to the extent that institutional policies, procedures, and practices are often flouted for the benefit of a clique of individuals. This interwoven in kith and kin blood human relations in organizations where appointments to critical positions are based on ascribed status. People no longer place value in their systems to make them work thereby violating corporate governance principles. Greediness and ‘unholy friendship connections’ are instrumental in fueling the employment of people who know each other from their discrete backgrounds. Such employments or socio-metric unions are meant to protect those at the top by giving them intelligent information through spying on what other subordinates are doing inside and outside the organization. This practice has led to the underperforming of organizations as those employees with connections and their upper echelons favorites connive to abuse resources for their own benefit. Even if culprits are known, no draconian measures are employed as a deterrence measure. Public value along public sector supply chains is lost. The study used a descriptive case study research design on fifty organizations in Zimbabwe mainly state-owned enterprises. Both qualitative and quantitative instrumentations were used. Both Snowball and random sampling techniques were used. The study found out that in all the fifty SOEs, there were employees in key positions related to top management, with tentacles feeding into the law enforcement agents, judiciary, security systems, and the executive. Such employees in public seem not to know each other with but would be involved in dirty scams and then share the proceeds with top people behind the scenes. The study also established that the same employees do not have the necessary competencies, qualifications, abilities, and capabilities to be in those positions. This culture is now strong that it is difficult to bust. The study recommends recruitment of all employees through an independent employment bureau to ensure strategic fit.

Keywords: corruption, state owned enterprises, strategic fit, public sector supply chains, efficiency

Procedia PDF Downloads 160
1859 Proposition of an Integrative Model for Assessing the Effectiveness of the Performance Management System

Authors: Mariana L. de Araújo, Pedro P. M. Menezes

Abstract:

Research on strategic human resource management (SHRM) has made progress in the last few decades, showing a relationship between policies and practices of human resource management (HRM) and improving organizational results. That's because demonstrating the effectiveness of any HRM or other organizational practice, which means the extent that this can operate as a tool to achieve organizational performance, is a complex and arduous task to execute. Even today, there isn't consensus about "effectiveness," and the tools to measure the effectiveness are disconnected and not convincing. It is not different from the performance management system (PMS) effectiveness. A disproportionate focus on specific criteria adopted and an accumulation of studies that don't relate to the others, which damages the development of the field. Therefore, it aimed to evaluate the effectiveness of the PMS through models, dimensions, criteria, and measures. The objective of this study is to propose a theoretical-integrative model for evaluating PMS based on the literature in the PMS field. So, the PRISMA protocol was applied to carry out a systematic review, resulting in 57 studies. After performing the content analysis, we identified six dimensions: learning, societal impact, reaction, financial results, operational results and transfer, and 22 categories. In this way, a theoretical-integrative model for assessing the effectiveness of PMS was proposed based on the findings of this study, in which it was possible to confirm that the effectiveness construct is somewhat complex when viewing that most of the reviewed studies considered multiple dimensions in their assessment. In addition, we identified that the most immediate and proximal results of PMS are the most adopted by the studies; conversely, the studies adopted less distal outcomes to assess the effectiveness of PMS. Another finding of this research is that the reviewed studies predominantly analyze from the individual or psychological perspective, even when it comes to criteria whose phenomena are at an organizational level. Therefore, this study converges with a trend recently identified when referring to a process of "psychologization" in which GP studies, in general, have demonstrated macro results of the GP system from an individual perspective. Therefore, given the identification of a methodological pattern, the predominant influence of individual and psychological aspects in studies on HRM in administration is highlighted, demonstrated by the reflection on the practically absolute way of measuring the effectiveness of PMS from perceptual and subjective measures. Therefore, based on the recognition of the patterns identified, the model proposed to promote studies on the subject more broadly and profoundly to broaden and deepen the perspective of the field of management's interests so that the evaluation of the effectiveness of PMS can promote inputs on the impact of the PMS system in organizational performance. Finally, the findings encourage reflections on assessing the effectiveness of PMS through the theoretical-integrative model developed so that the field can promote new theoretical and practical perspectives.

Keywords: performance management, strategic human resource management, effectiveness, organizational performance

Procedia PDF Downloads 115
1858 Global and Domestic Response to Boko Haram Terrorism on Cameroon 2014-2018

Authors: David Nchinda Keming

Abstract:

The present study is focused on both the national and international collective fight against Boko Haram terrorism on Cameroon and the rule played by the Lake Chad Basin Countries (LCBCs) and the global community to suffocate the sect’s activities in the region. Although countries of the Lake Chad Basin include: Cameroon, Chad, Nigeria and Niger others like Benin also joined the course. The justification for the internationalisation of the fight against Boko Haram could be explained by the ecological and international climatic importance of the Lake Chad and the danger posed by the sect not only to the Lake Chad member countries but to global armed, civil servants and the international political economy. The study, therefore, kick start with Cameroon’s reaction to Boko Haram’s terrorist attacks on its territory. It further expounds on Cameroon’s request on bilateral diplomacy from members of the UN Security Council for an international collective support to staple the winds of the challenging sect. The study relies on the hypothesis that Boko Haram advanced terrorism on Cameroon was more challenging to the domestic military intelligence thus forcing the government to seek for bilateral and multilateral international collective support to secure its territory from the powerful sect. This premise is tested internationally via (multilateral cooperation, bilateral response, regional cooperation) and domestically through (solidarity parade, religious discourse, political manifestations, war efforts, the vigilantes and the way forward). To accomplish our study, we made used of the mixed research methodologies to interpret the primary, secondary and tertiary sources consulted. Our results reveal that the collective response was effectively positive justified by the drastic drop in the sect’s operations in Cameroon and the whole LCBCs. Although the sect was incapacitated, terrorism remains an international malaise and Cameroon hosts a fertile ground for terrorists’ activism. Boko Haram was just weakened and not completely defeated and could reappear someday even under a different appellation. Therefore, to absolutely eradicate terrorism in general and Boko Haram in particular, LCBCs must improve their military intelligence on terrorism and continue to collaborate with advanced experienced countries in fighting terrorism.

Keywords: Boko Haram, terrorism, domestic, international, response

Procedia PDF Downloads 154
1857 Validating the Contract between Microservices

Authors: Parveen Banu Ansari, Venkatraman Chinnappan, Paramasivam Shankar

Abstract:

Contract testing plays a pivotal role in the current landscape of microservices architecture. Testing microservices at the initial stages of development helps to identify and rectify issues before they escalate to higher levels, such as UI testing. By validating microservices through contract testing, you ensure the integration quality of APIs, enhancing the overall reliability and performance of the application. Contract testing, being a collaborative effort between testers and developers, ensures that the microservices adhere to the specified contracts or agreements. This proactive approach significantly reduces defects, streamlines the development process, and contributes to the overall efficiency and robustness of the application. In the dynamic and fast-paced world of digital applications, where microservices are the building blocks, embracing contract testing is indeed a strategic move for ensuring the quality and reliability of the entire system.

Keywords: validation, testing, contract, agreement, microservices

Procedia PDF Downloads 57
1856 Intellectual Property Risk Assessment in Planning Market Entry to China

Authors: Qing Cao

Abstract:

Generally speaking, China has a relatively high level of intellectual property (IP) infringement. Risk assessment is indispensable in the strategic planning process. To complement the current literature in international business, the paper sheds the light on how to assess IP risk for foreign companies in planning market entry to China. Evaluating internal and external IP environment, proposed in the paper, consists of external analysis, internal analysis and further internal analysis. Through position the company’s IP environment, the risk assessment approach enables the foreign companies to either build the corresponding IP strategies or abort the entry plan beforehand to minimize the IP risks.

Keywords: intellectual property, IP environment, risk assessment

Procedia PDF Downloads 560
1855 Navigating Disruption: Key Principles and Innovations in Modern Management for Organizational Success

Authors: Ahmad Haidar

Abstract:

This research paper investigates the concept of modern management, concentrating on the development of managerial practices and the adoption of innovative strategies in response to the fast-changing business landscape caused by Artificial Intelligence (AI). The study begins by examining the historical context of management theories, tracing the progression from classical to contemporary models, and identifying key drivers of change. Through a comprehensive review of existing literature and case studies, this paper provides valuable insights into the principles and practices of modern management, offering a roadmap for organizations aiming to navigate the complexities of the contemporary business world. The paper examines the growing role of digital technology in modern management, focusing on incorporating AI, machine learning, and data analytics to streamline operations and facilitate informed decision-making. Moreover, the research highlights the emergence of new principles, such as adaptability, flexibility, public participation, trust, transparency, and digital mindset, as crucial components of modern management. Also, the role of business leaders is investigated by studying contemporary leadership styles, such as transformational, situational, and servant leadership, emphasizing the significance of emotional intelligence, empathy, and collaboration in fostering a healthy organizational culture. Furthermore, the research delves into the crucial role of environmental sustainability, corporate social responsibility (CSR), and corporate digital responsibility (CDR). Organizations strive to balance economic growth with ethical considerations and long-term viability. The primary research question for this study is: "What are the key principles, practices, and innovations that define modern management, and how can organizations effectively implement these strategies to thrive in the rapidly changing business landscape?." The research contributes to a comprehensive understanding of modern management by examining its historical context, the impact of digital technologies, the importance of contemporary leadership styles, and the role of CSR and CDR in today's business landscape.

Keywords: modern management, digital technology, leadership styles, adaptability, innovation, corporate social responsibility, organizational success, corporate digital responsibility

Procedia PDF Downloads 66
1854 Developing a Model for Information Giving Behavior in Virtual Communities

Authors: Pui-Lai To, Chechen Liao, Tzu-Ling Lin

Abstract:

Virtual communities have created a range of new social spaces in which to meet and interact with one another. Both as a stand-alone model or as a supplement to sustain competitive advantage for normal business models, building virtual communities has been hailed as one of the major strategic innovations of the new economy. However for a virtual community to evolve, the biggest challenge is how to make members actively give information or provide advice. Even in busy virtual communities, usually, only a small fraction of members post information actively. In order to investigate the determinants of information giving willingness of those contributors who usually actively provide their opinions, we proposed a model to understand the reasons for contribution in communities. The study will definitely serve as a basis for the future growth of information giving in virtual communities.

Keywords: information giving, social identity, trust, virtual community

Procedia PDF Downloads 322
1853 Capturing Healthcare Expert’s Knowledge Digitally: A Scoping Review of Current Approaches

Authors: Sinead Impey, Gaye Stephens, Declan O’Sullivan

Abstract:

Mitigating organisational knowledge loss presents challenges for knowledge managers. Expert knowledge is embodied in people and captured in ‘routines, processes, practices and norms’ as well as in the paper system. These knowledge stores have limitations in so far as they make knowledge diffusion beyond geography or over time difficult. However, technology could present a potential solution by facilitating the capture and management of expert knowledge in a codified and sharable format. Before it can be digitised, however, the knowledge of healthcare experts must be captured. Methods: As a first step in a larger project on this topic, a scoping review was conducted to identify how expert healthcare knowledge is captured digitally. The aim of the review was to identify current healthcare knowledge capture practices, identify gaps in the literature, and justify future research. The review followed a scoping review framework. From an initial 3,430 papers retrieved, 22 were deemed relevant and included in the review. Findings: Two broad approaches –direct and indirect- with themes and subthemes emerged. ‘Direct’ describes a process whereby knowledge is taken directly from subject experts. The themes identified were: ‘Researcher mediated capture’ and ‘Digital mediated capture’. The latter was further distilled into two sub-themes: ‘Captured in specified purpose platforms (SPP)’ and ‘Captured in a virtual community of practice (vCoP)’. ‘Indirect’ processes rely on extracting new knowledge using artificial intelligence techniques from previously captured data. Using this approach, the theme ‘Generated using artificial intelligence methods’ was identified. Although presented as distinct themes, some papers retrieved discuss combining more than one approach to capture knowledge. While no approach emerged as superior, two points arose from the literature. Firstly, human input was evident across themes, even with indirect approaches. Secondly, a range of challenges common among approaches was highlighted. These were (i) ‘Capturing an expert’s knowledge’- Difficulties surrounding capturing an expert’s knowledge related to identifying the ‘expert’ say from the very experienced and how to capture their tacit or difficult to articulate knowledge. (ii) ‘Confirming quality of knowledge’- Once captured, challenges noted surrounded how to validate knowledge captured and, therefore, quality. (iii) ‘Continual knowledge capture’- Once knowledge is captured, validated, and used in a system; however, the process is not complete. Healthcare is a knowledge-rich environment with new evidence emerging frequently. As such, knowledge needs to be reviewed, updated, or removed (redundancy) as appropriate. Although some methods were proposed to address this, such as plausible reasoning or case-based reasoning, conclusions could not be drawn from the papers retrieved. It was, therefore, highlighted as an area for future research. Conclusion: The results described two broad approaches – direct and indirect. Three themes were identified: ‘Researcher mediated capture (Direct)’; ‘Digital mediated capture (Direct)’ and ‘Generated using artificial intelligence methods (Indirect)’. While no single approach was deemed superior, common challenges noted among approaches were: ‘capturing an expert’s knowledge’, ‘confirming quality of knowledge’, and ‘continual knowledge capture’. However, continual knowledge capture was not fully explored in the papers retrieved and was highlighted as an important area for future research. Acknowledgments: This research is partially funded by the ADAPT Centre under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.

Keywords: expert knowledge, healthcare, knowledge capture and knowledge management

Procedia PDF Downloads 134
1852 Strategy, Intellectual Capital Disclosure, Competition, and Market Performance

Authors: Agnes Utari Widyaningdyah

Abstract:

This study investigates the relationship between strategy, intellectual capital (IC) disclosure, and the firm’s performance by considering business competition as a moderating variable. The secondary sectors manufacturing firms in the Jakarta Stock Industrial Classification as sample because this group represents a knowledge-intensive firm according to the OECD (Organization for Economic Cooperation and Development) criteria. Using path analysis, this study reveals that there is a significant influence of strategy toward IC disclosure. Firms with differentiation strategy tend to withhold its strategic information included IC because of afraid in losing their competitive advantage. The results also indicate that firms are more likely to withhold information about IC if they perceive that current or potential competition is strong. However, firms should consider that IC disclosure is a positive signal to the investor.

Keywords: strategy, IC disclosure, market performance, business competition

Procedia PDF Downloads 297
1851 Destination Management Organization in the Digital Era: A Data Framework to Leverage Collective Intelligence

Authors: Alfredo Fortunato, Carmelofrancesco Origlia, Sara Laurita, Rossella Nicoletti

Abstract:

In the post-pandemic recovery phase of tourism, the role of a Destination Management Organization (DMO) as a coordinated management system of all the elements that make up a destination (attractions, access, marketing, human resources, brand, pricing, etc.) is also becoming relevant for local territories. The objective of a DMO is to maximize the visitor's perception of value and quality while ensuring the competitiveness and sustainability of the destination, as well as the long-term preservation of its natural and cultural assets, and to catalyze benefits for the local economy and residents. In carrying out the multiple functions to which it is called, the DMO can leverage a collective intelligence that comes from the ability to pool information, explicit and tacit knowledge, and relationships of the various stakeholders: policymakers, public managers and officials, entrepreneurs in the tourism supply chain, researchers, data journalists, schools, associations and committees, citizens, etc. The DMO potentially has at its disposal large volumes of data and many of them at low cost, that need to be properly processed to produce value. Based on these assumptions, the paper presents a conceptual framework for building an information system to support the DMO in the intelligent management of a tourist destination tested in an area of southern Italy. The approach adopted is data-informed and consists of four phases: (1) formulation of the knowledge problem (analysis of policy documents and industry reports; focus groups and co-design with stakeholders; definition of information needs and key questions); (2) research and metadatation of relevant sources (reconnaissance of official sources, administrative archives and internal DMO sources); (3) gap analysis and identification of unconventional information sources (evaluation of traditional sources with respect to the level of consistency with information needs, the freshness of information and granularity of data; enrichment of the information base by identifying and studying web sources such as Wikipedia, Google Trends, Booking.com, Tripadvisor, websites of accommodation facilities and online newspapers); (4) definition of the set of indicators and construction of the information base (specific definition of indicators and procedures for data acquisition, transformation, and analysis). The framework derived consists of 6 thematic areas (accommodation supply, cultural heritage, flows, value, sustainability, and enabling factors), each of which is divided into three domains that gather a specific information need to be represented by a scheme of questions to be answered through the analysis of available indicators. The framework is characterized by a high degree of flexibility in the European context, given that it can be customized for each destination by adapting the part related to internal sources. Application to the case study led to the creation of a decision support system that allows: •integration of data from heterogeneous sources, including through the execution of automated web crawling procedures for data ingestion of social and web information; •reading and interpretation of data and metadata through guided navigation paths in the key of digital story-telling; •implementation of complex analysis capabilities through the use of data mining algorithms such as for the prediction of tourist flows.

Keywords: collective intelligence, data framework, destination management, smart tourism

Procedia PDF Downloads 121
1850 If You Can't Teach Yourself, No One Can

Authors: Timna Mayer

Abstract:

This paper explores the vast potential of self-directed learning in violin pedagogy. Based in practice and drawing on concepts from neuropsychology, the author, a violinist and teacher, outlines five learning principles. Self-directed learning is defined as an ongoing process based on problem detection, definition, and resolution. The traditional roles of teacher and student are reimagined within this context. A step-by-step guide to applied self-directed learning suggests a model for both teachers and students that realizes student independence in the classroom, leading to higher-level understanding and more robust performance. While the value of self-directed learning is well-known in general pedagogy, this paper is novel in applying the approach to the study of musical performance, a field which is currently dominated by habit and folklore, rather than informed by science.

Keywords: neuropsychology and musical performance, self-directed learning, strategic problem solving, violin pedagogy

Procedia PDF Downloads 149
1849 MapReduce Algorithm for Geometric and Topological Information Extraction from 3D CAD Models

Authors: Ahmed Fradi

Abstract:

In a digital world in perpetual evolution and acceleration, data more and more voluminous, rich and varied, the new software solutions emerged with the Big Data phenomenon offer new opportunities to the company enabling it not only to optimize its business and to evolve its production model, but also to reorganize itself to increase competitiveness and to identify new strategic axes. Design and manufacturing industrial companies, like the others, face these challenges, data represent a major asset, provided that they know how to capture, refine, combine and analyze them. The objective of our paper is to propose a solution allowing geometric and topological information extraction from 3D CAD model (precisely STEP files) databases, with specific algorithm based on the programming paradigm MapReduce. Our proposal is the first step of our future approach to 3D CAD object retrieval.

Keywords: Big Data, MapReduce, 3D object retrieval, CAD, STEP format

Procedia PDF Downloads 540